
Instruction Folding in a Hardware-Translation
Based Java Virtual Machine

Hitoshi Oi

The University of Aizu

May 4, 2006

Computing Frontiers 2006

Computing Frontiers 2006 May 4, 2006

Outline

• Introduction to the Java Virtual Machine and Hardware
Translation

• Instruction Folding of Java Bytecodes

– Implementation in Sun’s Pico Java-II

– Removal of Uncommon Cases

• Performance Evaluation

• Summary and Future Work

Hitoshi Oi 2

Computing Frontiers 2006 May 4, 2006

Introduction to the Java Virtual Machine

Features of Java c©
• Object-Oriented

• Network

• Security

• Platform Independent

Java Virtual Machine

• Abstract instruction set architecture

• Placed between Java applications and underlying platform

• Stack-based architecture

Hitoshi Oi 3

Computing Frontiers 2006 May 4, 2006

Implementation: Interpretation

switch(*bytecode){

case ILOAD:

STACK[SP + 1] = STACK[LV + *(bytecode + 1)];

SP = SP + 1;

..........

}

• A software written in native instructions to the platform reads
a Java application and interprets its bytecodes.

• Flexible and relatively inexpensive, thus widely adopted
(an interpreter is just another program on the platform).

• Slow : Checking a flag takes << 1 clock cycle in hardware but
several cycles in software.

Hitoshi Oi 4

Computing Frontiers 2006 May 4, 2006

Just-In-Time Compilation

• Frequently executed methods (functions) are compiled to
native instructions.

• Works well for server side applications but may not be feasible
for client side applications (especially those running on
portable devices) because:

– Time and power consumption for compilation

– Expansion of program size

– Client side application may not be repeatedly executed and
cannot absorb above compilation overhead.

Hitoshi Oi 5

Computing Frontiers 2006 May 4, 2006

Hardware Translation

Bytecode
Translator

Decode

Fetch

Java Bytecode

Native Machine code

From Instruction
Memory

• A small translation module
between the fetch and
decode stages in the pipeline
converts simple Java
bytecodes into native
instruction sequences.

• Complex bytecodes generate
branch instructions to
emulation routines.

• Small overhead (12K gates
in ARM Jazelle) and
minimum changes to
processor core.

Hitoshi Oi 6

Computing Frontiers 2006 May 4, 2006

Hardware Translation: Example

Java Bytecode ARM Machine Code

b = a + b; ILOAD 1 LDR R0 [R7, #4]

ILOAD 2 LDR R1 [R7, #8]

IADD ADD R0 R1

ISTORE 2 STR R0 [R7, #8]

• R0 to R3 hold top four words of operand stack

• R7 points to the local variable 0.

• In the above example, local variables a and b are numbered 1
and 2, respectively.

Hitoshi Oi 7

Computing Frontiers 2006 May 4, 2006

Redundancies in Hardware-Translation

• Frequent Memory Access for Local Variables:

– Every local variable access goes to memory

– A small register file dedicated for local variable storage can
eliminate most of memory accesses (see LCTES05 paper).

• Redundant Stack Operations:

– An arithmetic operation takes four bytecodes
(two pushes, arithmetic and one pop)

– Microprocessors can perform an equivalent operation in a
single instruction.

– Pico Java-II (a dedicated Java processor) removes this
redundancy by folding multiple bytecodes into a single
operation.

Hitoshi Oi 8

Computing Frontiers 2006 May 4, 2006

Java Bytecodes Categories in Pico Java-II

LV: A local variable load or load from global register or push
constant (e. g. ILOAD)

OP: An operation that uses the top two entries of stack and that
produces a one-word result (IADD)

BG2: An operation that uses the top two entries of the stack and
breaks the group (IF ICMPEQ)

BG1: An operation that uses only the topmost entry of the stack
and breaks the group (IFEQ)

MEM: A local variable store, global register store, and memory
load (ISTORE)

NF: A non-foldable instruction (GOTO)

Hitoshi Oi 9

Computing Frontiers 2006 May 4, 2006

Foldable Bytecode Sequences in Pico Java-II

Group1: LV LV OP MEM

Group2: LV LV OP

Group3: LV LV BG2

Group4: LV OP MEM

Group5: LV BG2

Group6: LV BG1

Group7: LV OP

Group8: LV MEM

Group9: OP MEM

Example:

Group1: ILOAD 1, ILOAD 2, IADD, ISTORE 2

→ add $2, $1, $2

Hitoshi Oi 10

Computing Frontiers 2006 May 4, 2006

Foldable Bytecode Detection Logic (Pico Java-II)

i0 i1 i2 i3 i4 i5 i6

Instruction Bytes

fdec fdec fdec fdec fdec fdec fdec

it0 = t0 it1 it2 it3 it4 it5 it6

l1 l2 l3 l4 l5 l6

l0 =
acc_len0

t1 t3t2

it1 it3it2

3-to-1

it3 it6

4-to-1

it2 it6

5-to-1
acc_len0 acc_len1 acc_len2

l1 l3l2

3-to-1

l2 l6

5-to-1

l3 l6

4-to-1

acc_len1 acc_len2 acc_len3

Fold
Logic

t0
t1
t2
t3

Group 1

Group 9

l0 = acc_len0

Hitoshi Oi 11

Computing Frontiers 2006 May 4, 2006

Motivation of This Work

• Pico Java-II is a dedicated Java processor: bytecode decoding
begins from the fetch stage (bytecode length decoding).

• A hardware-translation JVM should use the existing RISC
processor pipeline as much as possible. Also, the changes
should be minimum and localized to the translation module
inserted between the fetch and decode stages on the pipeline.

• In this paper, we propose an instruction folding folding scheme
with reduced hardware complexity and show that it still
achieves the similar performance as Pico Java-II.

Hitoshi Oi 12

Computing Frontiers 2006 May 4, 2006

Variable Lengths of Bytecodes

• The length of a foldable bytecode ranges from one to three
bytes

• This implies that there are three choices for the opcode of the
second bytecode.

• Similarly, there are five choices for the opcode of the third
bytecode.

BC0 BC1 BC2

BC0 BC1 BC2

Hitoshi Oi 13

Computing Frontiers 2006 May 4, 2006

Removal of Uncommon Cases

SIPUSH

• Only instance of three-byte long LV bytecode.

• Removal of SIPUSH reduces the number of choices for the
second and third bytecode opcodes.

Group1 Sequence (LV LV OP MEM)

• Only instance of four bytecode sequence

• Removal of Group 1 reduces the number of stages in the
foldable sequence detection logic.

Hitoshi Oi 14

Computing Frontiers 2006 May 4, 2006

Foldable Bytecode Detection Logic (Simplified)

Instruction Byte

i0 i1 i2 i3 i4 i5 i6

fdec fdec fdec fdec fdec

it0
=t0

it1 it2 it3 it4

l0=
acc_len0

l1 l2 l3 l4

Latency Reduction: 11%
Area Reduction: 35%

l1 l2

2-to-1

l2 l4

3-to-1

acc_len1 acc_len2

l3

it1 it2

2-to-1

t1

it2 it4

3-to-1

t2

it3

acc_len0 acc_len1

Fold
Logic

t0
t1
t2

Group 2

Group 9

Hitoshi Oi 15

Computing Frontiers 2006 May 4, 2006

Performance Evaluation

• JVM and JRE: Kaffe version 1.0.7 (interpretation only)

• Compare Pico Java-II, proposed mechanism and Two-Bytecode
version of Pico Java-II.

• Show the fractions of folded bytecodes and their breakdown
into folding groups (Groups 1 to 9).

• LV 0 to 15 are allocated on the local variable cache
(stores always hit, loads hit if previously accessed).

• Abbreviations: F4 (Pico Java-II), F3 (Proposed),
F2 (Two-Bytecode version of Pico Java-II).

Hitoshi Oi 16

Computing Frontiers 2006 May 4, 2006

Benchmark Programs (1)

SAXON Version 6.0 with XSLTMark 1.2.0

chart Generates an HTML chart of some sales data (select,
control).

decoy Simple template with decoy patterns to distract the
matching process (match).

encrypt Performs a Rot-13 operation on all element names and
text nodes (function).

trend Computes trends in the input data (select, functions).

Hitoshi Oi 17

Computing Frontiers 2006 May 4, 2006

Benchmark Programs (2)

ECM Embedded CaffeineMark
(Sieve, Loop, Logic, Method and Float).

DES DES encryption and decryption of a text file using the
Bouncy Castle Crypto package.

PNG Extract PNG image properties (e. g. pixel size, bit depth)
using com.sixlegs.png .

Hitoshi Oi 18

Computing Frontiers 2006 May 4, 2006

Execution Summary: SAXON

Bench Bytecode Types (%) Exec

-mark LV* OP BG1 BG2 MEM NF Len.

chart 44.4 (0.7) 4.3 7.7 12.6 4.1 26.8 11.6

decoy 44.4 (0.2) 2.3 8.3 9.9 4.0 31.1 8.8

encrypt 42.5 (0.1) 4.0 7.4 14.0 3.3 28.8 10.8

trend 39.9 (0.1) 1.6 9.8 5.8 2.6 40.3 4.9
* Numbers in parentheses are fractions of SIPUSH bytecodes

• High fraction of NF bytecodes.

• Short execution lengths.

Hitoshi Oi 19

Computing Frontiers 2006 May 4, 2006

Execution Summary: ECM, DES and PNG

Bench Bytecode Types (%) Exec

-mark LV* OP BG1 BG2 MEM NF Len.

ECM 45.3 (0.0) 4.7 9.1 14.9 6.7 19.2 90.6

DES 43.8 (0.7) 24.9 1.6 9.8 9.4 10.5 66.1

PNG 42.8 (2.5) 11.0 3.8 13.3 2.9 26.3 24.3

ECM Long uninterrupted execution

DES Small fraction of NF bytecodes

PNG Large fraction of SIPUSH bytecode

Hitoshi Oi 20

Computing Frontiers 2006 May 4, 2006

Results: SAXON with XSLTMark Test Cases

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

trendencryptdecoychart

F
ra

ct
io

n
of

 F
ol

de
d

B
yt

ec
od

es
 (

%
)

XSLTMark Test Case

group9
group8
group7
group6
group5
group4
group3
group2
group1

Hitoshi Oi 21

Computing Frontiers 2006 May 4, 2006

Result: SAXON with Chart

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

trendencryptdecoychart

F
ra

ct
io

n
of

 F
ol

de
d

B
yt

ec
od

es
 (

%
)

XSLTMark Test Case

group9
group8
group7
group6
group5
group4
group3
group2
group1

- F3 folded 17.6% (95% of F4)
- Difference is mostly from
 G1, G7 and G8
- F2 folded 13.3% (72% of F4)

Hitoshi Oi 22

Computing Frontiers 2006 May 4, 2006

Result: SAXON with Decoy and Encrypt

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

F
ra

ct
io

n
of

 F
ol

de
d

B
yt

ec
od

es
 (

%
)

XSLTMark Test Case

encryptdecoy

- encrypt seems easier to
 fold than decoy
(lower NF and longer
exec length) , but more
 bytecodes were folded
 in decoy.

- F4 and F3 almost same

- F2 76% (decoy)
85% (encrypt) of F4

group9
group8
group7
group6
group5
group4
group3
group2
group1

Hitoshi Oi 23

Computing Frontiers 2006 May 4, 2006

Result: SAXON with Trend

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

trend

F
ra

ct
io

n
of

 F
ol

de
d

B
yt

ec
od

es
 (

%
)

XSLTMark Test Case

group9
group8
group7
group6
group5
group4
group3
group2
group1

- F3 slightly better than F4
(in G2, G4, G5 and G6)
- F2 90% of F4.

Hitoshi Oi 24

Computing Frontiers 2006 May 4, 2006

Results: ECM, DES and PNG

 0

 5

 10

 15

 20

 25

 30

 35

 40

PNGDESECM

F
ra

ct
io

n
of

 F
ol

de
d

B
yt

ec
od

es
 (

%
)

Benchmark Programs

group9
group8
group7
group6
group5
group4
group3
group2
group1

Hitoshi Oi 25

Computing Frontiers 2006 May 4, 2006

Result: Embedded CaffeineMark

 0

 5

 10

 15

 20

 25

 30

 35

 40

ECM

F
ra

ct
io

n
of

 F
ol

de
d

B
yt

ec
od

es
 (

%
)

Benchmark Programs

group9
group8
group7
group6
group5
group4
group3
group2
group1

- High Folding Ratio
(32 to 26%)
- MEM: 6.7% mostly
for G8, copy or init of
local variables.
- F3 99% and F2 83%
 of F4.

Hitoshi Oi 26

Computing Frontiers 2006 May 4, 2006

Result: DES Encryption

 0

 5

 10

 15

 20

 25

 30

 35

 40

F
ra

ct
io

n
of

 F
ol

de
d

B
yt

ec
od

es
 (

%
)

Benchmark Programs

group9
group8
group7
group6
group5
group4
group3
group2
group1

DES

- Highest folding ratios
(long exec length, high
NF and high OP)
- F3 is 95% of F4 due
to SIPUSH (.7%) and
G1 (3.3%)
- F2 is only 67% of F4
 due to fractions of G1 to
 G4 (24%).

Hitoshi Oi 27

Computing Frontiers 2006 May 4, 2006

Result: PNG Image Property Extraction

 0

 5

 10

 15

 20

 25

 30

 35

 40

PNGDES

F
ra

ct
io

n
of

 F
ol

de
d

B
yt

ec
od

es
 (

%
)

Benchmark Programs

group9
group8
group7
group6
group5
group4
group3
group2
group1

- Low folding ratios for all
 schemes because PNG’s
behavior is similar to SAXON
(short exec length and
 high NF fraction).
- F3 is 84% of F4 due to
 SIPUSH (2.5%) and
 G1 (2.9%).
- F2 is 82% of F4.

Hitoshi Oi 28

Computing Frontiers 2006 May 4, 2006

Summary and Future Work

• An instruction folding scheme with reduced hardware
complexity was proposed.

• The proposed scheme achieved 84.2% (or 95.0% if PNG is
excluded) or higher folding ratios with respect to Pico Java-II.

• The folding detection logic was reduced by 11% in latency and
by 35% in area (0.35µ rule).

• More complete hardware model (currently, only folding
detection logic was used for latency and area estimations)

• More complete workload (not only hardware-translatable
bytecodes, but also emulated bytecodes and native methods).

Hitoshi Oi 29

Computing Frontiers 2006 May 4, 2006

Acknowledgment

• Partial support by the University of Aizu Competitive
Research Funding (Grant Number P25).

• Yuichi Okuyama’s contribution on the area and delay
estimation of the folding logic circuits.

• Helpful comments from anonymous reviewers

Hitoshi Oi 30

Computing Frontiers 2006 May 4, 2006

Thanks for Your Attention !

Any Question ?

Hitoshi Oi 31

