)

) 28M ACM International Collegiate Programming Contest

000 _ _ Asia Regional Contest 2003, Aizu, Japan
ACM Eicgamming Contoet
= event
==57E, spon:

Java Challenge Contest

Snakes and Rabbits

Contents

General Informationcocoovevviiiiiiis o, 1

Control Operationscccooevvevvveiiieeennnnn. 2

Template Program.........cccooeeiiiviinneesmmen. 2

Design and Debuggingcccoovveviiviinnnennnn. dl

Submission Results & Tournament.............. B

¥

o "-‘-
=
T
=

AN an
- hE L

November 1-3, 2003
Aizu-Wakamatsu

1. General Information

The big snake was placed on the magical island wibbits playing on the wonderful grass.
Rabbits are fat and move slowly. But they can jumstones as well as hide outside the borderseof th
island’s grass area. Under a magical force theesgak't stop its movement. It can only control its
direction of movement. The snake must collect righior leaving this island.

Your mission is to help the snake in collecting thbbits. Importantly, there is an opponent snake,
which implements the same job. The winner of tlumpetition should collect more rabbits than the
opponent. Design an effective algorithm and waifgrogram simulating the snake behavior.

2. Control Operations

The island size is 40x40 cells. The cell coordisatan be changed from 0 to 39. The cell with
zeroed coordinates is in the upper-left cornerhkatl can be empty, or occupied by a snake body,
stone and/or a rabbit. Snakes have 15 cells irtheiyiring one turn a snake can only move to
neighboring cells. Each round lasts for fixed amafriimer steps (about 500 steps or 50 seconds).

A round is finished when:

» There are no rabbits left.

» Countdown timer reached zero value.
There are fixed amount of rabbits and stones ih eand during competition.
As mentioned above, it is necessary to collect mabbits than opponent to win the round. The result
of match is calculated from two rounds results. $beond round played with swapped positions of
snakes. If it is a draw after two rounds, the thisdnd must be played and if it is still a drawe th
winner will be determinedandomly.

time: left -

A snake can observe game environment and recdmweriation about:

Amount and positions of stones,

Amount and positions of rabbits,

Self and counterpart snake body coordinates {posif each chain),

Timer value,

Snake own state parameters: the head directionemment status, anticipated head position and
the score.

GhwnE

All these functions to receive information are thaghly described in the API section.

As was pointed above, a snake never stops its mavieexcept several cases:
- When a snake met a stone,
- When a snake reached an island border,
- When a shake tries to cross its body,
- When the opponent snake blocks your snake.

The snake program should calculate the next tanmneand. The possible commands Buen
Left or Turn Right. If there are no commands specified for the timentthe snake will remain
moving forward in the same direction. The calcolatiime for one turn is limited. It is about 100ms.
The snake keeps current direction if time periothefcurrent turn is expired. It's better to syrwiize
your snake with timer usingaitNextTurn() method.

Rabbits can occasionally move to neighboring cé&liey can also climb on stones, jump over the
snake or island border. In these cases snakesawdlett them.

3. Template Program and API manual

This section contains an example of a Java-progriamlating the snake behavior as well as
description of the clasSnake.You can edit this file to create your own clas®aBE create the java
source-code file with the nang&nakeNN.java where NN is the number of your seat (table). Your
code should be placed inside thun method. Examples of using Snake-methods are enzeldaas
BOLD-lItalic.

Don't forget to specify your own team name in seeName()method !!!!

/** Template program

* Snakel. j ava

* @ee Snake. cl ass

*

* The nane of the class and file should be the sane as the team nanme
* (see setNanme met hod bel ow)

*/

public class Snakel extends Snake {

/** Creates a new i nstance of Snakel. Constructor nust be enpty */
public Snakel() {

}

public void run() { // main control routine

int hx = get NextHeadX(); // get the next head position,
int hy = getNextHeadY(); // if it is free to nove here
int s[][] = getStones(); // stones handling is uninplenmented here

while(true) { // forever |oop

wai t Next Turn(); // synchronization (pause till next tick of tinmer)
int r[][] = getRabbits(); // rabbits handling is uninplemented here
doubl e v=Mat h.random(); // random deci si on about the next step
if(v >0.7) turnLeft(); // to turn head | eft

el se

if(v <0.3) turnRight(); // to turn head right

// to nmove forward just do nothing

} // end of while |oop

public String setName() {
return “Snake 1”; // set team name here

}
}

Snake APl manual

Class Snake
j ava. |l ang. bj ect
L Snake
All Implemented Interfaces:
java.lang.Runnable

public abstract clasSnake
extends java.lang.Object
implements java.lang.Runnable

Snake API.
This is the base class for a snake implementation. During the match, ituseekimm a separate thread for each snake. The
user must inherit the Snake class for designing his/her own control program.

Field Summary

Bool ean |ismoving
Srake move indicatio

Method Summary

int[][] |getBody ()
Returns the 2D array with self body coordinates.

i nt |getDirection O)
Returns the self head direction.

i nt |getNextHeadX ()
Returns the X coordinate of the head in the next tick.
(However, if snake can't move, it will stay at current position)

i nt |getNextHeadY ()
Returns the Y coordinate of the head in the next tick.
(However, if snake can't move, it will stay at current position)

int[][] |getOpponent ()
Returns the 2D array with opponent body coordinates.

int[][] |getRabbits ()
Returns the 2D array with coordinates of rabbits.

int[][] |getStones ()
Returns the 2D array with coordinates of stones.

i nt |getTime ()
Returns current value of the time counter.

i nt |getScore ()
Returns the number of rabbits collected by snake.

abstract void|run()
This method should be implemented by the competitor.

abstract |setName ()
java.lang. String This method is to specify a team name.

voi d |turnLeft ()
This method turns the snake head to the left.
It is possible to have only one turn (left or right) per tick

voi d [turnRight ()
This method turns the snake head to the right.

It is possible to have only one turn (left or right) per tick

voi d |waitNextTurn__ ()
Wait until the next time step starts.
This method could be used for synchronization with the game timer.

Field Detail

iIsmoving
public vol atile bool ean ismoving
Snake move indicatior. True, if snake has moved last turn, false otherwise

Constructor Detalil

Snake
publ i ¢ Snake()

Method Detail

waitNextTurn
public voi d waitNextTurn ()

Wait until the next time step starts.
This method could be used for synchronization with the game timer.

getTime
public int getTime ()
This method returns current value of the game timer in ticks. Zero riesalast tick.
Returns:
integer timer value

getScore
public int getScore ()
This method returns the number of rabbits collected by snake.
Returns:
integer score value

getOpponent
public final int[][] getOpponent ()

This method returns the 2D array with coordinates of the opponent body. Tlagnfiesision is the index of
coordinate (0 — horizontal coordinate X, 1 — vertical coordinate Y). The secuordsion is a value of the
corresponding coordinate.

Example:

int[][] x = getOpponent();

int hx = x[0][0]; int hy = X[1][O]; // coordinates of the snake head
int len = x[0].length; // length of the snake
int tx = x[0][len-1]; int ty = [1][len-1]; // coordinates of the dwatail

getStones
public final int[][] getStones ()
This method returns the 2D array with coordinates of stones. It hasiteessacture as for tigetOpponent
Example:

int stones|[][] = getStones();

int lenstones = stones[0].length; // number of stones
int x= stones[O][i]; // X coord of the i-th stone

int y= stones[1][i]; // Y coord of the i-th stone

getRabbits
public final int[][] getRabbits ()

This method returns the 2D array with coordinates of rabbits. It has tieessarcture as for trgetOpponent
Example:

int rabbits[][] = getRabbits();

int lenrabbits = rabbits[0].length; // the total number of rabbits includitigated ones
int x=rabbits[O][i]; // x coord of the i-th rabbit

int y=rabbits[1][i]; / y coord of the i-th rabbit

NOTES:
1. Rabbits may move occasionally, so be prepared.
2. Array returned by this method holds tiatal number of rabbits including collected ones.
3. Negative coordinatevalue means that the rabbit have beelfected already

run
public abstract void run ()
This method should be implemented by the competitor. It holds the main snake cwtinel it must contain
"forever loop" which is to manipulate the snake in real-time.
Specified by:
run in interfacg ava. | ang. Runnabl e

setName
public abstract java.lang.String setName ()

This method is to specify a team name.
Please implement it as:

public String setName() {
return "Team name// specify your team name here
}

turnLeft
public final void tunLeft ()

This method turns snake head to the left.
It is possible to have only one turn (left or right) per tick

turnRight
public final void tunRight ()

This method turns snake head to the right.
It is possible to have only one turn (left or right) per tick

getNextHeadX
public final int getNextHeadX ()

Returns the X coordinate of the head in the next turn.
(However, if snake can't move, it will stay at current position)

getNextHeadY

public final int getNextHeadY ()

Returns the Y coordinate of the head in the next turn.
(However, if snake can't move, it will stay at current position)

getBody

public final int[][] getBody ()

Returns the 2D array with self body coordinates. 1st dimension is the indaordinate (0 - X, 1 - Y).
2nd dimension is a value of corresponding coordinate.
Example:

int[][] x = getBody();
int hx = x[0][0]; int hy = [1][O]; // head coordinates

int len = x[0].length; // length of the snake
int tx = x[0][len-1]; int ty = [1][len-1]; // tail coordinates

getDirection

public final int getDirection O

Returns self head direction of the snake.
/1 0 - north, 1 - east, 2 - south, 3 - west

4. Design and Debugging

All files are collected in th@va-challengedirectory. There is the Snakes Hunt package pealvidr

design and debugging. Theva-challengefolder includes also the following files needed:

1.

SnakeHunt.jar — The main application module for desagual debugging.

2. Snake.class — The base java class for snake imefgation (see example).
3.
4

. Snake.html — Manual for Snake.class ira@oc format.

Snakel.java, Snake2.java- Snake templates (examples).

Important Remarks!

The name of your class designed should b@nakeNN, whereNN — the number of your team
(number of your table). The Java-file name shoalé&bnakeNN.java.

Typejava —jar SnakeHunt.jar SnakeNN Snakelin the command prompb start the
execution of your SnakeNN program.

It is only allowed to use the following Java padckagava.Math andjava.util

It is possible to use and design oimiper classes. This means that your code submitted
should be a single Java-file.

It is restricted to use potentially harmful and afiegava methods (like accessing to operating

environment, file system, etc). Each round will wrder a security manager.

* You can use a standard input-output to debug ymgram.But these operations must be

removed when you submit your program for the tournament.

5. Submission Results & Tournament

Submission

You should provide to the referee team with 8makeNN.java file with the source code of
your snake controlling program. Please copy tHes tib thejava-challenge-resultdirectory. Your
code submitted should be a single Java-file. All input-output operations lik&ystem.outmust be
removed!!

Tournament information

All teams will be randomly distributed to theiasgtpositions in the tournament net. Each team
has to play 2 or 3 rounds with its opponent on dacél of tournament to proceed to the next level o
the tournament. The 4-teams tournament exampleisrsin the picture.

Snake 4 l—

Shake 2 l—

Shake 3 l—

Snhake 1 l—

Team will be qualified for next round when:
* Cumulatively collected more rabbits than an oppotesm, or
« Win 3% round if there is a draw result after 2 rounds, or
* Randomly, after three rounds with the draw result.

Credits

» |dea by Prof. Alexander Vazhenin, University of Aigzazhenin@u-aizu.ac.jp),
* Gameplay design and development by Vazhenin Dniitnyyersity of Aizu, Post-graduate
school (dmvazh@sparth.u-aizu.ac.jp).

Special thanks to Rentaro Yoshioka and Pierre-Afaiyolle for testing.

