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Abstract. System partitioning provides the users of high-performance
parallel servers with the flexibility in resource allocation and dynamic
reconfiguration as well as fault isolation. However, the bandwidth of
links that connect different domains can be wasted while links within
the same domains are congested. In this paper, we present a routing
mechanism that can utilize the bandwidth of otherwise unused links to
balance the message traffic and lead to lower message latencies for the
latency-sensitive transactions. The performance of the proposed routing
mechanism was studied using an analytical model with on-line trans-
action processing type workload parameters. The results indicated the
proposed routing mechanism reduced the congestion on the direct paths
significantly and lowered the queuing delay for the links. For example,
when a 4-cluster system with a fully connected network with the band-
width of 3.2GB/s per link is partitioned into two 2-cluster domains, the
queuing delay was reduced from 53ns to 37ns and resulted in the im-
provement of CPI by 2%.
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1 Introduction

Cache coherent non-uniform memory architecture (CC-NUMA) has the advan-
tages of both the shared memory space of SMPs and the scalability of loosely-
coupled multi-computers. Till mid-90s, CC-NUMA multiprocessors were mainly
used for engineering or scientific applications. Nowadays, they are used for run-
ning different commercial applications, such as on-line transaction processing
(OLTP), decision support systems (DSS), or web-servers, various operating sys-
tems. Each system runs different applications time to time, and the required
system resources, such as processors, memory, storage devices, and network,
also vary.



System partitioning enables users to divide a system into several domains.
Each domain behaves as a separate system, where users can run different applica-
tions with a different operating system. The resource allocation for each domain
can be changed without shutting down the system or physical re-configurations
(such as reconnecting cables) [1, 2, 3, 4]. In a CC-NUMA multiprocessor, memory
modules are physically distributed among nodes and cache coherence is main-
tained by sending messages between nodes over the interconnect network. When
a CC-NUMA multiprocessor is partitioned into domains, message traffic are
routed through the links that connect nodes belonging to the same domain.
Thus, the bandwidth of the other links (those connecting nodes belonging to
different domains) are unused.

In this paper, we present a static routing mechanism that can utilize the
bandwidth of such unused links to balance the message traffic and lead to lower
message latencies. The proposed routing mechanism classifies message traffic
into two categories, latency sensitive and non-latency sensitive transactions. The
latter transactions are routed through the indirect paths to balance the message
traffic on the direct and indirect paths.

This paper is organized as follows. In Section 2, the proposed routing mech-
anism is described. In Section 3, the performance advantage of the proposed
routing mechanism is evaluated. Section 4 discusses related work and the con-
clusion is provided in Section 5.

2 Routing Mechanism

In this section, we describe the proposed routing mechanism and its operations
for the different transaction categories. A fully interconnected three cluster sys-
tem is shown in Fig. 1. Each cluster has a CPU node, an I/O node and a router.
From a router, there are two links that connect the cluster to others. Thus, in
this example, the router is a 4 x 4 crossbar switch. Small numbers inside the
square of the router indicate the ports to which nodes and links are connected.
Note that this configuration is simplified in terms of number of nodes and hi-
erarchical level for easier explanation. In Section 3, we will use more realistic
configurations.

Consider a case where the system in Fig. 1 is partitioned into two domains:
Domain 0 that consists of clusters A and B, and Domain 1 that consists of Clus-
ter C alone. Each domain behaves as an independent CC-NUMA system and
has its own address space which is only accessible to the nodes within the do-
main. Thus, the link between Clusters A and B (the link drawn with a bold line
in Fig. 1) is heavily used while other links are not used at all. In the proposed
routing mechanism, these unused links are utilized to balance the message traffic
in the system.

In the proposed scheme, all the transactions are classified into two categories:
either I/O transactions or processor-memory transactions (or non-I/O transac-
tions for short). I/O transactions are less sensitive to the latency. For example,
when a file is opened for an application, direct memory access (DMA) trans-



Cluster A Routing Tables Domain 0 Cluster B Routing Tables

Destination Cluster A Cluster B Destination
Node ID /o
0 P P
1 NodeO [0 _2 2_0| Node2 .
1R, Ry n
2
3 | |
4 Node 1 Node 3 .
5
\ / ,
\ 1 ; Cluster C Routing Tables
CPU 3 2 Destination
Node o R | NodelD p o
P 1) 0 B
1/0 Node 4 Node 5 ! . .
Node Cluster C 2 . .
Domain 1 3
— 4 [o] o]
Rout 511 1
2R njin

Fig. 1. A Fully Interconnected 3 Cluster System Partitioned into Two Domains
and Routing Tables

actions are initiated by the I/O node so that future accesses to the file by the
application will hit at the memory buffer. On the other hand, cache fill transac-
tions initiated by cache misses of processors are latency sensitive. The processor
could be blocked until the cache fill transaction is completed 3. By routing I/O
transactions through the unused links, it is possible to reduce traffic on the links
that connects cluster within the same domain and this leads to a lower latency
of non-I/0 (i. e. processors-memory) transactions that are latency-critical.

In this mechanism, each cluster has two routing tables, one for I/O and
another for non-I/O transactions. In a message packet, there is an I/O bit in-
dicating whether the originator of the message is an I/O node in the cluster or
not. This I/O bit is used at the router to choose one of routing tables. Each node
in the system (either CPU or I/O node) has a unique Node ID as shown in the
table in Fig. 1 and entries in the routing tables are indexed by the Node ID.

Below, operations of the proposed routing mechanism are described with four
different transactions: memory access from a processor and its response, and I/0
access from a processor and its response.

3 modern microprocessors employ techniques to overlap cache-fill and other operations,
such as nonblocking cache, or multi-threading. However, blocking still occurs if the
processor reaches to the point where it uses the data in the missed cache block



2.1 Processor-Memory Transactions

A processor in Node 0 accesses a memory module in Node 2 (Processor-Memory
Transaction in Fig. 2). First, the processor sends a request message to Node 2:

1. Node 0 sends a request message with I/0 = 0.

2. Since I/O = 0, Non-I/O Routing Table (labeled “P” in the table in Fig. 1)
is used at the router in Cluster A. The entry corresponding to Node 2 (des-
tination of the request message) indicates that the message is to be routed
to the Port 2 of the router (to the cable directly connected to Cluster B).

3. The message is transmitted over the cable and reaches at the router in Clus-
ter B. Since this message is not originated from an I/O node in the cluster,
its I/O = 0. Thus, Non-I/O Routing Table is used.

4. Non-I/0O table indicates that the message is to be routed to Port 0, which is
the destination of the message (Node 2).

After the memory access is completed, Node 2 sends a response message back
to the processor in Node 0.

1. Node 2 sends a response message with /0 = 0.

2. Since I/O = 0, Non-I/O Routing Table is used at the router in Cluster B.
The entry corresponding to Node 0 (destination of the response message)
indicates that the message is to be routed to the Port 2 of the router (to the
cable directly connected to Cluster A).

3. The message is transmitted over the cable and reaches at the router in Clus-
ter A. Since this message is not originated from an I/O node in the cluster,
its I/O = 0. Thus, Non-I/O Routing Table is used.

4. Non-I/O table indicates that the message is to be routed to Port 0, which is
the destination of the response message (Node 2).

2.2 Processor-I/O Transactions

A processor in Node 0 accesses an I/O device in Node 3 (I/O Transaction in
Fig. 2). Similar to the previous example, the processor first sends a request
message to Node 3:

1. Node 0 sends a request message with I/O = OsinceitisaC PUnode.

2. Since I/O = 0, Non-I/O Routing Table is used at the router in Cluster A.
The entry corresponding to Node 3 (destination of the request message)
indicates that the message is to be routed to the Port 3 of the router (to the
cable connected to Cluster C).

3. The message is transmitted over the cable and reaches at the router in Clus-
ter C. Since this message is not originated from an I/O node in the cluster,
its I/O = 0. Thus, Non-I/O Routing Table is used.

4. Non-I/0O table indicates that the message is to be routed to Port 2, to the
cable connected to Cluster C



5. The message is transmitted over the cable and reaches at the router in Clus-
ter B. Since this message is not originated from an I/O node in the cluster,
its I/O = 0. Thus, Non-I/O Routing Table is used.

6. Non-I/O table indicates that the message is to be routed to Port 1, which is
the destination of the request message (Node 3).

After the I/O access is completed, Node 3 sends a response message back to
the processor in Node 0.

1. Node 3 sends a response message with I/O = 1 (since Node 3 is an I/O
node).

. Since I/O =1, I/O Routing Table (labeled “I/O” in the table in Fig. 1) is
used at the router in Cluster B. The entry corresponding to Node 0 (desti-
nation of the response message) indicates that the message is to be routed
to the Port 3 of the router (to the cable connected to Cluster C).

3. The message is transmitted over the cable and reaches at the router in Clus-
ter C. Since this message is not originated from an I/O node in the cluster,
its I/O = 0. Thus, Non-I/O Routing Table is used.

4. Non-I/O table indicates that the message is routed to Port 3, to the cable
connected to Cluster A.

5. The message is transmitted over the cable and reaches at the router in Clus-
ter A. Since this message is not originated from an I/O node in the cluster,
its I/O = 0. Thus, Non-I/O Routing Table is used.

6. Non-I/O table indicates that the message is routed to Port 0, which is the
destination of the response message (Node 0).

N

3 Performance Evaluation

In this section, we study the effectiveness of the proposed routing mechanism
using an analytical model. First, we describe the target system configurations.
Then the methodology of the evaluation and the results follow.

3.1 Architecture Model

We assume hierarchical CC-NUMA system configurations that can be parti-
tioned into multiple domains. The system consists of four of clusters and clusters
are fully connected by the point-to-point links. A cluster consists of four SMP
nodes, two I/O nodes, a directory controller, a crossbar switch that connects the
nodes within the cluster as well as the inter-cluster network. An SMP node has
four processors, a memory controller and memory modules (Fig. 3).

We evaluate the performance of the proposed routing mechanism in two
configurations in Fig. 4: there are four clusters in the system and they are parti-
tioned into two domains. In Fig. 4 (a), there are two domains: one consisting of
clusters 0 and 1 and another of clusters 2 and 3 Links between clusters 0 and 1
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Fig. 2. Message Flow for Processor-Memory and I/O Transactions

and clusters 2 and 3 (drawn with bold lines in the figure) are used for processor-
memory transactions and other links are used for I/O transaction. Similarly,
in Fig. 4 (b), clusters 0 to 2 form a domain while cluster 3 is used as a single
cluster domain. Table 1 lists key system parameters, which are chosen in con-
sideration of the current implementation technologies. Memory access latencies
are for read accesses to unmodified memory blocks. Using an analytical model,
which is described in the next section, the utilization and queuing delay of the
links connecting clusters and clock per instruction (CPI) are derived and used
as performance indices.

Parameter Value
Proc/SMP Node 4

Proc Clock 1.1GHz
Bus Clock 200MHz
Local Memory 250ns

Remote Memory (same cluster) |385ns
Remote Memory (other cluster)|550ns
Link Bandwidth 3.2, 3.6, 4GB/s

Table 1. Key System Parameters
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Fig. 4. System Configurations

3.2 Performance Model

We developed an analytical model based on the one used in our previous project
at HAL Computer Systems [5].
The primary index of the performance is clock per instruction, CPI which

is obtained as follows:

where,

CPI = CPlLyerfecir2 + fo X mpi X cpm
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CPIerfectr2 is the processor CPI with perfect (no miss) L2 cache,

fo is a blocking factor, which reflects the effectiveness of latency hiding tech-
niques in both hardware and software,

mpi is the average L2 miss rate (miss per committed instruction),

cpm is the average miss penalty in clock cycles.

To determine the value of ¢pm, L2 miss is classified into various transaction
scenarios by the access mode (read/write), state of the main memory, state of
other L2 caches, locations of the accessed block’s home and the sharer or owner
L2 cache. Each transaction provides the usage of resources in the system, such
as memory controller, directory controller, shared bus in the SMP node, links
between clusters.

Next, we derive cpm in (1), which is given by

CPM = CPM NoContention T QueingDelay (2)

where cpm NoContention 1S the L2 cache miss penalty when there is no contention
on the system resources, while QueingDelay is the delay caused by the con-
tention on the system resources. Note that QueingDelay is a function of CPI:
the lower C'PI, the more frequently resources are used and higher contention.
Thus

CPI = CPLyerfectr2 + fo x mpi x cpm(CPI). (3)

The queuing delay of each resource is approximated by M/D/1 formula. The
probability of each transaction scenario was chosen from our experiences in the
past projects together with an OLTP-type workload [6, 7]. Also, the following
assumption are used:

— Memory modules and I/O devices are uniformly distributed.
— The ratio of read and write accessis 2:1 .
— DMA I/O0 traffic is assumed 100M B/ (200007 ransaction/min)

With these workload assumptions, the derivation of (3) is iterated until it is
converged.

3.3 Results

Configuration (a) in Fig. 4 is a 4-cluster system partitioned into two 2-cluster
domains . Table 2 shows the link utilization and queuing delay on the direct
paths (drawn with bold lines in Fig. 4) and CPI, derived from the analytical
model. In the table, DP columns are the values when only the links on the direct
paths are used while Prop are for the proposed scheme. The proposed routing
scheme reduced the link utilization significantly and resulted in the lower queuing
delay. At the link bandwidth of 3.2GB/s, the queuing delay was reduced by 30%
and the CPI was improved by 2%. At the higher bandwidth values, 3.6GB/s
and 4.0GB/s, the queuing delay was reduced by 25% and 24%, and CPI was
improved by 1% and 0.5%, respectively.



Link Bandwidth
3.2GB/S 3.6GB/S 4.0GB/S
DP | Prop | DP | Prop | DP | Prop
Link Utilization||82.8%|77.7%|76.2%|71.0% |68.7% |63.7%
Queuing Delay ||53.0ns|36.8ns|31.8ns|23.3ns|19.4ns|14.8ns
CPI 4.155 | 4.083 | 4.061 | 4.023 | 4.006 | 3.986

Table 2. Configuration (a) Result

Link Bandwidth
3.2GB/S | 3.6GB/S 4.0GB/S
DP [Prop| DP | Prop | DP | Prop
Link Utilization|| sat | sat | sat |84.1%(81.9%|76.9%
Queuing Delay ([N/A|N/A|N/A|45.3ns|35.8ns|25.4ns
CPI N/A|N/A|N/A|4.760 | 4.696 | 4.626

Table 3. Configuration (b) Result

Configuration (b) in Fig. 4 is a 4-cluster system partitioned into two (3 and
1-cluster) domains. Table 3 shows the link utilization, queuing delay, and CPI
values of the 3-cluster domain derived from the analytical model. The link band-
width of 3.2GB/S was not sufficient for the high transaction rate assumed in the
workload. The link was saturated (link utilization exceeded 100% in the analyti-
cal model) in both DP and Prop. In these cases, the system behavior is non-linear
and the performance cannot be predicted by the analytical mode. At the band-
width of 3.6GB/s, however, DP and Prop behaved differently. with DP the links
are still saturated while with Prop the link utilization is far below saturation.
At the bandwidth of 4.0GB/s, the queuing delay was reduced by 30% and CPI
was improved by 1.5%.

4 Related Work

Modern high-performance NUMA systems with system partitioning feature in-
clude HP Superdome [1], NEC AZUSA [2], Compaq AlphaServer [3], Unisys En-
terprise Server ES 7000 [4]. In particular, HP Superdome has a similar structure
as the architectural mode we assumed in this paper: a number of processors form
a cell, and cells are fully connected by the network of crossbar switches. However,
as to the best of our knowledge, none of the existing systems including above can
utilize the inter-domain links to alleviate the traffic on the intra-domain links.
In addition to the normal interconnection network for the inter-processor
communications, NUMA-Q of IBM [8] has a dedicated network of fiber channel
switches for connecting I/O devices and processor nodes, called Multipath I/0.
In principle, Multipath I/O and the proposed routing mechanism are the same



approach in the sense that both try to reduce the traffic on the inter-processor
network by routing I/O traffic to alternative paths. The difference is in the
cost-effectiveness: while NUMA-Q invested in the extra hardware (fiber channel
switches) for the I/O traffic, the proposed scheme utilizes the bandwidth of
unused links resulted from the system partitioning.

In a parallel computer system with the message-passing communication model,
which has a much higher inter-processor communication latency than the shared
memory model, there are many sophisticated dynamic (adaptive) routing algo-
rithms [9]. They are, however, rarely used for the interconnection network of
NUMA systems. Sophisticated adaptive routing algorithms inherently increase
the routing latencies. This conflicts with one of the objectives in the interconnec-
tion network of NUMA systems, which is to reduce the remote access latency.

In this paper, we assumed the indirect paths were to be used for I/O transac-
tions, which are normally implemented as uncached DMA operations [10]. If the
proposed routing scheme is used for cache coherent memory transactions, the
race conditions caused by the multiple paths between nodes must be solve [11].

5 Conclusion

Most of current commercial parallel servers have cluster structures and they can
be partitioned into several domains to better utilize the system resources to fit
users need as well as fault isolation. In this paper, we have presented a static
routing scheme that balances the message traffic in a partitioned system. To
minimize the latency of remote memory accesses by processors, it is preferable to
route messages over the links that directly connect clusters in the same domain.
However, this routing scheme leads to an unbalance of the message traffic: the
links connecting clusters in the same domain are heavily congested while other
links are not used. As an initial study, we have evaluated the performance of
the proposed scheme with an analytical model using workload parameters that
modeled an OLTP-type application.

In addition to balancing the message traffic, the proposed scheme has several
advantages. The hardware resource required for its implementation is small and
complexity is fairly low. Thus, it is expected that the effect on the latency for
the transaction on the direct paths is minimum. Another advantage is, since the
proposed scheme is static, it does not require to keep track of strayed transac-
tions, which is a common problem in more sophisticated dynamically adaptive
routing mechanisms.

The proposed routing scheme can be applied to a system in which each
cluster (in the terminology used in this paper) is fully connected to every other
cluster with a dedicated link. For example, Superdome of Hewlett Packet [1] is
met with this structural requirement and the proposed scheme can be applied
to Superdome.

The topics of further research include studying dynamic network behavior
using execution driven simulations or other methods, use of more various work-
load such as web-servers or decision support systems (DSS). In this paper, I/O



transactions represented latency-insensitive messages. The proposed scheme can
be used for other types of transactions, such as prefetching memory blocks into
processors’ caches, writing back replaced cache blocks to the main memory, and
the effectiveness of the proposed scheme for these transaction should also be
studied.
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