
Application of Fuzzy Control Theory in

Resource Management of a Consolidated Server

Sho Niboshi and Hitoshi Oi

Computer Architecture and Operating Systems Group,

The University of Aizu

Aizu-Wakamatsu, JAPAN

Email: {nibo,oi}@oslab.biz

Abstract—A virtualized system incorporates multiple systems
into a single physical computer as virtual domains. A lot of
data centers and server systems have been organized using
virtualization technology to merge several computer systems.
On the shared system, resource manager is the key affecting
the performance. However, the resource management in current
systems does not provide accurate resource allocation, because it
only utilizes information from virtual machines and disregards
the state of running applications.

The paper demonstrates the CPU resource controller taking
the state of application as inputs to produce the minimum
resource retaining application performance in acceptable level.
In particular, it employs two-layered controller. The first layer
controller makes resource request based on the relationship
between the state and resource demand of each application,
modeled by fuzzy control theory. This approach is efficient to
represent resource allocation model since fuzzy control theory
deals imprecise and uncertain problems. The second layer con-
troller adjusts the requests to the system capacity and builds
the layout of resource capacity based on the relative Quality of
Service performances between applications. For the separation of
resource, common resource controller imposes a hard limit on the
amount of resource a given domain can consume. The controller
allocates resource with most effective capacity configuration.
Under certain specified conditions, the controller does not set
the capacities and allows domains to use the free time if the
resource is idle. This results in eliminating unused resources and
achieves relative high resource usage.

Finally, the resource controller is evaluated with a virtualized
system, and its advantages over conventional resource allocation
methods are shown.

I. INTRODUCTION

Virtualization is one of the technologies to merge multi-

ple computer systems into a single physical computer, and

the technique is widely used to reorganize data centers and

server systems with a small number of computers. Generally

speaking, on average, servers utilize a small fraction of their

total capacity, with Windows servers running at 8% to 12%

of the capacity and UNIX servers at 25% to 30% of their

capacity [1] [2]. In such situation, a virtualized system allows

multiple services to be hosted by a single computer, sharing

the unused resources of existing platform, thereby providing

better resource utilization.

On this shared system, resource allocation plays an im-

portant role in determining the system performance, because

it controls resource assignment to each domain. However,

conventional resource allocation methods have some issues.

One of them is to perform the allocation without accounting

for the state of running applications. Although virtualization

is typically dedicated to one or a few specific applications

and desirable to ensure that the application can achieve its

performance goal, conventional approaches to provisioning

resources to virtual domains only utilize the state of the

domain instead of application itself. The allocation without

considering applications leads to un-balanced performance

distribution of the consolidated system because if applications

have different performance characteristics, the performance

on one application is higher than the performance on other

applications, despite same allocation amounts.

This paper describes an adaptive resource controller which

maximizes the performance of virtualized systems through

the effective resource allocation of virtual components. The

methodology, called AARM (Application-Aware Resource

Management) for the sake of brevity, takes application state,

e.g. Quality of Service (QoS) and resource utilization, into

account to identify resource demand.

Because the relationship between an application’s state

and its required resources is still complex and empirical, to

represent the relationship fuzzy control theory was chosen for

the control logic. The control theory keeps a simple and easy to

understand form, also makes it easy to modify the rule if you

want to change the target of control. A rule-based controller

also has the advantage of producing output quickly. These two

advantages are useful to model the above relation.

The AARM controller is tested on a virtualized system

having two domains: one is a mail server and the other is

a Java application server (Java server).

While the performance of a computer system is affected by

many factors, such as memory and I/O of disks and network,

this paper focuses on the CPU, as it can be considered the

bottleneck resource for practical purposes.

This paper is organized as follows, Section II presents back-

ground information. In Section III, the method of the AARM

is described and Section IV models the AARM controller

for the target system. Section V presents the experimental

results obtained with the AARM controller. Section VI gives

an overview of related work and the paper is summarized in

Section VII.

Annual International Conference on Cloud Computing and Virtualization (CCV 2010).
Edited by Prof. Gagan Agrawal.
Copyright © CCV 2010 & GSTF.
ISBN: 978-981-08-5864-3.
doi:10.5176/978-981-08-5837-7 204

100

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

II. BACKGROUND

A. Xen

Xen hypervisor [3], called a Virtual Machine Monitor

(VMM), is a software layer between computer hardware and

the operating systems running on Virtual Machines (VMs).

Xen composes two types of virtual domains, Domain 0 and

Guest Domain. Xen refers to Domain 0 (dom0) as a controller

domain having elevated privileges. This domain typically has

two objectives. First, the domain works as driver domain.

Since Xen hypervisor has no device drivers, dom0 must

handle devices and provide an interface to hardware for other

domains. This is necessary in order to create a single point of

access to hardware, as access from multiple operating systems

is not supported. Another task on dom0 is the management

of other virtual machines, such as starting and stopping VM.

While this is actually implemented by the VMM software,

dom0 provides its interface tools. Guest domain (domU) is

an unprivileged domain. One specific feature of Xen VMM

is its use of paravirtualization, which uses modified versions

of the OS to achieve low overhead. Since the OS in domU

is running on VMM instead of common hardware, the kernel

must be modified to allow it to run on VMM.

The VMM is responsible for assigning CPU time to run-

ning guests. Credit scheduler is the default scheduler [4] for

Xen hypervisor and it operates in work-conserving mode by

default. This means that the scheduler guarantees that there is

no idle CPU as long as the system has a runnable domain. The

configurable parameter cap forces the scheduler to be non-

work-conserving. In this mode, domains can use CPU time

up to their credit limit only, and will not exceed it even if

a CPU is idle. Because of these differences, work-conserving

mode typically has a higher CPU utilization than non-work-

conserving mode. This paper uses non-work-conserving mode

to control the allocation of CPU time for each domain.

However, work-conserving mode is also be used to achieve

high CPU utilization. The AARM controller selects fittest

mode under the given circumstances.

B. Fuzzy Control Theory

Fuzzy control theory [5] [6] is a control theory to treat prob-

lems with vague, unclear, or complex values and relationships,

and it is a useful tool to model non-linear relationships. One of

the advantages of the theory is that it does not require complex

mathematical formulas to characterize a relationship. Instead

of a mathematical model, it is described by fuzzy rules, which

are nothing more than simple rules of thumb based on human

knowledge and experiences. Essential elements of this theory

are fuzzy rules and membership functions.

The fuzzy rule is designed with the form

”IF <condition> THEN <actions>”, which is

formulated in linguistic terms describing how the control

system should behave. Since the information is often obtained

from system experts, linguistic terms are important to

represent information that is non-describable in mathematical

values and formulas. As fuzzy rules are used to describe

the behavior of the system, fuzzy sets are used to describe

the state of the system. The members of a fuzzy set are

usually formulated in linguistic terms, and have a degree

of membership in the set, given by a membership function

associated with the set.

III. RESOURCE CONTROLLER

Main steps of the AARM are, 1) computes resource size

for domains, 2) adjusts them to the system. These steps are

executed by the controller in each layer. The first layer con-

troller monitors the target applications, collects the application

states and calculates the minimal resource size retaining the

performance in the acceptable level. In our design, the com-

putation is based on the collected application states. Second

layer controller normalizes the requested resource percentages

if the total requested is over the system capacity (e.g. 100%),

and then assigns the normalized percentages to each domain

until the end of the next controller interval.

A. QoS Controller

The QoS controller lives in each domain and dedicates the

first step of resource allocation. The controller collects the

application information and determines the resource needed

to keep the application’s performance around the acceptable

level. The determination is produced through a fuzzy con-

trol model which characterizes the relationship between the

current state and a resource demand. The relation is strongly

dependent on the types of applications, because the effect of

allocated resource size on the performance of an application

may be completely different from one applications type to

another. Fuzzy control theory helps to deal the model in

simple way, adapting the issue to the type of application,

thus making better decision of resource requirements. After

computing resource requirements, the QoS controller sends it

to the arbitration controller.

B. Arbitration Controller

The arbitration controller is placed on dom0 and works

for second step of resource allocation. The role is to receive

requests from QoS controllers and perform the actual resource

allocation to them. It adjusts the allocation requests to the

capacity of the system and the resource capacity layout.

Since QoS controllers work independent of each other, their

requests might exceed the capacity of the system. Thus, one

of the jobs is to check if the total of the requests gets over

the maximum capacity (e.g. 100% CPU time), and adjust the

requests according to a ratio of requests.

Another job is select capacity layout. Commonly, the re-

source separation is performed by creating resource capacity

which the domain cannot utilize resources over the amount.

For example, if the system wants to distribute 50% of resource

to each of two domains, it makes capacity of 50% to domains,

then both domain can consume 50% of resources at maximum.

The arbitration controller designs three types of capacity

layout, which are Capall, Capsome and Capno. Capall gives

hard limits of resource consuming for all domains, Capsome

101

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

Component Specification

CPU Athlon64 X2 (Dual Core) 2000 MHz

Memory 4GB

HDD SATA 7200 rpm ×2

OS CentOS 5.2 (kernel 2.6.18)

VMM Xen hypervisor 3.2.2

TABLE I
EVALUATION ENVIRONMENT. TABLE SHOWS THE SPECIFICATION OF THE

TARGET SYSTEM.

has the capacity to one domain, and all domain have no

resource limits in Capno. In most of cases, Capno gives better

resource utilization than the other layouts, but it is difficult

to provide isolated resource. To achieve both high resource

utilization and resource separation, the arbitration controller

selects efficient capacity layout from these three according to

the current applications’ states.

IV. MODELING OF AARM CONTROLLER

The AARM controller is evaluated on a virtualized system.

The test environment is composed of three nodes: a target

virtualized system, a mail client and a mail sink. The virtual-

ized system is the target system, which includes the AARM

controller and two virtual domains: one for the mail server

application; and another running the Java server and client

applications. The other two nodes (a mail client and a mail

sink) are dedicated to evaluate the mail server. The system

specification is shown in Table I. It has a dual-core CPU, 4GB

main memory and two SATA hard disks. Xen Hypervisor is

used for constructing the virtualized environment and CentOS

runs on each domain. Each domain has two virtual CPUs

which are not pinned into a specific physical CPU. Main

memory is distributed through the domains, with 1GB to the

mail server, 512MB to the Java server, and the remaining for

dom0. One SATA hard disk is shared with all domains, and

another disk is occupied by the mail server for user’s message

directories and mail spool directory.

In this system, SPECmail2001 and SPECjbb2005 are de-

ployed to generate workloads. SPECmail2001 [7] is a stan-

dardized mail server benchmark published by Standard Perfor-

mance Evaluation Corporation (SPEC). This benchmark is de-

signed to measure the quality of a system acting as mail server

based on the SMTP and POP3 protocols. SPECjbb2005 [8] is

also a benchmark software developed by SPEC. SPECjbb2005

implements a 3-tier system modeling a wholesale company.

The whole database tables and data records are held in the

memory, and these are implemented as Java objects, thus

SPECjbb2005 performs no I/O traffic to disk or network

I/O. SPECjbb2005 (running locally) emulates and generates

transaction traffic in the Java server. For the sake of simplicity,

three levels of workloads are defined for both mail and

Java servers: wLow, wMedium and wHigh. The definition of

wMedium is a workload to utilize almost 50% of CPU time

in average, and wLow is used to indicate a slightly lower

workload than wMedium. The wHigh level represents a slightly

higher workload than wMedium. The three workload levels are

used for all experiments presented in the paper.

A. QoS indicator

The AARM controller computes resource size based on

QoS indicators. In this subsection, we select the indicators

identifying the application states on the domains of the target

system.

On mail server, the performance is defined by two QoS

indicators, DeliveryTime (DT) on SMTP server and LoginRate

(LR) on POP3 server. DT is an average time that SMTP server

takes to complete a message delivery. Figure 1 (a) shows

DT under the varying the amount of allocated CPU time

with defined three workloads (wLow, wMedium and wHigh).

As expected, the maximum resource amount (80% of total

CPU) provides the lowest DT through the experiment, and as

given CPU time decreases, the message delivery takes long.

However, once it peaks at the half of maximum allocation size,

DT goes down even through the resource decreases. LR is the

success rate of opening POP3 connection used by ’LOGIN’

command in a second. Figure 1 (b) shows the relationship

between LR and CPU capacity under the three workloads.

The relation is simple. When the domain gets high CPU time,

LR performs high success rate. As the amount of capacity

decreases, the success rate drastically falls and it reaches to 0

under the low CPU allocations. From Figure 1 (a) and (b),

we see that when LR starts its dropping from 1.0, SMTP

server reduces DT than the peak. In the other words, in low

CPU allocation, SMTP server improves its performance, while

POP3 drops the service quality. When the system provides

high CPU time to the mail server, both SMTP and POP3

server service incoming requests without problem. However,

the mail server with low CPU provision forces POP3 server to

reduce acceptable POP3 connections because the server does

not have enough CPU time to run a lot of listen processes.

As the number of accepted requests become small, its total

required resource is decreased. Therefore SMTP server can

utilize the left CPU time and it processes message deliveries

in regular time. In fact, when LR falls to 0, DT increases again.

The performance on the Java server is defined by Trans-

actionTime (TT). TT is an average time that the Java server

takes to complete one transaction. Figure 1 (d) shows the

relationship between the amount of allocated CPU time and

TT. TT is completely depends on the CPU time and has

monotonic decrease for the increasing resource.

In addition, the controller designs to use CPU resource

utilization on the domain to produce more accurate resource

decision in both mail and the Java server. This information

helps to determine minimal resource maintaining the appli-

cation performance in an acceptable level. For instance, the

controller aims to maintain not only enough low utilization

including safety margin to meet good performance, but also

enough high to keep high resource utilization. Figure 1 (c)

and (f) show the utilization of given CPU time in the mail

and Java servers. We see that over-provisioning of CPU time

just leads to the waste of this important system resource and

102

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

 0

 5

 10

 15

 20

 25

 30

 20 30 40 50 60 70 80

D
el

iv
er

yT
im

e
(s

ec
)

% of total CPU

wLow
wMedium"

wHigh

(a) DT on Mail Server

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80

Lo
gi

nR
at

e

% of total CPU

wLow
wMedium"

wHigh

(b) LR on Mail Server

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 20 30 40 50 60 70 80

C
P

U
 u

til
iz

at
io

n

% of total CPU

wLow
wMedium"

wHigh

(c) CPU Utilization on Mail Server

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6

 20 30 40 50 60 70 80

T
ra

ns
ac

tio
nT

im
e

(m
se

c)

% of total CPU

wLow
wMedium"

wHigh

(d) TT on Java Server

 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

% of total CPU

wLow
wMedium"

wHigh

(e) Throughput on Java Server

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 20 30 40 50 60 70 80

C
P

U
 u

til
iz

at
io

n

% of total CPU

wLow
wMedium"

wHigh

(f) CPU Utilization on Java Server

Fig. 1. Performance effect for the amount of resource. Figures show the application states when CPU allocation varies from 20% to 80% in steps of 5% on
each workload.

this phenomena is in the mail server (Figure 1 (c)) than in the

Java server (Figure 1 (f)).

B. Modeling QoS Controller

In control interval i (which is 3 seconds), QoS controller

computes a resource request for the next period i+1 by using

a following formula.

Requesti+1 = Consumptioni + Δcpu (1)

The request is the sum of current resource consumption with

the output (Δcpu) of the fuzzy model.

In this control model, the output is represented by five lin-

guistic values in the fuzzy model, which are NS = NegativeS-

mall, ZE = Zero, PS = PositiveSmall, PM = PositiveMedium

and PL = PositiveLarge. Figure 2 (a) shows the membership

functions of Δcpu and the resource request is computed by

these functions.

The definition of linguistic values and membership func-

tions for inputs data, i.e. QoS of application and the relative

utilization of a domain, is processed through finding inflecion

points in Figure 1. The figures show the relation between the

allocated resource and the application state (Section IV-A).

The inflecion points in these figures can be assumed that the

greatly-changed points correspond to the boundaries between

fuzzy memberships. In the paper, three linguistic values are

used to represent the state of inputs, both QoS and utilization,

which are Low, Medium, High.

In the mail server, two QoS indicators, DT and LR, and

resource utilization are chosen to identify the application state.

Figure 1 (a) illustrating the relationship between allocated

resource and DT shows two inflecion points. First point places

at DT = 5 and second point is at DT = 15. Figure 1 (b)

also shows two changes of LR where LR equals 0.9 and 0.15.

From the found inflecion points, the membership functions of

DT and LR can be defined as Figure 2 (b) and (c) for each.

Each figure illustrates three states (Low, Medium and High)

and their membership functions. For example, Figure 2 (b)

depicts the memberships of DT and it describes that the range

of Medium state is 5 to 15. If DT is 10 then the value is

completely Medium, however if DT is 7.5 the value includes

two states, Low and Medium. The relation between resource

utilization and allocated resource size in the mail server is

illustrated in Figure 1 (c). The figure contains of two points

changing the state at utilization equals 0.6 and 0.9. Assuming

these points as the membership boundaries, the membership

functions are defined as Figure 2 (d).

The acceptable level of performance in the mail server can

be represented by the requirement: the DT is Low and LR

is High. The fuzzy rule to satisfy the requirement is shown

in Table II (a) and (b). DT behaves in different ways in the

left and the right of the peak (Section IV-A). The controller

also needs to produce different reaction according to the

situation. For instance, Rule II (a) is reaction when LR =

High (DT is in the right of the peak), otherwise Rule II (b)

(DT is in the left of the peak) is used. In Rule II (a), the

controller observes DT and utilization to make a resource

request. The rule leads the amount of resource to satisfy the

above requirement, DT is Low and DT is High, with Medium

utilization which keeps both high resource usage and enough

resource margin. Rule II (b) always produces largest resource

allocation, because when the rule is required the resource on

the mail server is completely under-provisioning and difficult

to serve the incoming requests.

The Java server has one QoS indicator, TT, and resource

103

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

utilization to identify its state. Figure 1 (d) shows the relation

between TT and the amount of resource allocation, but this

figure does not have any inflecion points indicating the bound-

aries of the memberships. The Java server has Throughput

QoS indicator which is the number of completed transactions

per second. The parameter strongly depends on TT so the

membership of TT is defined through the indicator. Figure 1 (e)

illustrates Throughput under the amount of resource varying.

Combining the two figures (Figure 1 (d) and (e)), the member-

ship functions of TT are defined as Figure 2 (e). The definition

of the membership functions for utilization is also produced by

using Figure 1 (f). The figure shows the utilization varying and

it has a inflecion points around utilization equals to 0.9 and

the membership functions are defined as Figure 2 (f). Similar

to the mail server, the controller regulates TT to Low with

Medium utilization, thus the fuzzy rule can be described as

Table II (c).

C. Modeling Arbitration Controller

The arbitration controller plays two roles. The first role

is recalculating the resource size if the total requested size

exceeds the capacity of the system. In this case, the controller

calculates new resource allocations based on the relative

request rate. For instance, following equation is used for

the calculation on domain k in a virtualized system with n
domains.

Allocationk = Requestk/
n∑

j=1

Requestj (2)

The latter role is selecting the capacity layout (Capall,

Capsome or Capno) according to the state transition diagram

illustrated in Figure 3. The state diagram starts at Capno with

no resource restriction. From this state, the capacity layout

is changed to Capsome if the controller detects losing the

balance of applications’ QoS (Cap1 �= Cap2). In this layout,

the domain having higher QoS is set a resource capacity.

The amount of the capacity corresponds to the output of

the arbitration controller which is the size adjusted system

capacity. Domain having lower QoS metric is not required

to set the resource restriction, the domain can perform work-

conversing. If the QoS balance is lost again in this layout,

the layout is changed to Capall that both domain have the

resource capacity. Furthermore, these capacities are cancelled

when the controller detects that system can provides enough

resource, which is case of the total of domain requests is under

the system capacity (Requesttotal <= 1)

V. EXPERIMENT RESULTS

The AARM controller aims to maintain the performance on

each application with minimal allocated resources and keep

the balance between the application performances. The exper-

iments test how the controller achieves these two goals under

dynamic workloads. In this paper, we experiment with the

AARM controller in the virtualized system with two domain,

mail and Java server, and two workload levels, which are

wMedium and wHigh, are used. The experiments are designed

Capsome

Capall

Capno

Requesttotal ≦ 1

Requesttotal ≦ 1

QoS1 = QoS2

QoS1 = QoS2

QoS1 ≠ QoS2
QoScap < QoSnocap

QoS1 = QoS2

QoS1 ≠ QoS2

Fig. 3. Transition diagram of capacity layout. Figure shows the transition
diagram of the layout with two domains which have QoS1 and QoS2 as
QoS metric for each. The controller has three types of the capacity layouts;
making capacity to no domains (Capno), to some domains (Capsome) and
to all domains (Capall).

(a) Mail Workload Increase (MWI)

Intervals (sec) Mail Java

1–399 wMedium wMedium

400–1199 wHigh wMedium

1200–1599 wMedium wMedium

(b) Java Workload Increase (JWI)

Intervals (sec) Mail Java

1–399 wMedium wMedium

400–1199 wMedium wHigh

1200–1599 wMedium wMedium

TABLE III
WORKLOAD IN THREE INTERVALS OF EACH SCENARIO. TABLES SHOW

THE WORKLOAD LEVEL TO DOMAINS IN EACH TIME INTERVAL.

to generate the traffics containing of sudden workload changes,

scenario of mail workload increase (MWI) and Java workload

increase (JWI) as shown in Table III. Experiments have three

time intervals. At first time interval, 1 second to 399 seconds,

both workloads start to stress the servers under wMedium

workload level. At the end of this interval, either mail or Java

workload suddenly increases to wHigh and it continues during

the second interval (400 seconds to 1199 seconds). After

this interval, 1200 seconds to 1599 seconds, the increased

workload changes again and it becomes wMedium.

Results are shown in average measurement values in Ta-

ble IV for each interval. The metrics of cap, cons and utz

evaluate resource allocation; cap indicates the capacity which

the resource controller sets for each domain, cons means CPU

consumption the domain utilizes and utz shows CPU utiliza-

tion on the virtualized system. These values are represented

by the percentage of total CPU time. DT, LR and TT are used

to measure the application performances. For comparison,

the experiment has two results, experiment with the AARM

controller (WRC) and with Xen default scheduler (DEF). Both

of them are tested under the same workload varying and DEF

uses credit scheduler by default (cap is 0 and weight is 255

104

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10 15 20

D
eg

re
e

of
 M

em
be

rs
hi

p

Deltacpu

NS
ZE

PS
PM

PL

(a) Δcpu

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

D
eg

re
e

of
 M

em
be

rs
hi

p

DeliveryTime (sec)

Low Medium High

(b) DT on Mail Server

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
eg

re
e

of
 M

em
be

rs
hi

p

LoginRate

Low Medium High

(c) LR on Mail Server

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

D
eg

re
e

of
 M

em
be

rs
hi

p

CPU Utilization

Low Medium High

(d) CPU Utilization on Mail Server

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

D
eg

re
e

of
 M

em
be

rs
hi

p

TransactionTime (msec)

Low Medium High

(e) TT on Java Server

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

D
eg

re
e

of
 M

em
be

rs
hi

p

CPU Utilization

Low Medium High

(f) CPU Utilization on Java Server

Fig. 2. Membership functions. Figures show membership functions for each indicator. These functions are defined through inflecion points which indicate
boundaries of the membership of indicators.

(a) Right Fuzzy Rule on Mail Server

DT

Δcpu Low Medium High

Low NS ZE PS
Utilization Medium ZE PS PM

High PS PM PL

(b) Left Fuzzy Rule on Mail Server

TT Low Medium High

Δcpu PL PL –

(c) Fuzzy Rule for Java server

TT

Δcpu Low Medium High

Low NS ZE PS
Utilization Medium ZE PS PM

High PS PM PL

TABLE II
FUZZY RULES. TABLE (A) AND (B) SHOW FUZZY RULES ON THE MAIL SERVER, AND TABLE (C) SHOWS A FUZZY RULE ON THE JAVA SERVER.

in all domains).

Value Description

cap The amount of capacity set to a domain. This parameter
specifies the limit of CPU time the domain can consume. Setting
of non-capacity is calculated as 100% capacity.

cons CPU resource consumption on a domain

utz CPU resource utilization per a virtualized system

DT SMTP message delivery time (seconds) on mail server

LR POP3 successful login connection rate on mail server

TT Time (milliseconds) to complete a transaction on Java server

TABLE IV
MEASUREMENT VALUES. EXPERIMENTS’ RESULTS ARE REPORTED BY

THE METRICS OF THIS TABLE.

The control interval of resource allocation is selected as 3

seconds, because mail workload generates frequency changing

traffic and the small interval is required to react fast to the

workload changes. The measurement metrics are captured in

each control interval.

A. Mail Workload Increase Scenario

In this experiment, the workload to the mail server is

increased during the middle of the duration (Table III (a)).

Table V (a) shows the result of the experiment with WRC.

The experiment begins with workloads in wMedium. In the

first interval, both the mail and the Java server still keep

their performances to high and the cons of domains are equal

because of the same levels of workloads. The cap of the mail

server, however, is higher than cap of the Java server. The

mail workload tends to generate unstable and highly variable

load for the server, thus the value is higher than the Java

server to allow a safety margin for the sudden load. At the

end of this interval, the workload to the mail server suddenly

increases. In this time, the controller detects the changed traffic

through the decreased the performance of the mail server and

it allocates extra CPU time to this domain. Actually, while the

consumption rate between two domains was even in the first

interval, it gives high priority to the critical domain (the mail

server) in the second interval. This control behavior attempts to

balance the performance between applications. The cap of the

Java server is decreased because of low resource priority and

cap of the mail server is also decreased because few selections

for Capno (cap = 100) layout. Under the high workload,

Capno layout tends to affect another domain’s performance

a lot, so the resource controller tries to isolate each domain’s

105

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

resource to reduce this effect. At the third interval, the risen

workload on mail server drops to wMedium level. The ratio

of both cons and cap on domains get back to the value in the

first interval. However, since the effects of wHigh workload

remains at the beginning of this interval, the performance

of the mail server slightly worse than the result in the first

interval.

Table V (b) shows the results of experiment with DEF. At

the first interval, the performance balance is maintained, and

it performs almost same results as WRC case. However, when

the mail workload increases at the second interval, the system

loses the balancing of the application performances; although

mail server runs with low resource and has a serious problem

difficulty to serves the incoming messages, Java system still

keeps high performance with underloaded resource. DEF can-

not detects the critical application, therefore, it still distributes

the same amount of resource to each domain. The stacked

messages on mail server remain until the next interval and

make this server to be busy.

Resource allocation of WRC and DEF affect the QoS

metrics measured on each domain. In the second interval, DT

has huge difference between the two cases. DEF takes 38.13

seconds for message delivery and is significant long compared

to 18.9 in WRC. Also, LR in DEF 0.97 is lower rate than

WRC (1.00). TT in the Java server, by contrast, takes only

0.17 milliseconds in DEF and is fast in comparison with WRC

(2.0 milliseconds). From these differences, we can say WRC

provides better performance than DEF in this experiment.

Although QoS indicators have significant differences between

two cases, cons (54.8 on WRC and 52.3 on DEF) does not

make such big difference. This means that if the load on the

mail server is relatively low, incoming messages are small or

have few recipients, then Java server can execute high CPU

usage, and otherwise mail server obtains extra resource. The

control reaction reduces the unused resource. Actually, WRC

records its utz to enough high closed to DEF which has no

resource limits.

The experiment shows that the WRC results in better per-

formance than DEF and also balances between application

performances when mail workload increases. However, the

controller should gives few more resource to the mail server

because DT is classified in High and TT is in Medium in the

defined fuzzy members.

B. Java Workload Increase Scenario

In this experiment, in order to test the resource controller

in the case of increased Java workload, the Java workload

increases to wHigh at the second interval (Table III (b)).

The result of WRC is shown in Table V (c). At first

interval, the workloads to both servers are same as the previous

experiment and produce same results as shown in the table.

At the end of this interval, the workload to the Java server

increases in this experiment. The resource controller detects

risen TT and considers more CPU time is needed for the

Java server to adjust its increased workload. Simultaneously,

it decreases the amount of resource for the mail server giving

low priority with a consistent workload. The allocation results

show that cons on the Java server is increased and on mail

server is decreased rather than the previous interval.

The result of DEF is also shown in Table V (d). At second

interval, the increased workload to the Java server causes the

performance down on this domain. For instance, QoS indicator

TT increases from the first interval. DT on the mail server is

also increased with similar cons on this domain. This because,

the Java server tries to utilize the resource more and more and

this makes the mail server to difficult to obtain large amount

of CPU time when the variable load become high and thus the

DT drops.

In this experiment, WRC balances the performance by

giving additional resource to the Java server. Compared with

both results, DEF reduces the rise in the DT to 3.3, although

WRC increases DT to 4.9 in the mail server. In the Java server,

DEF obtains higher QoS indicator TT (0.22) than WRC (0.21),

but it is subtle distinction. From these reasons, describing

the overall performance, DEF results better performance than

WRC. By compared with the results of cons, DEF also remains

consistently higher than WRC throughout the whole intervals

and in both domains.

When Java workload increases, WRC can balance the ap-

plication performance, but the results is worse than DEF.

Furthermore, the controller should give higher priority to the

Java server than the result of WRC, because DT is in Low and

TT is in Medium of the defined fuzzy members.

VI. RELATED WORK

Resource management on a virtualized system lately been

attracting the attention of many researchers.

[9] deals resource partitioning with HP-UX Process Re-

source Management (PRM). The design of the control is based

on the modeling of input-output relationship between CPU

allocation and the mean response time (MRT), and it aims to

regulate MRT to a reference value. To identify this relation,

they observe static relation from experiments and found it

demonstrates bimodal behavior of MRT under both overload

and underload region. To build linear equation identifying

the CPU entitlement to regulate MRT to the reference, they

use inverse MRT (1/MRT) instead of MRT itself. The first

controller they consider is use CPU entitlement as the input of

the nonlinear static model to maintain the relative utilization at

a target value. The controller behaves increase CPU allocation

quickly when the system is overload, and becomes conserva-

tive when the system is in underload condition. This controller

can maintain the utilization at around the target and achieves

higher throughput and small response time. Authors also

propose the controller regulating MRT at reference value. They

established ARX model representing the relation between CPU

entitlement and inverse MRT based on the analysis of the

previous experiments. The model incorporates the relatively

utilization into the control model and then it shows stable of

the system is maintained under the dynamical workload.

[10] designs a two-layered controller that guarantees

application-level QoS of two multi-tier applications in a vir-

106

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

(a) Result of WRC in MWI

Mail Java Total

Intervals cap cons DT LR cap cons TT utz

1–399 83.5 45.0 3.5 1.00 95.1 46.4 0.17 91.4
400–1199 88.6 54.8 18.9 1.00 69.3 40.5 0.20 95.3
1200–1599 83.2 46.4 4.7 1.00 93.8 45.7 0.17 92.2

(b) Result of DEF in MWI

Mail Java Total

Intervals cons DT LR cons TT utz

1–399 45.6 2.6 1.00 46.7 0.17 92.3
400–1199 52.3 38.1 0.96 45.3 0.17 97.6
1200–1599 47.1 14.3 0.99 46.5 0.17 93.6

(c) Result of WRC in JWI

Mail Java Total

Intervals cap cons DT LR cap cons TT utz

1–399 83.3 44.8 3.3 1.00 94.8 46.1 0.17 90.9
400–1199 70.2 43.9 4.9 1.00 87.7 49.7 0.21 93.6
1200–1599 84.2 45.0 3.1 1.00 96.7 46.5 0.17 91.4

(d) Result of DEF in JWI

Mail Java Total

Intervals cons DT LR cons TT utz

1–399 45.3 2.5 1.00 46.9 0.17 92.2
400–1199 45.7 3.3 1.00 50.0 0.22 95.7
1200–1599 45.3 2.3 1.00 47.4 0.17 92.6

TABLE V
EXPERIMENT RESULTS IN SCENARIO MWI AND JWI.

tualized system. The first layer controller computes resource

requests to meet a specific level of resource utilization on each

domain. Second layer controller serves arbitration when the

sum of requests submitted by first layer controller exceeds

the physical computer’s capacity. In that case, the controller

decides resource allocation based on QoS differentiation met-

ric. Finally, they evaluated the controller model with two tier

implementation of RUBiS.

[11] presents a methodology to allocate an appropriate

amount of memory to a domain. The memory balancer (MEB)

uses Least Recently Used (LRU) histogram to track memory

accesses for each virtual domain. MEB identifies the rela-

tionship between memory size and page miss rate which can

be derives from a page miss ratio curves in LRU histogram.

Therefore, the balancer produces minimum memory size yield

page miss rate no larger than a certain rate.

VII. CONCLUSION

The paper proposed and evaluated the effective resource

controller in a virtualized system. The controller deployed

two layered controlling. The first layer controller aims to

maintain the application performance at an acceptable level. To

achieve the goal, it observes and collects the application states,

and produces the their desired amount of resources based on

these states. The paper modeled the relationship between the

resource demand and their states by fuzzy control theory. The

second layer controller’s objective is to maintain a high CPU

utilization. This controller adjusts the requests to the system

capacity and builds the layout of resource capacity based on

the QoS performance balance of applications. This approach

reduces the amount of unused CPU time and achieves high

CPU utilization.

The evaluation showed the controller performance; keeps

the performances balancing between applications while main-

tains the CPU utilization closed to the Xen default scheduler

having no resource limits.

However, this resulted its drawback which it is difficult to

react delicate operations.

As future work, consideration of the tuning of parameters,

such as the number of average and control interval, is required

as extended research topic. Also, to test the details of the con-

trol reaction, the variety of workloads and its scenario should

be increased. In this paper only the average measurement

values are used for measurement of the performance, but real

time performances, responsiveness and stability, are important

factors to determine the controller performance. Furthermore,

the paper focuses on provisioning of CPU time as a primary

component of computer resources, however, modern server

applications utilize other components, such as, memory, disk

and network I/O. In addition to the difficultly of virtualizing

itself, the improvement, especially in their access speed, of I/O

devices is at a much lower pace than CPUs. In this current

situation, the virtualized system that utilizes I/O devices will

become more limited by the bottleneck component, and it

is desirable to provide more enhanced allocation method for

the resource by resource manager as one of the methods to

improve the critical resource.

REFERENCES

[1] B. Day, S. Yates, L. Koetzle, and T. Powell, “Identifying server consol-
idation cost savings,” Forrester Research, October 2005.

[2] J. Daniels, “Server virtualization architecture and implementation,” in
Crossroads, vol. 16. ACM, September 2009, pp. 8–12.

[3] P. Barham et al., “Xen and the art of virtualization,” in ACM Symposium

on Operating Systems Principles, 2003, pp. 164–177.
[4] D. Chisnall, The Definitive Guide to the Xen Hypervisor. Prentice Hall,

2008.
[5] J. Jantzen, “Design of fuzzy controllers,” Technical University of Den-

mark, Tech. Rep. 98-E-864, August 1998.
[6] M. G. Simöes, “Introduction to fuzzy control,”

http://inside.mines.edu/˜msimoes/tutorials/

Introduction_fuzzy_logic/Intro_Fuzzy_Logic.pdf,
2008.

[7] Standard Performance Evaluation Corporation, “Specmail2001,”
http://www.spec.org/mail2001.

[8] ——, “Specjbb2005,” http://www.spec.org/jbb2005.
[9] Z. Wang, X. Zhu, and S. Singhal, “Utilization and slo-based control

for dynamic sizing of resource partitions,” in IFIP/IEEE Distributed

Systems: Operations and Management, October 2005, pp. 133–144.
[10] P. Padala et al., “Adaptive control of virtualized resources in utility

computing environments,” in ACM SIGOPS Operating Systems Review,
vol. 41, no. 3, June 2007, pp. 289–302.

[11] W. Zhao and Z. Wang, “Dynamic memory balancing for virtual ma-
chines,” in ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, 2009, pp. 21–30.

107

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

