
Towards a Low Power Virtual Machine for Wireless Sensor Network Motes

Hitoshi Oi
The University of Aizu,
Aizu-Wakamatsu, Japan

hitoshi at u-aizu.ac.jp

C. J. Bleakley
School of Computer Science and Informatics

University College Dublin, Ireland
chris.bleakley at ucd.ie

Abstract

Virtual Machines (VMs) have been proposed as an ef-
ficient programming model for Wireless Sensor Network
(WSN) devices. However, the processing overhead required
for VM execution has a significant impact on the power con-
sumption and battery lifetime of these devices. This paper
analyses the sources of power consumption in the Maté VM
for WSNs. The paper proposes a generalised processor ar-
chitecture allowing for hardware acceleration of VM execu-
tion. The paper proposes a number of hardware accelera-
tors for Maté VM execution and assesses their effectiveness.

1. Introduction

Wireless Sensor Networks (WSNs) combine processing,
sensing and communications into tiny devices (motes) that
can be deployed over wide-areas to provide long-term mon-
itoring [1]. It is expected that thousands of low-cost motes
will be deployed over wide-areas to provide monitoring of
conditions and/or activity. Potential applications include
traffic monitoring, precision agriculture, habitat monitoring,
building security, waste control and seismic sensing.

One of the key research challenges in the area of WSN is
in providing an efficient programming model for such sys-
tems. Uniquely, the programming model must allow for a
heterogeneous mix of processors, motes with different sens-
ing capabilities, over-the-network software update and low
power consumption. One attractive programming model for
such systems is the use of Virtual Machines (VMs) execut-
ing on the mote processors [2].

VMs allow for a single programming model which will
operate across a heterogeneous mix of processors. Al-
lowance may be made for the various capabilities of motes
by providing profiles and abstractions of mote capabilities
in the programming model. However, execution of software
using a VM incurs an overhead in execution time relative to
execution of functionally equivalent native code. Typically,
the overhead is of the range 1-33 times [3]. Since the delay

between sensor or timer events is usually long compared to
the processing time, increases in execution time are not an
issue for WSN applications. However, the increase in power
consumption due to the execution of an increased number of
instructions is a limiting factor.

In field experiments, it has been found that current WSN
motes have a battery life of just a few days when running
native code [4]. Studies across a range of benchmark ap-
plications show that the processor consume between 28%
and 86% of total mote energy [4]. Clearly, if applications
are implemented using software running on VMs, a further
reduction in battery life can be expected. In contrast, the
target battery life for the use WSN motes in real-world ap-
plications is 12-18 months.

TinyOS [5] is currently the de facto operating system for
sensor network motes. TinyOS was developed for the WSN
mote specific requirements of small footprint, management
of hardware, support for concurrency, modularity and ro-
bustness. Maté was developed by a team at Berkley as a
bytecode interpreter that runs on TinyOS [3].

This paper describes work carried out with the goal of
developing a low power Maté compliant VM suitable for
WSN motes. In common with previous work on embedded
Java Virtual Machines (JVMs) [6, 7], the approach taken
is to provide hardware support for various aspects of the
VM, thus migrating certain components of the VM from
software to hardware. Clearly, a naive porting of the en-
tire software VM to hardware would provide an expensive
solution in terms of silicon area and cost. Therefore, the
approach taken is to analyse the behaviour of the VM and
identify frequently used operations, or ”hot spots”, and pro-
vide hardware support for them. Due to its popularity and
availability, Maté was selected as the base VM.

This paper provides an analysis of the run-time be-
haviour of Maté from the point-of-view of power consump-
tion. Based on this, the paper goes on to propose a number
of potential optimizations for reducing the power consump-
tion of the VM. Furthermore, the paper proposes a num-
ber of modifications to Maté bytecode which could enable
lower power implementation. The paper forms the basis of



planned future work to implement and measure the effec-
tiveness of these optimizations. To the authors’ knowledge,
this is the first publication to investigate low power imple-
mentation of VMs for WSNs.

The paper is structured as follows. Section 2 provides an
overview of related work in the area. Section 3 describes
the generalized processor platform architecture used for the
work. Section 4 proposes a number of hardware optimiza-
tions to reduce Maté power consumption based on the anal-
ysis of the design Maté as well as its execution behavior.
Section 5 describes conclusions and future work.

2. Related Work

An overview of middleware approaches for WSNs is
provided in [2]. Of these various approaches, VMs have
a number of advantages for implementation of WSN sys-
tems. They allow the programmer to write-once and exe-
cute many times across a range of heterogeneous proces-
sors. The modularity of VM code allows for concise byte-
code. This reduces memory footprint and RF power con-
sumption when dynamically updating applications via the
network [3]. VMs intrinsically provide security and syn-
chronization models which simplify the programming task.
So far, three VMs customized for WSN applications have
been proposed - Maté [3], MagnetOS [11] and VM* [12].

Maté is a bytecode interpreter which runs on top of
TinyOS. TinyOS uses a component based software archi-
tecture. Each component can call or respond to a com-
mand; flag or process an event; or execute a task. Process-
ing is based on interrupts which are managed via a simple
FIFO scheduler implemented in software. Maté is a single
TinyOS component that interfaces to various system com-
ponents such as sensors, the network and non-volatile stor-
age. Most instructions operate on an operand stack. A re-
turn address stack is provided for subroutine calls. Control
flow instructions and instructions with immediate operands
are available. There are three types of instructions: basic, s-
class and x-class. Basic instructions include arithmetic and
LED control. S-class instructions access in-memory struc-
tures for messaging. X-class instructions are push constant
and branch on less than or equal. Eight instructions are set
aside for users to define. Three operand types are supported
- values, sensor readings and messages.

Maté uses a high level programming interface which al-
lows for very short application programs. Code is split
into capsules of 24 instructions which can be transmitted
through the network. Capsules contain code, identification
and versioning information. Subroutine capsules allow for
more complex programs to be constructed across multiple
capsules. Maté starts execution in response to an event, e.g.
a timer wake up. Control then jumps to the start of the cor-
responding packet and completes with the halt instruction.

The first version of Maté lacks flexibility and support for
higher level languages as pointed out in the literature [2].
The specification of Maté has been upgraded as an Applica-
tion specific virtual machine (ASVM) for improved execu-
tion efficiency and customizability [8, 9].

VM* provides a richer services interface than Maté, al-
lowing for easier programming. It uses software synthe-
sis to tailor and scale the system software to each applica-
tion. VM* also allows fine-grain updating of the VM it-
self, whereas Maté only allows updates to VM applications.
This allows for greater flexibility and can reduce the energy
of code dynamic update via the network. VM* is based on
JVM but includes a number of innovations to reduce byte-
code size.

MagnetOS differs quite significantly from Maté and
VM*. It consists of a Single System Image layer which
provides a high level abstraction of an entire WSN. The ab-
straction allows the whole network to appear as a single,
unified VM. The system partitions applications into com-
ponents and dynamically distributes them through the net-
work.

The concept of using hardware accelerators to speed up
or reduce the power consumption of VMs has been applied
to execution of Java bytecode for some time [10].

There are significant differences between the require-
ments for a JVM on an embedded processor and an WSN
VM. In particular, WSN VMs require efficient abstractions
for sensing devices, must operate on devices with limited
memory and processing resources, must support data aggre-
gation techniques across multiple nodes and must be power
aware when processing and communicating data. On the
other hands, a JVM is often implemented on portable de-
vices such as mobile phones and running interactive appli-
cations. Therefore, when compared to WSN VMs, em-
bedded JVMs are more concerned on their performance.
Hence, it not expected that all hardware acceleration con-
cepts from the Java arena will work well for WSN proces-
sors.

The energy consumption of the processor used in the
Tmote Sky sensor device was investigated in [13]. The pro-
cessor is a variant of the Texas Instruments MSP430 16-bit
RISC. The authors measured the variation in power con-
sumption between different instructions with the same ad-
dressing mode to be less than 11%. In contrast, they found
that the power consumption of a single instruction could
vary by as much as three times depending on operand ad-
dressing mode. Obviously, the mix of instructions required
for a given program is determined by the functionality of the
program and the efficiency of the compiler. In general, the
power consumption of large real-world programs tend of a
weighted mean of the power consumption of the individual
instructions in the instruction set. Hence, power consump-
tion during program execution does not vary to such a large



degree.
For the purposes of this work, we assume that the en-

ergy consumption of the processor is linearly proportional
to number of instructions to be executed. That is,

Et = NcEc (1)

where Et is the total energy consumed in program ex-
ecution, Nc is the number of cycles required for program
execution and Ec is the energy per cycle.

3. Hardware Architecture

The proposed generalized processor platform archi-
tecture is shown in Figure 1. As in the conventional
WSN architecture, a Harvard architecture processor is uti-
lized for software execution. Typically, WSN motes em-
ploy a low power microcontroller such as the Atmel AT-
mega128L [13]. Hardware interfaces are provided from
the processor to a number of peripherals and a Radio Fre-
quency (RF) transceiver. Peripherals are typically sensors
connected with standard interfaces such as I2C and UART.
The peripheral controllers provide IO register and interrupt
interfaces to the processor.

Figure 1. Generalized Processor Platform Ar-
chitecture

It is proposed that a hardware accelerator module be in-
terconnected in parallel with the processor in order to accel-
erate and reduce the power consumption of VM execution.
The accelerator can communicate directly with the proces-
sor via an interrupt mechanism. Data transfer is via the Data
RAM. The accelerator may also access the Program RAM
in order to read and/or write machine instructions intended
for execution by the processor. This allows the accelerator

to intervene in the execution of VM applications. When in-
active it is proposed that the accelerator be supply gated or
implemented using low leakage transistors.

4. VM Power Reduction

In this section, we first analyze the sources of execution
overhead in Maté and then we propose several optimiza-
tions that utilize the hardware accelerator.

4.1. Capsule Analysis and Installation

In [12], it is reported that the two main sources of Maté’s
execution overhead are scheduling and the code update
mechanism. A capsule is the unit of program transmission.
When a mote receives a capsule that has a newer version
number, it analyzes and installs the capsule and then re-
boots. In this analysis, the program code contained in the
capsule is checked for its execution properties, such as code
length and resource usage, e. g. global variables and stack
depth. This is done by scanning the code sequence and ac-
cumulating the resource usage information. It is considered
that this analysis (or at least part of it) is suitable for im-
plementing inside the hardware accelerator. Instead of run-
ning the analysis on the general purpose processor, using an
optimized hardware module for this relatively simple task
should reduce the energy consumption of overall system.
During capsule analysis and installation, it is also possible
to optimize the program code for efficient execution. In the
next section, we present a number of possible optimizations
that can be performed on the program code during analysis
and installation.

4.2. Reducing the Execution Overhead of
Bytecodes

Like JVM, Maté is a stack-based architecture which
pushes and pops operands on the stack frequently. There-
fore, for example, it takes four bytecodes to simply add two
variables (two pushes, add and a pop). Instruction fold-
ing is a technique to combine multiple instructions to in-
crease the execution efficiency [14]. This technique can also
be applied to Maté. For example, the bytecode interpreter
may find a sequence of puchc6 (pushing a 6-bit constant)
and add and handle it as a single composite instruction of
addc6 (adding a 6-bit constant to the top of stack value)1.
The effect of instruction folding is two-fold: a reduction in
the number of executed instructions on the processor and
a reduction in the scheduling overhead. The first effect is
trivial, so we now explain the second effect briefly.

1It should be noted that this addc6 is assumed to be not included in
the instruction set. Otherwise, the compiler must have already used it



In the first version of Maté, each bytecode was exe-
cuted as a TinyOS task, which caused a significant over-
head. This overhead was especially significant for simple
bytecodes such as add which was slowed down by up to 30
times compared to the same instruction executed on the bare
TinyOS system. In Maté Version 2.19a, the users can define
the number of bytecodes per task (MATE CPU QUANTUM
= 5 by default) [15]. While instruction folding also in-
creases the effective number of bytecodes executed for a
task, it is done in a more adaptive way in terms of synchro-
nization granularity. With the instruction folding scheme,
only simple instructions are combined with others. There-
fore, the increase in the synchronization granularity should
be smaller than simply increasing the number of bytecodes
per task.

Another source of execution overhead is that some in-
structions take operands with multiple data types. For ex-
ample, add can operate on (1) two integers (arithmetic
summation), (2) a message buffer and an integer (the in-
teger is appended to the message) or (3) two message
buffers (messages concatenated) (Figure 2). Static analy-
sis of the bytecode sequence in the capsule disambiguates
the operand types and avoids type retrieval and conditional
branches during the execution.

if ((arg1→type == MATE TYPE INTEGER)
&& (arg2→type == MATE TYPE INTEGER)) {
call Stacks.pushValue(context, arg1→value.var

+ arg2→value.var);
}
else if (arg1→type == MATE TYPE BUFFER) {

if (arg2→type 6= MATE TYPE BUFFER) {
call Buffer.append(context, arg1→buffer.var, arg2);
}
else {

call Buffer.concatenate(context, arg2→buffer.var,
arg1→buffer.var);

}
}

Figure 2. An Example of Bytecode with
Multiple Operand Type. Extracted from
tinyos-1.1.15/tos/lib/VM/opcodes/
OPaddM.nc .

4.3. Customizability

In Maté Version 2.19a, users can define their own byte-
codes to customize their VMs for the target applications.
This is feasible because Maté is entirely implemented as
software running on a mote. On the other hand, our archi-

tecture utilizes hardware accelerators for efficient execution
and power reduction. In theory, it is possible to re-design
the hardware modules according to the customized instruc-
tion set, but in practice it is not desirable since hardware
bugs are harder to detect and fix than software ones.

Rather than a fully-customizable instruction set, we con-
sider that a semi-customizable instruction set should suffice
for the following reasons. First, while the design of the VM
needs to be flexible for various types of applications, a large
number of bytecodes are always needed due to the nature of
stack-based architecture. These include pushing and poop-
ing of variables and constants. Primitive arithmetic and log-
ical operations are also mandatory. The only flexibility re-
quired for these instructions should be the number of bits
to specify the variable or the constants. Note that, the in-
struction folding mentioned in the previous section should
be applicable regardless of the encoding of each bytecode
(we just need to identify the ones that push or pop a value
and that consume it).

Second, we utilize hardware modules to accelerate the
program execution. Therefore, it is better to provide a use-
ful set of library hardware modules than to implement the
same operations as (custom) bytecodes. The problem is
how to provide such a useful hardware modules for each
application field of the VM. Assume that the number of li-
brary hardware modules is limited to 256 for an instance of
the VM (i. e. the top of stack single byte specifies the li-
brary to be invoked). If the entire (or most of) the mote in
Figure 1 is implemented using System on Chip (SoC) tech-
nology and the hardware accelerator module is included in
it, we can provide a set of redundant library hardware mod-
ules and a table with 256 entries that assigns library speci-
fiers (an integer of 0 to 255) to the library modules provided
on the system. If the hardware accelerator module is imple-
mented by a programmable device (such as an FPGA), cus-
tomization of library hardware modules is straightforward
and even dynamic library update is (in theory) possible.

5. Conclusions and Future Work

This paper describes the results of a study of the power
consumption of the Maté VM for WSN motes. The main
sources of power consumption have been identified and de-
scribed. The paper proposed a generalized hardware archi-
tecture for a mote processor platform including hardware
acceleration of the VM. The paper proposed and analysed
a number of alternate hardware accelerators to reduce the
power consumption of VM execution on the WSN mote.
The paper also proposed a number of improvements to Maté
which could lead to lower power VM execution.

The paper forms the basis of planned future work which
will implement and measure the power consumption of the
most promising VM hardware accelerators. Low power im-



plementation of the VM is part of an overall project to de-
velop a low power processor platform for WSN motes. Re-
cently, workload analysis of TinyOS applications has been
conducted within our group. We are going to extend this
work to the analysis of WSN applications running on Maté.
The results of this analysis help us identify the possible tar-
gets of hardware acceleration and quantify the power sav-
ings as well as execution speed up.

Acknowledgment

This work is supported in part by grants from the Uni-
versity College Dublin (UCD) Seed Fund Programme and
the University of Aizu Competitive Research Funding.

References

[1] D. Culler, D. Estrim and M. Srivastava, “Overview
of sensor networks”, IEEE Computer, vol. 37, no. 8,
pp. 41–49, August 2004.

[2] S. Hadim and N. Mohamed, “Middleware challenges
and approaches for wireless sensor networks”, IEEE
Distributed Systems Online, 2006.

[3] P. Levis and D. Culler, “Maté: a tiny virtual machine
for sensor networks”, in Proceedings of Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pp. 85–95, San Jose, CA, USA,
2002.

[4] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen
and M. Welsh, “Simulating the power consumption of
large-scale sensor network applications”, ACM Conf.
Embedded Sensor Systems, pp. 188–200, 2005.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler
and K. S. J. Pister, “System architecture directions for
networked sensors”, in Proceedings of Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pp. 93–104, Boston, MA, USA,
Nov. 2000.

[6] Hitoshi Oi, “On the Design of the Local Variable
Cache in a Hardware Translation-Based Java Virtual
Machine”, in Proceedings of ACM SIGPLAN/SIGBED
2005 Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES’05), pp87–94,
Chicago, IL, June 2005

[7] Hitoshi Oi, “Instruction Folding in a Hardware-
Translation Based Java Virtual Machine”, in Proceed-
ings of ACM International Conference on Computing
Frontiers, pp139–145, Ischia, Italy May 2-5, 2006.

[8] P. Levis, D. Gay and D. Culler, “Active Sensor Net-
works”, in Proceedings of the 2nd USENIX/ACM Sym-
posium on Network Systems Design and Implementa-
tion (NSDI), May 2005.

[9] P. Levis, D. Gay and D. Culler, “Bridging the Gap:
Programming Sensor Networks with Application Spe-
cific Virtual Machines”, UC Berkeley Tech Report
UCB//CSD-04-1343, August 2004.

[10] “Wireless, ARM Product Information”,
http://www.jp.arm.com/naviweb/pdf/
wireless flyer%20final01.pdf .

[11] R. Barr, J. C. Bicket, D. S. Dantas, B. Du,
T. W. D. Kim, B. Zhou and E. G. Sirer, “On the need
for system-level support for ad hoc and sensor net-
works”, Operating Systems Review, vol. 36, pp. 1–5,
Apr. 2002.

[12] J. Koshy and R. Pandey. “VM*: Synthesizing Scalable
Runtime Environments for Sensor Networks”, in Pro-
ceedings of the 3rd International Conference on Em-
bedded Networked Sensor Systems, pp243–254, San
Diego, CA.

[13] N. D. Lane and A. T. Campbell, “The influence of
microprocessor instructions on the energy consump-
tion of wireless sensor networks”, in Proceedings
of Third Workshop on Embedded Networked Sensors
(EmNets), May 2006.

[14] “PicoJava-II Microarchitecture Guide”, Sun Mi-
crosystems, March 1999.

[15] P. Levis, “Maté Manual”, Version 2.19a,
http://www.cs.berkeley.edu/˜pal/
mate-web/files/mate-manual.pdf ,
November 30, 2004.


