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The Data Diffusion Machine is a virtual shared memory architecture which has the advan-
tage that data migrates from node to node when needed. However its disadvantages compared
with other shared memory architectures such as CC-NUMA are higher miss penalties due to
its hierarchical structure in interconnection and contention of the transactions at higher level
directories. One way to alleviate these disadvantages is by increasing fanout and splitting
directories. We analyze the performance improvement of the DDM by adopting these two
schemes by extending the experimental results obtained from the DDM emulator. From the
emulation result of mp3d running on 3X3 configuration, the performance of a DDM with flat
9-node configuration has been estimated. Its execution time is 1.3 times faster than 3x3
configuration. To see the accuracy of our estimation method, we have compared the actual
execution time and the estimated execution time in the case of a DDM with flat 4-node, which
can be configured with current DDM emulator with minimum modifications. The relative error
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was 3%. We also discuss about possible sources of errors in our method.

1. Introduction

The Data Diffusion Machine (DDM)?V (also
referred as Cache Only Memory Architecture
(COMA) in Ref. 2)) is an instance of virtual
shared memory architecture. In the DDM data
has no fixed home location; instead it migrates
from node to node when it is needed. Therefore
when a data item (the unit of data storage and
migration in the DDM) is not found in the
processor’s local memory, (which has a set-
associative structure, and is called Attraction
Memory in Ref.2) ), there has to be a func-
tionality to locate the data. In the DDM we
achieve this by a tree structure and directory
nodes. Figure 1 shows the structure of a 16-
node DDM.

When a read miss to a data item occurs at the
processing node, a read transaction is sent to
the directory node above the processing node.
If any processing node below the directory node
has the item, the node sends back the item (by
a copy transaction), but if none of the nodes
below has the item, the directory node sends a
read transaction to the directory one level
higher. In the case of write, if the data item
exists only in the processing node (i. e. the item
is in the exclusive state), the write is achieved
locally and immediately. If copies of the item
exist in other nodes, an erase transaction is sent
to each node having a copy of the item, and the
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write operation is suspended until each erase
has been acknowledged in order to provide a
strong consistency model.

A prototype DDM 1is being built at the
Swedish Institute of Computer Science
(SICS)®. This prototype DDM uses Motorola
88100 processers as leaf node processors and
hierarchical buses for the interconnection. At
the University of Bristol, a DDM emulator
based on a network of Transputers has been
implemented®. These two instances of the
DDM have relatively small fanouts (the num-
ber of subsystems below the directory node at
each level of hierarchy). These restrictions
come from the physical limitation of the shared
bus in the former case, and the number of
communication links available in the current
Transputer in the latter case. These factors
lead to a large number of levels in the hierarchy
of the DDM. In Ref. 6) it is pointed out that the
disadvantage of COMA (DDM) is its higher
miss penalty (compared with CC-NUMA)
which comes from COMA'’s hierarchical struc-
ture. Recent semiconductor technologies make
large crossbar switch devices, such as the
Inmos C104", available. With these devices, it
is possible to have large fanouts in the DDM,
and hence the disadvantage of the higher miss
penalty can be reduced. In this paper, we first
describe configurations of the DDM based on an
interconnection network using such switching
devices. Then we will estimate how such
configurations (with high fanout and split direc-



Vol.36 No.7

O

[e] Processing Node @ Directory Node

Fig.1 Structure of 16 nodes DDM.

tory) will improve the performance of the
DDM, by extending the statistical results
obtained from the emulator. In Section 4,
estimated execution time is compared with
actual execution time to see the accuracy of our
method. And then we discuss possible source of
errors in our method.

2. Increase Fanout and Split Directory

Figure 2 shows how hierarchy levels are
reduced, and how directory modules are dis
tributed among leaf nodes in the case of convert-
ing 4X4 into 16 (flat) DDM.

Figure 2(a) is the original 2-level, 4 X4 struc-
ture. First remove the level-2 (top) directories
and collect all the level-1 directory entries into
one node (Fig.2(b)). Then split directory
entries into 16 pieces using part of the item
identifier. Note that all the leaf nodes may look
up all the split directories. Therefore full 16X
16 interconnection is needed (Fig. 2(c)). In Fig.
2(d), split directory nodes are embedded in leaf
nodes, and they look physically flat. But we
still consider the processing nodes are virtually
placed under the directory nodes (we call this
“virtual hievarchy”).

Having high fanout allows a small scale
DDM to have a one-level virtual hierarchy.
However, as we will discuss in the section 5, we
think a large scale DDM should have multi-
level structure for practical reasons. Figure 3
shows a block diagram of a leaf node in a
virtual hierarchy DDM, which has a processor,
a DDM memory, which has a set-associative
structure, a part of directory entries, and a
network interface which connects the node to
the switching network. In this example the
DDM system is assumed to have a two level
structure, hence we have two directory mod-
ules. For simplicity, components in Fig. 3 are
connected by a single bus, but this is not neces-
sary. When necessary, a better interconnection
scheme such as crossbar switch should be used
to avoid traffic conflicts between components.
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Fig.3 A leaf node in virtual hierarchy DDM.

Adopting the virtual hierarchy into the DDM
has both advantages and disadvantages. Since
a leaf node has a part of the directory entries,
look-ups to those entries can be achieved
locally, hence it reduces network traffic and the
average latency for look-up becomes shorter.
This property of non-unique distance to direc-
tory module can be exploited for optimizing
data placement, however some people may
think one of DDM’s policies is lost; although
data items can still migrate among processors,
directory entries have some fixed places to
reside (In this sense a DDM with virtual hierar-
chy should be placed between original DDM
and CC-NUMA). The network interface is
shared by local memory and directory modules;
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this can be both an advantage (cost reduction)
and a disadvantage (contention of transactions
destined to the different modules in a same
node).

Assume that we have M nodes in the DDM
system, and each node has memory for N data
items. Then we need to keep track of the
locations of at most M X N different data items
in the system, that is, the directories have M X
N entries for each level. We distribute these
entries evenly to M nodes, resulting in each
node having N entries. A part of the lfem
Identifier (which corresponds to the Physical
Address in ordinary shared memory machines,
minus % bits, where the item size is 2* Bytes) is
used for this directory entry distribution. In the
case of 16x16 nodes DDM (256 nodes in total),
each 16 leaf nodes shares one level-1 directory,
and the entries of the directory with item
identifier of which lower 4 bits are 0000 are
stored in the node 0 in the group, 0001 are
stored in the node 1, and so forth (For this
distribution method, the number of nodes
should be a power of two). The top directory
(i. e. second level) is shared by all the 256 nodes
in the system. Directory entries with item
identifier whose lower 8 bits are 00000000 are
stored in the node 0, and 11111111 are stored in
the node 255, for example.

3. Performance Analysis

Although the experimental results obtained
from the DDM emulator provide us accurate
and reliable measures for the DDM
performance®, the configuration of the emula-
tor is limited to having a fanout of three
(except for four at the top node). It is possible
to record all the transactions at all nodes in the
emulator and analyze them with some program,
but it would take huge computing resources to
precisely analyze this data. In this section, we
analyze the possible performance improvement
in the DDM with higher fanout and split direc-
tories, by converting the statistical data
obtained from the emulator. Its results could
be less precise, but quick and does not require
development of a software program to process
transaction records.

The introduction of high fanout and a split
directory scheme into the DDM will mainly
affect the performance in the following points :

1. Reduction of the average miss penalty due

to fewer directory look-ups.

2. Number of directory entries per node is
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(b) Single Level Directory Look Up

Fig.4 Reduction of directory look-ups.

Table 1 Timing parameters for latency estimation.

Parameter Description Latency
Ty Header Message 400 ns
Tr Full Message 1040 ns
Tr Protocol Transaction 200 ns

reduced. This means each directory node
received fewer transactions, which lead to
less contention.

It is expected that increasing fanout may
change the traffic pattern of the transactions in
a DDM system. Also there exist certain types
of contention which cannot be avoided by split-
ting directories. We assume these effects are
negligible unless the fanout becomes too big.
Below we investigate each factor independent-
ly, and then evaluate overall performance
improvement by combining these factors.

3.1 Reduction of Directory Look-Ups

Increasing the fanout (i. e. number of subsys-
tem under a directory node at each level)
reduces the number of levels in the DDM hierar-
chy, and results in a reduction of directory
look-ups.

Figure 4 shows the case where two level
directory look-up (DLU) for read and copy
transactions is reduced to one level. In Fig. 4
(a), a leaf node PO sends a read transaction,
and the transaction takes 4 hops to get to P1,
the leaf node having a copy of the requested
data item. Also the transaction needs to be
processed at each directory node that the trans-
action passes. It is similar in the case where
copy transaction is sent back from P1 to P0;
however, since copy transaction contains the
body of data item, it takes longer than read,
which is made of only header (Full Message
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and Header Message in the table 1 respective-
ly). On the other hand, in the case of one level
DLU, it takes two hops and one protocol
processing each way. The area surrounded by
dashed line in Fig. 4(a) shows these differences.
The Table 1 shows the timing parameters
used in the DDM emulator. Using these param-
eters, a DLU reduction from two levels to one
level is converted to the time reduction of
3680ns in a miss penalty. In actual executions
of application programs, transactions from
different processors may be combined as they
pass the directory nodes. Hence its calculation
has to be done at each hop (e.g. in figure 4 from
PO to DO, from DO to D1, etc). Another factor
to be taken into consideration is that a read
miss at a local memory could produce multiple
read” transactions due to pre-fetching in the
emulator, and a write miss at a local memory
could produce multiple erase transactions (up
to number of local memories minus one).
However these multiple transactions are
ideally processed simultaneously. We assume
that the relation between reductions of directory
look-up and execution time is proportional to
the ratio (Number of Misses at Local Mewmo-
)/ (Number of Transaction Directly General-
ed by Local Memory Misses). The following
formula gives the benefit of fewer directory

look-up in the execution time of application :

AEzxecTime,
((Te+ Tu) X Ny
+(Tp + '11-">7>< Nr) X Missou
Mi3s110 X Niodes

(1)

Where :

AFEzxecTime: Reduction of Execution Time
by Fewer DLU

Ny Number of Level 2 Header
Messages

Nr Number of Level 2 Full Mes-
sages

Missiu Number of Misses at Local
Memory

Missiip Number of Messages Trigger-
ed by Misses at Local Memo-
ry

Nyodes Number of Leaf Nodes

3.2 Transaction Contention

Increasing fanout and splitting directory will
change the traffic pattern of transactions in a
DDM system. As stated earlier in this section,
it reduces the number of transactions per direc-

* Up to four reads in the experiments done in this
paper.

Performance Analysis of a DDM with High Fanout and Split Directories 1665

tory node. When directory entries in a module
are distributed among N modules, ideally the
number of transactions per directory node is
reduced to 1/N. This reduction of transactions
results in reduction of average latency at
queues of directories.

From the execution of the DDM emulator, we
can obtain the number of transactions received
and the average latency at each level of direc-
tory. The average latency would be affected by
the following factors in the DDM with large
fanout and split directories :

Factor 1 Number of transactions per direc-
tory node is reduced to 1/N, where N is the split
factor, of the original hierarchy structure.
Moreover if a directory node becomes top in
the hierarchy, it will not receive transactions
from above and again the number of transac-
tions is reduced.

Factor 2 Lower average miss penalty caused
by fewer DLU’s makes average interval time
between memory accesses shorter. This results
in higher access rate and more contention, and
causes longer average latency at directories.

We use the following symbols :

Lave Average Latency (Original)

Lisve Average Latency (Improved)

TRrota Number of Total Transac-
tions

TRavove Number of Transactions from
Above

Torg Original Execution Time

Toru DLU Time Reduction®*

Nspuiz Split Factor

AExecTime, Reduction of Exec. Time by

Less Contention

When a miss occurs at a leaf node, a transac-
tion will be sent to the first-level directory
above the leaf node. At the moment, if any
outstanding transaction(s) is in the directory
node, the transaction from the leaf node is not
processed until the outstanding job is finished.
Similarly, if several leaf node processors sub-
mit transactions at the same time, they are
processed sequentially, and hence all but one
are delayed. Since now we have the same
number of first-level directories as processors,
if no two transaction were destined to the same
directory (i.e. transactions were completely
distributed among the directories) there would
be no delay. However there are some conflicts
of transactions in actual applications; we

** Miss penalty reduction due to fewer DLU in
section 3.1.
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assume the delay is linearly reduced as the
number of transactions is reduces. The effect
of this Factor 1 is expressed as:
TRTotal"‘ TRAbove

Factor 1= Nsprie X TRrotar (2)

Factor 2 above can be considered as a reduc-
tion of the average interval between transac-
tions issued from a processor. There is uncer-
tainty in estimating this effect precisely, i. e. if
the delay at a queue is caused by transactions
issued at the same time from different proces-
sors, Factor 2 does not make a big difference.
On the other hand, if the delay is mainly caused
by receiving new transactions at a directory
which has outstanding transactions, the aver-
age latency is directly affected by Factor 2.
Again we simply take the effect of Factor 2 as
proportional to the total execution time:

Factor 2:*17:0;;“% (3)

Combining these two factors, the following
equation gives the improved average latency :
Liwe=Lase X Factor 1X Factor 2
o LAve X ( TRTotaZ 'f TRAbove) X Torg
" Nsprir X TRrotar X ( Torg— TDLU)

(4)
AExecTime,= (Lave= %}W) X Missuan
Nodes
(5)
3.3 Estimation Based on Emulation
Results

In this subsection, we apply the formula
presented in the previous subsections to the
actual data obtained from the emulator and
show the performance improvement. We chose
mp3d, a fluid flow simulation from the
SPLASH benchmark suites, as the application
program to be run on the emulator, because in
m3pd the miss penalty is dominant in its total
execution time. In other words, in applications
with low miss penalty (e.g. Wafer in SPLASH
benchmark), having high fanout and split direc-
tory does not profit very much.

We estimate a case where 3 X3 configuration
is converted to 9, that is, the data obtained from
the DDM emulator having 3 X 3 configuration is
converted to an estimation of the performance
of the one-level (flat) 9-node DDM. The execu-
tion time of 3 X3 configuration time was 411ms.
As explained in the section 2, actual implemen-
tations of split directory will have nodes of
power of two to distribute entries using a part
of item identifier (i.e. we find the node where
the directory entry for the missed item exists
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Table 2 3X3 level 2 DLU
transactions.
Ny 1.53x10°
Nr 5.59 % 10°
Missim 4.64x10°
Missiip 9.38x10°
Nwodes 9
AExecTime, 89 ms
Table 3 3X3 queue latency
calculation.
Lave 279 ns
TRrotar 2.71x10°
TRavove 1.65x10°
Torg 412 ms
Tm.u 179 ms
Nspuit 3
L pve 64.3ns
Missiu 4.64X10°
ZvNades 9
AFExecTime: 11 ms

Table 4 Execution time 3X3 and
flat 9 configurations.

3Xx3 Flat 9
(Actual) (Estimate)
412 ms 312 ms

by decoding some bits of item identifier). In the
configuration used for performance estimation
here, it is assumed that distribution of directory
entries to non power of two nodes can be done
without timing overhead due to hardware com-
plexity.

3.3.1 DLU Reduction

Table 2 shows the total number of second
level DLU’s. With timing parameters in the
Table 1, we estimated the time for DLU’s will
be reduced by 89ms.

3.3.2 Latency in Queue

Table 3 shows the data from the emulator
and the estimation of the improved average
latency obtained by applying the the formula 5.

In the case of flat 9-node DDM, its average
latency at queues is reduced by 1lms.

Finally, we estimate the execution time of
the DDM with flat 9-node configuration as
312ms, which is 1.3 times faster than the 3X3
configuration, and about 3 times faster than a
single processor (Table 4).

4. Comparison

A Transputer T800, by which current DDM
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emulator is implemented, has four communica-
tion links. Therefore we could implement a flat
4-node DDM with split directory scheme with
minimum modifications (Fig. 5 (a)).

We obtained the data from the execution of
mp3d on a two level (2X2, Fig.5(b)) DDM,
applied the scheme in section 3 to those data,
and compared its execution time with the case
of a flat 4-node DDM (a).

The results of the DLU reduction and the
queue latency reduction are shown in Tables 5
and 6, and the comparison between the esti-
mated execution time and the execution time of
a flat 4-node DDM is shown in Table 7.

We over-estimated the performance improve-
ment by 3%. Although this seems to be accept-
able level of inaccuracy, the possible sources of

(a) Flat 4 Nodes
(Split Directory) (2x2)

(b) Two Level

Fig.5 Four nodes DDM'’s for comparison.

Table 5 2X2 level 2 DLU
transactions.

Ny 1.03%10°
Nr 3.48x10°
Missiu 6.19x10°
Missiip 6.43%10°
Nwodes 4
AExecTime 253 ms

Table 6 2X2 queue latency

calculation.

Lave 115 ns
TRrota 1.88x 108
TRavove 6.88x10°
Torg 766 ms
Torv 263 ms
Nspuie 2
L,Ave 55 ns
Missi 6.19x10°
AVNOdeS 4
AExecTimer 9 ms

Table 7 Comparison between estimation and

emulator result.

Two Level Flat 4 Flat 4
(2x2) (Estimate) (Actual)
766 ms 504 ms 520 ms
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the error in our method, which would be the
topics of the future study are:

@ The modification of network configuration
changed temporal characteristic of mem-
ory accesses in the application program
(mp3d).

® The linear approximation of the queue
latency reduction in section 3.2 was not
appropriate, especially in small
configurations, in which transaction conten-
tion might have been small.

® Increasing fanout caused hot spot conten-
tion.

5. Limitation of Flat Configuration

In Ref. 6), COMA-F, a COMA which has lost
hierarchy structure completely, is proposed.
High fanout and split directory scheme makes a
small scale DDM have one level structure, and
it can be seen as an instance of COMA-F.
However we think COMA-F cannot be adopted
for constructing a large scale machine; rather
we should have hierarchy level. For a COMA,
we need a method to find a missed item. For
this we use bitmap for the nodes having the
item. If we build a flat 4096 nodes machine, a
bitmap for an item has 4Kbits. To reduce false
sharing we set item size relatively small
(64Bytes) for the emulator; in this case the
hardware overhead for a bitmap is 8 times
larger than the data item itself. This seems to
be impractical. On the other hand if the
machine has three level hierarchy (16 X16 X 16),
the overhead reduces to 48 bits (less than 109
of the data item size).

Another reason that makes COMA-F imprac-
tical is that, in some applications a number of
processors try to read an item at the same time.
In the previous section we assumed that the
load of directory modules are balanced well.
However if a large number (say ten’s or
hundred’s) of transactions are destined to a
single directory node and they have no chance
of combining due to a flat structure, the latency
caused by this contention may be too large to
be ignored. In the execution of the emulator we
observed that in some applications the probabil-
ity of combining is very high (e.g. in mp3d
more than half of transactions are combined at
each level of directory). The optimal values
for fanout and hierarchy levels are affected by
many factors, e.g. hit/miss ratio for applica-
tions, size and latency of the switching device,
etc, and need further study.
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6. Conclusions and Future Works

We explained the architecture of the DDM
with high fanout and split directories. We can
expect significant performance improvement of
the DDM with this architecture, and estimated
this improvement by extending the statistical
data from the DDM emulator. The model used
was less precise than the DDM emulator
results; however by comparing our estimation
with a flat DDM emulator with small number
(four) of nodes we found its error was accept-
able. We estimated the potential performance
of the DDM. When a Transputer with C104 is
available we will be able to increase fanout and
split directories of the emulator, and then we
can compare the estimation presented here with
the result from the extended emulator. In the
performance analysis, a possible delay due to
contention of transactions (so called hot spot)
was not taken into consideration. We will be
working on the model including this effect to
increase the accuracy of the analysis.
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