FCM: THE FUZZY *c*-MEANS CLUSTERING ALGORITHM

JAMES C. BEZDEK

Mathematics Department, Utah State University, Logan, UT 84322, U.S.A.

ROBERT EHRLICH

Geology Department, University of South Carolina, Columbia, SC 29208, U.S.A.

WILLIAM FULL

Geology Department, Wichita State University, Wichita, KS 67208, U.S.A.

(Received 6 May 1982; revised 16 May 1983)

Abstract—This paper transmits a FORTRAN-IV coding of the fuzzy c-means (FCM) clustering program. The FCM program is applicable to a wide variety of geostatistical data analysis problems. This program generates fuzzy partitions and prototypes for any set of numerical data. These partitions are useful for corroborating known substructures or suggesting substructure in unexplored data. The clustering criterion used to aggregate subsets is a generalized least-squares objective function. Features of this program include a choice of three norms (Euclidean, Diagonal, or Mahalonobis), an adjustable weighting factor that essentially controls sensitivity to noise, acceptance of variable numbers of clusters, and outputs that include several measures of cluster validity.

Key Words: Cluster analysis, Cluster validity, Fuzzy clustering, Fuzzy QMODEL, Least-squared errors.

INTRODUCTION

In general, cluster analysis refers to a broad spectrum of methods which try to subdivide a data set X into c subsets (clusters) which are pairwise disjoint, all nonempty, and reproduce X. via union. The clusters then are termed a hard (i.e., nonfuzzy) c-partition of X. Many algorithms, each with its own mathematical clustering criterion for identifying "optimal" clusters, are discussed in the excellent monograph of Duda and Hart (1973). A significant fact about this type of algorithm is the defect in the underlying axiomatic model that each point in X is unequivocally grouped with other members of "its" cluster, and thus bears no apparent similarity to other members of X. One such manner to characterize an individual point's similarity to all the clusters was introduced in 1965 by Zadeh (1965). The key to Zadeh's idea is to represent the similarity a point shares with each cluster with a function (termed the membership function) whose values (called memberships) are between zero and one. Each sample will have a membership in every cluster, memberships close to unity signify a high degree of similarity between the sample and a cluster while memberships close to zero imply little similarity between the sample and that cluster. The history, philosophy, and derivation of such mathematical systems are documented in Bezdek (1981). The net effect of such a function for clustering is to produce fuzzy c-partitions of a given data set. A fuzzy c-partition of X is one which characterizes the membership of each sample point in all the clusters by a membership function which ranges between zero and one. Additionally, the sum of the memberships for each sample point must be unity.

Let $Y = \{y_1, y_2, \ldots, y_N\}$ be a sample of N observations in \mathbb{R}^n (*n*-dimensional Euclidean space); y_k is the k-th feature vector; y_{kj} the j-th feature of y_k . If c is an integer, $2 \le c < n$, a conventional (or "hard") c-partition of Y is a c-tuple (Y_1, Y_2, \ldots, Y_c) of subsets of Y that satisfies three conditions:

$$Y_i \neq \phi' \quad 1 \le i \le c; \tag{1a}$$

$$Y_i \cap Y_j = \phi; \quad i \neq j$$
 (1b)

$$\bigcup_{i=1}^{c} Y_i = Y$$
 (1c)

In these equations, ϕ stands for the empty set, and (\cap, \cup) are respectively, intersection, and union.

In the context discussed later, the sets $\{Y_1\}$ are termed "clusters in Y. Clusters analysis (or simply clustering) in Y refers to the identification of a distinguished c-partition $\{\hat{Y}_i\}$ of Y whose subsets contain points which have high intracluster resemblance; and, simultaneously, low intercluster similarity. The mathematical criterion of resemblance used to define an "optimal" c-partion is termed a cluster criterion. One hopes that the substructure of Y represented by $\{\hat{Y}_i\}$ suggests a useful division or relationship between the population variables of the real physical process from whence Y was drawn. One of the first questions one might ask is whether Y was drawn. One of the first questions one might ask is whether Y contains any clusters at all. In many geological analyses, a value for c is known *a priori* on physical grounds. If c is unknown, then determination of an optimal c becomes an important issue. This question is sometimes termed the "cluster validity" problem. Our discussion, in addition to the clustering *a posteriori* measures of cluster validity (or "goodness of fit").

Algorithms for clustering and cluster validity have proliferated due to their promise for sorting out complex interactions between variables in high dimensional data. Excellent surveys of many popular methods for conventional clustering using deterministic and statistical clustering criteria are available; for example, consult the books by Duda and Hart (1973), Tou and Gonzalez (1974), or Hartigan (1975). The conventional methodologies discussed in these references include factor analytic techniques, which occupy an important place in the analysis of geoscientific data. The principal algorithms in this last category are embodied in the works of Klovan and Imbrie (1971), Klovan and Miesch (1976), and Miesch (1976a, 1976b). These algorithms for the factor analytical analysis of geoscientific data are known as the OMODEL algorithms (Miesch, 1976a).

In several recent studies, the inadequacy of the QMODEL algorithms for linear unmixing when confronted with certain geometrical configurations in grain shape data has been established numerically (Full, Ehrlich, and Klovan, 1981; Full, Ehrlich, and Bezdek, 1982; Bezdek, and others, 1982. The problem is caused by the presence of outliers. Aberrant points may be real outliers, noise, or simply due to measurement errors; however, peculiarities of this type can cause difficulties for QMODEL that cannot be resolved by standard approaches. The existence of this dilemma led the authors to consider fuzzy clustering methods as an adjunct procedure which might circumvent the problems caused by data of this type. Because fuzzy clustering is most readily understood in terms of the axioms underlying its rationale, we next give a brief description of the basic ideas involved in this model.

FUZZY CLUSTERING

The FCM algorithms are best described by recasting conditions (equation 1) in matrix-theoretic terms. Towards this end, let U be a real $c \times N$ matrix, U = $[u_{ik}]$. U is the matrix representation of the partition $\{Y_i\}$ in equation (1) in the situation

$$u_i(y_k) = u_{ik} = \begin{cases} 1; & y_k \in Y_i \\ 0; & \text{otherwise} \end{cases}$$
(2a)

$$\sum_{i=1}^{N} u_{ik} > 0 \quad \text{for all } i; \tag{2b}$$

$$\sum_{i=1}^{N} u_{ik} = 1 \quad \text{for all } k. \tag{2c}$$

In equation (2), u_i is a function; $u_i: Y \to \{0, 1\}$. In conventional models, u_i is the characteristic function of Y_i : in fact, u_i and Y_i determine one another, so there is no harm in labelling u_i the *i*th hard subset of the partition (it is unusual, of course, but is important in terms of understanding the term "fuzzy set"). Conditions of equations (1) and (2) are equivalent, so U is termed a hard c-partition of Y. Generalizing this idea, we refer to U as a fuzzy c-partition of Y when the elements of U are numbers in the unit interval [0, 1] that continue to satisfy both equations (2b) and (2c). The basis for this definition are cfunctions $u_i: Y \rightarrow [0, 1]$ whose values $u_i(y_k) \in [0, 1]$ are interpreted as the grades of membership of the y_k s in the "fuzzy subsets" u_i of Y. This notion is due to Zadeh (1965), who conceived the idea of the fuzzy set as a means for modelling physical systems that exhibit nonstatistical uncertainties. Detailed discussions for the rationale and philosophy of fuzzy sets are available in many recent papers and books (e.g., consult Bezdek (1981)).

For the present discussion, it suffices to note that hard partitions of Y are a special type of fuzzy ones, wherein each data point is grouped unequivocally with its intracluster neighbors. This requirement is a particularly harsh one for physical systems that contain mixtures, or hybrids, along with pure or antecedent strains. Outliers (noise or otherwise) generally fall into the category one should like to reserve for "unclassifiable" points. Most conventional models have no natural mechanism for absorbing the effects of undistinctive or aberrant data, this is a direct consequence of equation (1a). Accordingly, the fuzzy set, and, in turn, fuzzy partition, were introduced as a means for altering the basic axioms underlying clustering and classification models with the aim of accomodating this need. By this device, a point v_k may belong entirely to a single cluster, but in general, is able to enjoy partial membership in several fuzzy clusters (e.g., precisely the situation anticipated for hybrids). We denote the sets of all hard and fuzzy cpartitions of Y by:

$$M_c = \{ U_{c \times N} | u_{ik} \in [0, 1]; \text{ equations (2b), (2c)} \};$$

(3a)

$$M_{fc} = \{U_{c \times N} | u_{ik} \in [0, 1]; \text{ equations (2b), (2c)} \}.$$

(3b)

Note that M_c is imbedded in M_{fc} . This means that fuzzy clustering algorithms can obtain hard *c*-partitions. On the other hand, hard clustering algorithms cannot determine fuzzy *c*-partitions of *Y*. In other words, the fuzzy imbedment enriches (not replaces!) the conventional partitioning model. Given that fuzzy *c*-partitions have at least intuitive appeal, how does one use the data to determine them? This is the next question we address.

Several clustering criteria have been proposed for identifying optimal fuzzy c-partitions in Y. Of these, the most popular and well studied method to date is

associated with the generalized least-squared errors functional

$$J_m(U, v) = \sum_{k=1}^N \sum_{i=1}^c (u_{ik})^m \|y_k - v_i\|_A^2$$
(4)

Equation (4) contains a number of variables: these are

$$Y = \{y_1, y_2, \dots, y_N\} \subset \mathbf{R}^n = \text{the data},$$
 (5a)

$$c =$$
 number of clusters in Y; $2 \le c < n$, (5b)

$$m =$$
weighting exponent; $1 \le m < \infty$, (5c)

$$U = \text{fuzzy } c\text{-partition of } Y; \quad U \in M_{fc}$$
(5d)

$$v = (v_1, v_2, \dots, v_c) =$$
 vectors of centers, (5e)

$$v_i = (v_{i1}, v_{i2}, \dots, v_{in}) = \text{center of cluster } i, \quad (5f)$$

$$\| \|_{A} = \text{induced } A \text{-norm on } \mathbb{R}^{n}$$
 (5g)

$$A =$$
positive-definite ($n \times n$) weight matrix. (5h)

The squared distance between y_k and v_i shown in equation (4) is computed in the A-norm as

$$d_{ik}^{2} = \|y_{k} - v_{i}\|_{\mathcal{A}}^{2} = (y_{k} - v_{1})^{T} A(y_{k} - v_{i}).$$
(6)

The weight attached to each squared error is $(u_{ik})^m$, the mth power of y_k s membership in cluster *i*. The vectors $\{v_i\}$ in equation (5f) are viewed as "cluster centers" or centers of mass of the partitioning subsets. If m = 1, it can be shown that J_m minimizes only at hard U's $\in M_c$, and corresponding v_i s are just the geometric centroids of the Y_i s. With these observations, we can decompose J_m into its basic elements to see what property of the points $\{y_k\}$ it measures:

$$d_{ik}^2$$
 = squared A-distance from point y_k
to center of mass v_i . (7a)

 $(u_{ik})^m d_{ik}^2$ = squared A-error incurred by representing y_k by v_i weighted by (a power of) the membership of y_k in cluster *i*. (7b)

$$\sum_{i=1}^{N} (u_{ik})^m d_{ik}^2 = \text{sum of squared } A \text{-errors due to } y_k \text{s}$$
partial replacement by all c of the centers $\{v_i\}$. (7c)
$$\sum_{k=1}^{N} \sum_{i=1}^{c} (u_{ik})^m d_{ik}^2 = \text{overall weighted sum of generalized}$$
 $A \text{-errors due to replacing } Y$ by v .

(7d)

The role played by most of the variables exhibited in equation (5) is clear. Two of the parameters of J_m , however warrant further discussion, namely, m and A. Weighting exponent m controls the relative weights placed on each of the squared errors d_{ik}^2 . As $m \to 1$ from earlier discussion partitions that minimize J_m become increasingly hard (and, as mentioned before, at m = 1, are necessarily hard). Conversely, each entry of optimal $\hat{U}s$ for J_m approaches (1/c) as $m \to \infty$. Consequently, increasing m tends to degrade (blur, defocus) membership towards the fuzziest state. Each choice for *m* defines, all other parameters being fixed, one FCM algorithm. No theoretical or computational evidence distinguishes an optimal *m*. The range of useful values seems to be [1, 30] or so. If a test set is available for the process under investigation, the best strategy for selecting *m* at present seems to be experimental. For most data, $1.5 \le m \le 3.0$ gives good results.

The other parameter of J_m that deserves special mention is weight matrix A. This matrix controls the shape that optimal clusters assume in \mathbb{R}^n . Because every norm on \mathbb{R}^n is inner product induced via the formula

$$\langle x, y \rangle_A = x^T A_y, \tag{8}$$

there are infinitely many A-norms available for use in equation (4). In practice, however, only a few of these norms enjoy widespread use. The FCM listing below allows a choice of three norms, each induced by a specific weight matrix. Let

$$c_y = \sum_{k=1}^{N} y_k | N;$$
 (9a)

$$C_{y} = \sum_{k=1}^{N} (y_{k} - c_{y})(y_{k} - c_{y})^{t}, \qquad (9b)$$

be the sample mean and sample covariance matrix of data set Y; and let $\{a_i\}$ denote the eigenvalues of C_y ; let D_y be the diagonal matrix with diagonal elements $(d_y)_{ii} = a_i$; and finally, let I be the identity matrix. The norms of greatest interest for use with equation (4) correspond to

$$A = I \sim -\text{Euclidean Norm}, \quad (10a)$$

$$4 = D_y^{-1} \sim \text{Diagonal Norm}, \qquad (10b)$$

$$A = C_{\nu}^{-1} \sim$$
 Mahalonobis Norm. (10c)

A detailed discussion of the geometric and statistical implications of these choices can be seen in Bezdek (1981). When A = I, J_m identifies hyperspherical clusters; for any other A, the clusters are essentially hyperellipsodial, with axes proportional to the eigenvalues of A. When the diagonal norm is used, each dimension is effectively scaled via the eigenvalues. The Euclidean norm is the only choice for which extensive experience with geological data is available.

Optimal fuzzy clusterings of Y are defined as pairs (\hat{U}, \hat{v}) that locally minimize J_m . The necessary conditions for m = 1 are well known (but hard to use, because M_c is discrete, but large). For m > 1, if $y_k \neq \hat{v}_j$ for all j and k, (\hat{U}, \hat{v}) may be locally optimal for J_m only if

$$\hat{v}_{i} = \sum_{k=1}^{N} (\hat{u}_{ik})^{m} y_{k} / \sum_{k=1}^{N} (\hat{u}_{ik})^{m}; \quad 1 \le i \le c; \quad (11a)$$
$$\hat{u}_{ik} = \left(\sum_{j=1}^{c} \left(\frac{\hat{d}_{ik}}{\hat{d}_{jk}}\right)^{2/(m-1)}\right)^{-1}; \quad 1 \le k \le N; \ 1 \le i \le c$$
(11b)

where $\hat{d}_{ik} = \|y_k - \hat{v}_i\|_A$. Conditions expressed in equations (11) are necessary, but not sufficient; they provide means for optimizing J_m via simple Picard iteration, by looping back and forth from equation (11a) to (11b) until the iterate sequence shows but small changes in successive entries of \hat{U} or \hat{v} . We formalize the general procedure as follows:

Fuzzy c-Means (FCM) Algorithms

- (A1) Fix c, m, A, $||k||_A$. Choose an initial matrix $U^{(o)} \in M_{jc}$. Then at step k, k, = 0, 1, ..., *LMAX*.
- (A) Compute means $\hat{v}^{(k)}$, i = 1, 2, ..., c with equation (11)a.
- (A3) Compute an updated membership matrix $\hat{U}^{(k+1)} = [\hat{u}_{ik}^{(k+1)}]$ with equation (11b).
- (A4) Compare $\hat{U}^{(k+1)}$ to $\hat{U}^{(k)}$ in any convenient matrix norm. If $\|\hat{U}^{(k+1)} \hat{U}^{(k)}\| < \in$, stop. Otherwise, set $\hat{U}^{(k)} = \hat{U}^{k+1}$ and return to (A2).

(A1)-(A4) is the basic algorithmic strategy for the FCM algorithms.

Individual control parameters, tie-breaking rules, and computing protocols are discussed in conjunction with the appended FORTRAN listing in Appendix 1.

Theoretical convergence of the sequence $\{\hat{U}^{(k)}, \hat{v}^{(k)}, k = 0, 1, \dots \}$ generated by (A1)-(A4) has been studied (by Bezdek, 1981). Practically speaking, no difficulties have ever been encountered, and numerical convergence is usually achieved in 10-25 iterations. Whether local minima of J_m are good clusterings of Y is another matter, for it is easy to obtain data sets upon which J_m minimizes globally with visually unappealing substructure. To mitigate this difficulty, several types of cluster validity functionals are usually calculated on each \hat{U} produced by FCM. Among the most popular are the partition coefficient and entropy of $\hat{U} \in M_k$:

$$F_{c}(\hat{U}) = \sum_{k=1}^{N} \sum_{i=1}^{c} (\hat{u}_{ik})^{2} / N;$$
(12a)

$$H_{c}(\hat{U}) = -\sum_{k=1}^{N} \sum_{i=1}^{c} (\hat{u}_{ik} \log_{a}(\hat{u}_{ik}))/N.$$
(12b)

In equation (12b), logarithmic base $a \in (1, \infty)$. Properties of F_c and H_c utilized for validity checks are:

$$F_c = 1 \Leftrightarrow H_c = 0 \Leftrightarrow U \in M_c \text{ is hard};$$
 (13a)

$$F_c = 1/c \Leftrightarrow H_c = \log_a(c) \Leftrightarrow \hat{U} = [1/c];$$
 (13b)

$$\frac{1}{c} \leqslant F_c \leqslant 1; \quad 0 \leqslant H_c \leqslant \log_a(c). \tag{13c}$$

Entropy H is a bit more sensitive than F to local changes in partition quality. The FCM program listed below calculates F, H, and (1 - F), the latter quantity owing to the inequality (1 - F) < H for $\hat{U} \not\in M_c$ (when $a = e = 2.71 \cdots$).

Finally, we observe that generalizations of J_m which can accommodate a much wider variety of data shapes than FCM are now well known (see Bezdek (1981) for a detailed account). Nonetheless, the basic FCM algorithm remains one of the most useful general purpose fuzzy clustering routines, and is the one utilized in the FUZZY QMODEL algorithms discussed by Full, Ehrlich, and Bezdek (1982). Having given a brief account of the generalities, we now turn to computing protocols for the FCM listing accompanying this paper.

ALGORITHMIC PROTOCOLS

The listing of FCM appended below has some features not detailed in (A1)-(A4). Our description of the listing corresponds to the blocks as documented.

Input Variables. FCM arrays are listing documented. Symbolic dimensions are

> NS = number of vectors in Y = N. ND = number of features in $y_k = n$.

Present dimensions will accomodate up to c = 20clusters, N = 500 data points, and n = 20 features. Input variables ICON specifies the weight matrix A as in equation (10):

ICON = 1
$$\Rightarrow$$
 A = I
ICON = 2 \Rightarrow A = D_y^{-1} .
ICON = 3 \Rightarrow A = C_y^{-1} .

Other parameters read are:

QQ = Weighting exponent m: 1 < QQ. KBEGIN = Initial number of clusters: $2 \le KBEGIN \le DCEASE.$ KCEASE = Final number of clusters: KCEASE < NS.

At any step NCLUS = C is the operating number of clusters. FCM iterates over NCLUS from KBEGIN to KCEASE, generating an optimal pair $(\hat{U}, \hat{v})_{\text{NCLUS}}$ for each number of clusters desired. Changes in m and A must be made between runs (although they could easily be made iterate parameters).

Control Parameters

 $EPS = Termination criterion \in in (A4).$

LMAX = Maximum number iterations at each c in (A1).

Current values of EPS and LMAX are 0.01 and 50. Lowering EPS almost always results in more iterations to termination.

Input Y

Compute Feature Means. Vector FM(ND) is the mean vector c_{ν} of equation (9a).

Compute Scaling Matrix. Matrix CC(ND, ND) is matrix A of equation (10), depending upon the choice made for ICON. The inverse is constructed in the main to avoid dependence upon peripheral subs. Matrix CM = A^*A^{-1} calculated as a check on the computed inverse, but no residual is calculated; nor does the FCM routine contain a flag if CM is not "close" to I. The construction of weight matrices other than the three choices allowed depends on user definition.

Loop Control. NCLUS = c is the current number of clusters: QQ is the weighting exponent m.

Initial Guess. A pseudo-random initial guess for U_0 is generated in this block at each access.

Cluster Centers. Calculation of current centers V(NC, ND) via equation (11a).

Update Memberships. Calculations with equation (11b); W(NC, ND) is the updated membership matrix. The special situation m = 1 is not accounted for here. Many programs are available for this situation for example see Ball (1965). The authors will furnish a listing for hard c-means upon request. Note that this block does not have a transfer in situation y_k = \hat{v}_i for some k and i. This eventuality to our knowledge, has never occurred in nearly 10 years of computing experience. If a check and assignment are desired, the method for assigning \hat{u}_i 's in any column k where such a singularity occurs is arbitrary, as long as constraints in equation (2) are satisfied. For example, one may, in this instance, place equal weights (that sum to one) on every row where $y_k = \hat{v}_i$, and zero weights otherwise. This will continue the algorithm, and roundoff error alone should carry the sequence away from such points.

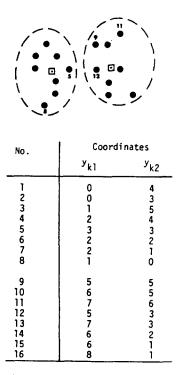
Error Criteria and Cutoffs. The criterion used to terminate iteration at fixed NC is

ERRMAX =
$$\max_{i,k} \{ |\hat{u}_{ik}^{(k+1)} - \hat{u}_{ik}^{(k)}| \} < \text{EPS.}$$
 (14)

Threshold EPS thus controls the accuracy of terminal output. An alternative method to terminate iteration would be to compare components of each $\hat{v}_i^{(k+1)}$ to $\hat{v}_i^{(k)}$. There may be differences in terminal pairs (\hat{U} , \hat{v}) obtained using a fixed EPS. Furthermore, there is a tradeoff in CPU time, equation (14) requires (cN) comparisons and $\max\{|\hat{v}_{ij}^{(k+1)} - \hat{v}_{(ij)}^{(k)}|\}$ requires (cn) comparisons. Thus, if N is much larger than n, (N $\gg n$), termination based on the quality of successive cluster centers computed via equation (11a) becomes more attractive. By the same token, this can reduce storage space (for updated centers instead of an updated membership matrix) significantly if $n \ll N$. If equation (14) is never satisfied, iteration at current NC will stop when k = LMAX: a convergence flag is issued, and NC advance to NC + 1. More than 25 iterations are rarely needed for EPS in the 0.001 range.

Cluster Validity Indicants. Values of J_m , F_c , H_c , and $1 - F_c$ are computed, and stored, respectively, in the vectors VJM, F, H, and DIF.

Output Block. For the current value of NCLUS, current terminal values of F_c , $1 - F_c$, H_c , J_m , $\{\hat{v}_i\}$, and \hat{U} are printed.


Output Summary. The final block of FCM outputs statistics for the entire run.

The listing provided is a very basic version of FCM: many embellishments are discussed in Bezdek (1981). As an aid for debugging a coded copy of the listing, we present a short example that furnishes a means for checking numerical outputs. This example highlights several of the important features of fuzzy z-partitions in general, and those generated by FCM in particular. Examples of the use of FCM in the context of geological data analysis are presented in Bezdek, and other (1982), and Full, Ehrlich, and Bezdek (1982).

Storage Requirements. The program listed in the appendix can handle 500 data samples with up to 50 variables. It will handle up to 20 clusters. The program, as written, used under 256 K of computer storage. If larger data sets are used, the program is clearly documented as to which parameters to change.

A NUMERICAL EXAMPLE

Figure 1 displays a set Y of 16 points in \mathbb{R}^2 . This artificial data set was originally published in Sneath

□ = Terminal cluster centers from Table 2, col. 3

, = Terminal maximum membership "boundaries".

Fig. 1. An example: Artificial touching clusters.

and Sokal (1973) in connection with the illustration of a hard clustering algorithm called the unpaired group mean average (UPGMA) method. This data was subsequently studied in Bezdek (1974), where a comparison between the UPGMA and FCM methods was effected. The coordinates of $y_k \in Y$ are listed as columns two and three of the tabular display of Fig. 1. This is a good data set for our purposes because it is easily handled for validation, and further, has some of the geometric properties that necessitate the introduction of fuzzy models. Data of this type might be drawn from a mixture of two bivariate normal distributions. The region of overlap contains several points which might be considered "noise", viz. y_5 and y_{12} . Parameters for the outputs to be discussed were as follows:

Table	ICON = A	NCLUS = c	QQ = m	EPS = ∈
1	1, 2, 3	2	2	0.01
2	2	2	1.25, 2.00	0.01
3	1	2-6	1.25-2.00	0.01

In other words, we illustrate in Tables 1 and 2, respectively, the effects of variation in the norm inducing matrix A, and weighting exponent on (\hat{U}, \hat{v}) with all other parameters being fixed; while Table 3 exhibits variations in F_c and H_c due to changes in m and c.

Initial guesses for U_0 were not chosen randomly here, so that users may validate their programs against these tables. Rather, the initial matrix used for all of the outputs discussed later had the following elements:

$$(U_0)_{ii} = \left(\frac{\alpha}{c} + B\right); \quad i = 1, 2, \dots, c$$

$$(U_0)_{ij} = \left(\frac{\alpha}{c} + \beta\right); \quad j = c + 1, \dots, n$$

$$(U_0)_{ij} = \left(\frac{\alpha}{c} + \beta\right); \quad \text{otherwise}$$

$$\alpha = 1 - (\sqrt{2}/2);$$

$$\beta = \sqrt{2}/2.$$

The starting value for F_c using this U_0 is always the midpoint of [1/c, 1), the range of F_c , that is $f_c(U_0) = ((1/c) + 1)/2$. In real applications it is, of course, important to run FCM for several different U_0 s, as the iteration method used, like all descent methods, is susceptible to local stagnations. If different U_0 s result in different (\hat{U}, \hat{v}) s, one thing is certain: further analysis should be made before one places much confidence in any algorithmically suggested substructure in Y.

Table 1 shows that maximizing F_c is equivalent to minimizing H_c but this behavior is not equivalent to minimizing J_m . Several examples of the general dilemma are documented in Bezdek (1981). Observe that all three partitions of Y are (qualitatively) more or less equivalent. Lower membership generally cor-

Data	ICON = 1	ICON = 2	ICON =
Point	A = I	$A = D_y^{-1}$	$A = C_y$
1 2 3 4 5 6 7	0.92	0.88	0.89
2	0.95 0.86	0.93 0.78	0.92 0.82
4	0.91	0.88	0.93
5	0.80	0.84	0.84
6	0.95	0.88	0.82
8	0.86	0.72	0.85
8	0.82	0.67	0.62
9	0.22	0.35	0.43
10	0.12	0.26	0.33
11	0.18	0.32	0.37
12 13	0.10 0.02	0.08 0.03	0.09 0.04
14	0.06	0.09	0.04
15	0.16	0.24	0.19
16	0.15	0.21	0.19
Ŷ ₁₁	6.18	5,99	5.96
Ŷ ₁₂	3.15	2.95	2.75
Ŷ ₂₁	i.44	1.67	1.73
Ŷ ₂₁ Ŷ ₂₂	2.83	3.01	3.19
Fc	0.80	0.71	0.71
H _c	0.35	0.45	0.45
J	51.65	13.69	13.69
Iter.	6	6	12

Table 1. Variation in (\hat{U}, \hat{v}) due to changes in Norm. There are only two clusters, hence $\hat{U}_{2k} = (1 - \hat{U}_{1k})$ as the sum of the \hat{u}_{ik} equals one. Terminal membership U_{ik}

Data Point	QQ = m = 1.25	QQ = m = 2.00
1	1.00	0.92
2	1.00	0.95
3	1.00	0.86
4	1.00	0.91
5	1.00	0.80
6	1.00	0.95
7	1.00	0.86
8	1.00	0.82
9	0.00	0.22
10	0.00	0.12
11	0.00	0.18
12	0.00	0.10
13	0.00	0.02
14	0.00	0.06
15	0.00	0.16
16	0.0	0.15
Ŷ ₁₁	6.25	6.18
Ŷ ₁₂	3.25	3.15
v ₂₁	1.37	1.44
v ₂₂	2.75	2.83
F _c H _c	1.00 0.00	0.80
J _m Iter.	60.35	51.65 <u>6</u>

Table 2. Variation in (\hat{u}, \hat{v}) due to changes in *m* (two cluster example). Terminal membership \hat{u}_{ik} : $\hat{u}_{2k} = (1 - \hat{u}_{1k})$

Table 3. Variation in F and H due to changes in m and c.

Weighting	Number of	Partition	Lower	Normalized
Exponent	Clusters	Coefficient	Bound	Entropy
(m)	(c)	(F _c)	(1-F _c)	(H _c)
1.25	2	0.998	0.002	0.007
	3	0.983	0.017	0.037
	4	0.979	0.021	0.044
	5	0.996	0.004	0.013
1.50	2	0.955	0.045	0.103
	3	0.903	0.097	0.202
	4	0.901	0.099	0.201
	5	0.917	0.083	0.197
1.75	2	0.873	0.127	0.239
	3	0.791	0.209	0.404
	4	0.804	0.196	0.401
	5	0.776	0.224	0.468
2.00	2	0.794	0.206	0.352
	3	0.686	0.314	0.575
	4	0.700	0.300	0.600
	5	0.662	0.338	0.701

responds to points distant from the "core" (i.e. \hat{v}_i) of cluster *i*. Thus, point 8 is clearly signaled an outlier, for example in all three partitions. Notice, however, that the Mahalanobis norm emphasizes this much more heavily than, for example the Euclidean norm. This is because level sets in the former norm are elliptical, and in the latter circular. Thus, the variance of y_8 in the vertical direction weights its influence

differently. In all situations, points near cluster centers in the A-norm have higher memberships. Note that \hat{v}_1 is more stable to changes in A than v_2 : this indicates that points with a high affinity for membership in \hat{u}_2 have somewhat more variability than those seeking to associate with \hat{u}_1 . Table 1 also demonstrates another general fact; the number of iterates needed using the Mahalonobis norm is usually higher than the number required by other norms. See Bezdek (1981) for more discussion concerning characteristic cluster shapes associated with changes in A.

Table 2 illustrates the usual effect of increasing m lower m's yield harder partitions and higher ones, fuzzier memberships. For m = 1.25, \hat{U} is hard (to 2 decimal places). Observe that F_c and H_c mirror this fact, but again, J_m does not, having a higher value at the lower m. Further observe that the cluster centers are rather stable to changes in m. This is not always the situation, and it is an unproven conjecture that the stability of the \hat{v}_i 's in the face of severe changes in m is in some sense an indication of cluster validity. Figure 1 exhibits \hat{v}_1 and \hat{v}_2 for m = 2 = c, A = I; their geometric positions are at least (visually) appealing.

Table 3 depicts the utility of F_c and H_c for the cluster validity question. For every *m*, F_c maximizes (and H_c minimizes) at c = 2. From this we can infer that the "hardest" substructure detectable in Y occurs are c = 2. These values do not, however, have any direct tie to Y. Being computed on algorithmic outputs based on Y rather than any concrete assumptions regarding the distribution of Y somewhat weakens the theoretical plausibility of using F_c and H_c for cluster validity. Nevertheless, they have been demonstrably reliable in many experimental studies, and are, at present, the most reliable indicants of validity for the FCM algorithms.

REFERENCES

Ball, G. 1965, Data analysis in the social sciences: what about the details?: Proc. FJCC, Spartan Books, Washington, D.C., p. 533-560.

Bezdek, J. C. 1974. Mathematical models for systematics

and Taxonomy, in, Estabrook, G., ed., Proceedings of the 8th International Conference on Numerical Taxonomy: W. H. Freeman, San Francisco, p. 143–166.

- Bezdek, J. C., 1980, A convergence theorem for the fuzzy c-means clustering algorithms: IEEE Trans. PAMI, PAMI-2(1), p. 1-8.
- Bezdek, J. C., 1981, Pattern recognition with fuzzy objective function algorithms: Plenum, New York, 256. p.
- Bezdek, J. C., Trivedi, M., Ehrlich, R., and Full, W., 1982, Fuzzy clustering: a new approach for geostatistical analysis: Int. Jour. Sys., Meas., and Decisions.
- Duda, R., and Hart, P., 1973, Pattern classification and scene analysis: Wiley-Interscience, New York, 482. p.
- Full, W., Ehrlich, R., and Bezdek, J., 1982, FUZZY QMO-DEL: A new approach for linear unmixing: Jour. Math. Geology.
- Full, W., E., Erhlich, R., and Klovan, J. E., 1981, EX-TENDED QMODEL—Objective definition of external end members in the analysis of mixtures: Jour. Math. Geology, v. 13, no. 4, p. 331-344.
- Hartigan, J., 1975, Clustering algorithms: John Wiley and Sons, New York, 351 p.
- Klovan, J., and Imbrie, J., 1971, An algorithm and FOR-TRAN-IV program for large scale Q-mode factor analysis and calculation of factor Scores: Jour. Math. Geology, v. 3, no. 1, p. 61-76.
- Klovan, J. E., and Miesch, A., 1976, EXTENDED CABFAC and QMODEL Computer programs for Q-mode factor analysis of compositional data: Computers & Geosciences, v. 1, no. 3, p. 161–178.
- Miesch, A. T., 1976a, Q-mode factor analysis of geochemical and petrologic data matrices with constant row-sums: U.S. Geol. Survey Prof. Paper 574–G, 47 p.
- Miesch, A. T., 1976b, Interactive computer programs for petrologic modeling with extended Q-mode factor analysis: Computers & Geosciences, v. 2, no. 2, p. 439–492.
- Sneath, P., and Sokal, R., 1973, Numerical taxonomy: Freeman, San Francisco, 573 p.
- Tou, J., and Gonzalez, R., 1974, Pattern recognition principles: Addison-Wesley, Reading, Mass., 377 p.
- Zadeh, L. A., 1965, Fuzzy sets: Inf. and Cont., v. 8, p. 338-353.

APPENDIX

Listing of fuzzy C-means

FILE: KMEANS FORTRAN & 03/18/83 11:05 VM/SP CONVERSATIONAL MONITOR SYSTEM

C		00001000
č	THIS IS THE FCM (FUZZY C-MEANS) ROUTINE. THIS LISTING IS FOR A	000C3000
č	IBM TYPE COMPUTER WITH A FORTRAN IV COMPILER. IT ADAPTS FOR ANY	00004000
č	FORTRAN COMPILER WITH MODIFICATIONS SET AT THE USER SITE.	00005000
		00006000
с с	REFERENCE: "PATTERN RECOGNITION WITH FUZZY OBJECTIVE FUNCTIONS,"	00007000
č	JAMES BEZDEK, PLENUM, NEW YORK, 1981.	0008000
Ċ		00009000
Ċ		00010000
C	DESCRIPTION OF OPERATING VARIABLES:	00011000
С	I. INPUT VARIABLES (FROM FILE 5)	00012000
С	CARD 1:	00013000
C	TITLE(20)	00014000
С	CARD 2:	00015000
	FMT(20)FORTRAN FORMAT (CONTAINED IN PARENTHESIS)	00016000
С	DESCRIBING THE INPUT FORMAT FOR THE RAW DAT	
С	UP TE BO CHARACTERS MAY BE USED	00018000
С	CARD 3:	00019000
С	COL 1: ICONDISTANCE MEASURE TO BE USED. IF: .	00020000
	ICON=1 USE EUCLIDEAN NORM	00021000
С	ICON≈2 USE DIAGONAL NORM	00022000
C	ICON=3 USE MAHALANOBIS NORM	00023000
С	COLS 2-7: QQWEIGHTING EXPONENT FOR FCM	00024000
С	COLS 8-9: NDNUMBER OF FEATURES PER INPUT VECTOR	00025000

	COLS 10-11:KBEGIN.STARTING NUMBER OF CLUSTERS COLS 12-13:KCEASE.FINISHING NUMBER OF CLUSTERS (NOTE: KBEGIN MUST BE LESS THAN OR EQUAL TO KCEASE) CARC 4 ON: Y(NS,ND)FEATLRE VECTORS, INPUT ROW-WISE II. INTERNAL VARIABLES NSNUMBER OF DATA VECTORS EPSMAXIMUM MEMBERRSHIP ERROR AT CONVERGENCE NCCURRENT NUMBER OF CLUSTERS LMAXMAXIMUM NUMBER OF ITERATIONS WITHOUT CONVERCENCE FM(ND)SAMPLE MEAN VECTOR FVAR(ND)SAMPLE COVARIANCE MATRIX AA(ND,ND)SAMPLE COVARIANCE MATRIX AI(ND,ND)SAMPLE COVARIANCE MATRIX SSAMPLE OF SAMPLE COVARIANCE MATRIX AI(ND,ND)DUMMY HOLDING MATRIX CCC(ND)DUMMY HOLDING MATRIX ST(ND,ND)DUMMY HOLDING MATRIX V(NC,NS)UPDATED MEMBERSHIP MATRIX W(NC,NS)UPDATED MEMBERSHIP MATRIX V(NC,NS)DUMMY HOLDING MATRIX SITT(NC)DUMMY HOLDING MATRIX Y(NC,NS)UPDATED MEMBERSHIP MATRIX Y(NC,NS)	00026000 00027000 00029000 00030000 00031000 00032000 00034000 00035000 00036000 00036000 00038000 00040000 00040000 00041000 00042000 00045000 00045000 00045000 00045000 00046000 00045000 00045000 00046000 00045000 0005000 00051000 00055000
FILE:	KMEANS FORTRAN A 03/18/83 11:05 VM/SP CONVERSATIONAL MONITOR	SYSTEM
C * * * *	********	-00054000
64774	DIMENSIGN FM(50), FVAR(50), F(20)	00057000
	DIMENSION BB(50),CCC(50),H(20),DIF(20),ITT(20)	00058000
	DIMENSIGN Y(500,2),U(20,500),W(20,500)	00059000
	DIMENSICN AA(50,50), AI(50,50)	00060000
	DIMENSION CC(50,50), CM(50,50), ST(50,50)	00061000
	DIMENSIGN V(20,50),VJM(20)	00062000
	DIMENSION FMT(20), TITLE(20)	00063000
	READ(5,1458) (TITLE(I),I≠1,20)	00064000
1458	FORMAT(20A4)	00065000
	READ(5,12321) (FMT(I),I=1,20)	00066000
12321	FORMAT(20A4)	00067000
C		-000683000
С	CONTROL PARAMETERS.	00069000
C		
	EP S=.01	00071000
	NS=1	00072000
c	LMAX=50	00073000
C	DEAD SEATURE VECTORS (VII 1))	00075000
-	READ FEATURE VECTORS (1(1,3/).	-00076000
-	READ(5,2021) ICON,QQ,ND,KBEGIN,KCEASE	00077000
2021		00078000
	WRITE(6,410)	00079000
410	FORMAT(///1H , *** *** BEGIN FUZZY C-MEANS OUTPUT *** ***')	00080000
	WRITE(6,1459) (TITLE(III),III=1,20)	00081000
1 4 5 9	FORMAT(10X,20A4///)	00082000
1	READ(5,399,END=3)(Y(NS,J),J=1,ND)	00083000
399	FORMAT (2F1.0)	00084000
	WRITE(6,12738)(Y(NS,J), $J=1$, ND)	00085000
12738	FORMAT(2(10X,10(F7.2,1X)/))	00086000
	NS=NS+1	00087000
3	GO TO 1 NS=NS-1	00C88000 00089000
2	NS=NS-1 NDIM=ND	00050000
	NSAMP=NS	00091000
	WRITE(6,11111) NSAMP	00092000
11111	FORMAT(10X, 'NUMBER OF SAMPLES = ',15)	00093000
		00054000
C		-00095000
Ċ	SCALED NORM REQUIRED IN STATEMENTS 31 AND 33.	000 \$60 00
C	CALCULATION OF SCALING MATRIX FOLLOWS.	00097000
C	FEATURE MEANS.	00098000
ι		- 000 \$90 00

	00 350 I-1 NOIM	00100000
	00 350 [=1,ND[M	
	FM(I)=0.	001 01000
	DO 351 J=1,NSAMP	001 02 000
351	FM(I)=FM(I)+Y(J,I)	001 C3000
350	FM(I)=FM(I)/ANSAMP	00104000
C	rn(1)=rn(1)/ansamr	00105000
Č	FEATURE VARIANCES.	00106000
C		00107000
•	DO 352 I=1,NDIM	001 C8000
	FVAR([]=0.	00109000
	DO 353 J=1,NSAMP	00110000
C11 C •	KMEANS FORTRAN A 03/18/83 11:05 VM/SP CONVERSATIONAL MENITOR	CVCTEN
FILL •	RHEARS FERTRAN & USTIGUES II.US VETSF CONVERSATIONAL MENTUR	313121
353	FVAR(I)=FVAR(I)+((Y(J,I)-FM(I))**2)	00111000
352	FVAR(I)=FVAR(I)/ANSAMP	00112000
	IF(ICON-1)380,38C,382	00113000
380	DO 381 I=1,NOIM	00114000
	DO 381 J=1,NDIM	00115000
381	CC(I,J)=0.	00116000
	DO 370 I=1,NDIM	00117000
370	CC(I,I)=1.	00118000
	GO TO 390	00119000
382	IF(ICON-2)384,384,386	00120300
384	DO 385 I=1,NDIM	00121000
	DO 385 $J=1$, NDIM	00122000
385	CC(I,J)=0.	00123000
505	DO 371 I=1,NDIM	
371	CC(I,I)=1./FM(I)	00124000
571		00125000
2.07	GO TO 390	00126000
386	DO 360 I=1,NDIM	00127000
	DO 360 J=1,NDIM	00128000
	AA(I,J)=0.	00129000
	DD 361 K=1,NSAMP	00130000
361	AA(I,J)=AA(I,J)+((Y(K,I)+FM(I))*(Y(K,J)-FM(J)))	00131000
360	AA(I,J)=AA(I,J)/ANSAMP	00132000
	DO 550 I=1,NDIM	00133000
	DO 550 J=1,NDIM	00134000
550	ST(I,J) = AA(I,J)	00135000
C		-00136000
C	INVERSION OF COVARIANCE MATRIX AA TO AI	00137000
C		-00138000
	NN = NDIM - 1	001 390 00
	AA(1,1)=1./AA(1,1)	00140000
	DO 500 M=1+NN	00141000
	K = M + 1	00142000
	DO 501 I=1,M	00143000
	BB(I)=0.	00144000
	DD 501 J=1,M	00145000
5.01	BB(I)=BB(I)+AA(I,J)*AA(J,K)	
501		00146000
		00147000
	DO 502 I=1,M	00148000
502	D=D+AA(K,I)*BB(I)	00149000
	D = -D + AA(K,K)	00150000
	AA(K,K)=1./D	00151000
	DO 503 I=1,M	00152000
503	AA(I,K)=-BB(I)*AA(K,K)	00153000
	DD 504 J=1,M	00154060
	CCC(J)=0.	00155000
	DO 504 I=1,M	00156000
504	CCC(J)=CCC(J)+AA(K,I)*AA(I,J)	00157000
	DO 505 J=1,M	00158000
505	AA(K,J) = -CCC(J) * AA(K,K)	00159000
	D0 500 I=1.M	00160000
	DO 500 J=1,M	00161000
500	AA(I,J) = AA(I,J) - BB(I) * AA(K,J)'	00162000
200		
	DO 520 I=1,NDIM DO 520 I=1 NDIM	00163000
620	DO 520 J=1, NDIM	00164000
520	AI(I,J) = AA(I,J)	00165000
e		
FILE:	KMEANS FERTRAN A 03/18/83 11:05 VM/SP CONVERSATIONAL MONITOR	SYSTEM

 D0
 387
 I=1,NDIM
 00166000

 D0
 387
 J=1,NDIM
 00167000

387	CC([,J)=AI([,J)	00168000
Č		00170000
C		00171000
	DO 530 I=1,NDIM	00172000
	DO 530 J=1,NDIM	001 73 000
	CM(1,J)=0.	00174000
	DQ 530 K=1,NDIM	00175000
530	CM(I,J)=CM(I,J)+ST(I,K)*AI(K,J)	00176000
	WRITE(6,531)	JO1 770 CŪ
531	FORMAT(' ',//,' CHECK MATRIX Al*AA=1, THE IDENTITY'//)	00178000
	DO 532 I=1,NDIM	00179000
532	WRITE $(6,533)$ (CM(I,J),J=1,NDIM)	00180000
533	FORMAT(10X,20F6.2)	00181000
390	WRITE(6,1460) (TITLE(III),III=1,20)	00182000
1460	FORMAT('1',10X,20A4///)	00183000
	WRITE(6,420)	00184000
420	FORMAT(' ',///,15X,'SCALING MATRIX CC',///)	00185000
	DO 421 I=1,NDIM	00186000
421	WRITE(6,422) (CC(I,J),J=1,NDIM)	00187000
422	FORMAT(5X,10(F10.1,1X)/5X,1C(F10.1,1X)/)	00188000
	WRITE(6,425)	00189000
425	FORMAT(////)	001 90000
-		00191000
C	QQ IS THE BASIC EXPONENT FOR FUZZY ISODATA.	00192000
C		
	PP=(1./(QQ-1.))	00194000
	DO 55555 NCLUS=KBEGIN, KCEASE	001 550 00
	WRITE(6,1460) (TITLE(III),III=1,20)	00196000
	WRITE(6,499) NCLUS,ICON,QQ	001 97 000
499	FORMAT(' ', ' NUMBER OF CLUSTERS = ', $I3, 5x$, ' ICON = ', $I3, 5x$,	001 980 00
	C'EXPONENT = ',F4.2,//)	001 99000
~	I T = 1	00200000
C		00201000
C	RANDOM INITIAL GUESS FOR U(I,J)	60202000
C	THE RANDOM GENERATOR SUBROUTINE RANDU FROM THE IBM SCIENTIFIC	00203000
C	SUBROUTINE PACKAGE (SSP) IS USED AND IS CALLED FROM AN EXTERNAL	
C	LIBRARY. OTHER GENERATORS THAT PRODUCE VALUES ON THE INTERVAL	00205000
C	ZERO TO ONE CAN BE USED.	00206000
C		00207000
	RANDOM= • 7731	002 080 00
		00209000
	NCLUS1=NCLUS-1	00210000
	DD 1100 K=1,NSAMP	00211000
	S=1.0	00212000
~	DO 1101 I=1,NCLUS1	00213000
C	CALL RANDU(IX,IY,RANDOM)	00214000
	RANDOM=RANDOM/2.	00215000
	IX=IY	00216060
	ANC=NCLUS-I	00217000
	U(1,K)=S*(1.0-RANDOM**(1.0/ANC))	00218000
1101	S= S-U(I,K)	00219000
1100	U(NCLUS,K)=S	00220000

FILE: KMEANS FORTRAN A 03/18/83 11:05 VM/SP CONVERSATIONAL MONITOR SYSTEM

~

6		00221000
č	CALCULATION OF CLUSTER CENTERS V(1).	00222000
Č		
7000	DO 20 I=1,NCLUS	00224000
	DO 20 J=1.NDIM	00225000
	V(I,J)=0.	00226000
	D=0.	00227000
	DO 21 L=1.NSAMP	00228000
	V(I,J) = V(I,J) + ((U(I,L) + Q) + V(L,J))	00229000
21	$D=D+(U(I \cdot L) * * QQ)$	00230000
20	V(I,J) = V(I,J)/D	00231000
C	······································	002 32 0 00
č	UPCATE MEMBERSHIP FUNCTIONS.	00233000
Č		002 34000
6111	DO 38 I=1,NCLUS	00235000
	DO 38 J=1.NSAMP	00236000
	W(I,J)=0.	00237000
	A=0.	002 380 00
	DO 31 L=1,NDIM	00239000
	DO 31 $M=1$, NDIM	00240000

31	A=A+((Y(J,L)-V(I,L))*CC(L,N)*(Y(J,M)-V(I,M)))	00241000
	A=1./(A**PP)	00242000
	SUM=0.	00243000
	DO 32 N=1.NCLUS	00244000
	C=0.	00245000
	DO 33 L=1,NDIM	00246000
	00 33 M=1.NDIM	00247000
33	C=C+((Y(J,L)-V(N,L))*CC(L,M)*(Y(J,M)-V(N,M)))	00248000
	C=1./(C**PP)	00249000
32	SUM=SUM+C	002 50000
	W(I,J) = A/SUM	00251000
38	CONTINUE	00252000
C		00253000
С	ERROR CRITERIA AND CUTOFFS.	002 54000
C		002 550 00
9000	ERRMAX=0.	002 56 000
	00 40 I=1,NCLUS	002 57000
	DD 40 J=1,NSAMP	00258000
	ERR=ABS(U(I,J)-W(I,J))	002 59000
	IF(ERR.GT.ERRMAX) ERRMAX=ERR	00260000
40	CONTINUE	00261000
	WRITE(6,400) IT,ERRMAX,NCLUS	00262000
400	FORMAT(1H, 'ITERATION = ', 14, 5X, 'MAXIMUM ERROR = ', F10.4,	00263000
	110X, 'NUMBER OF CLUSTERS = ', I4)	00264000
	DO 42 I=1,NCLUS	00265000
	DO 42 J=1,NSAMP	00266000
42	(L , I) = (L , I) U	00267000
	IF(ERRMAX.LE.EPS) GO TO 6000	00268000
43	I T = I T + 1	00269000
	IF(IT-LMAX) 7C00,7000,6000	00270000
C		00271000
Ċ	CALCULATION OF CLUSTER VALIDITY STATISTICS F, H, 1-E	00272000
č		00273000
6000	ITT(NCLUS)=IT	00274000
	F(NCLUS)=0.0	00275000

FILE: KMEANS FORTRAN & 03/18/83 11:05 VM/SP CONVERSATIONAL MONITOR SYSTEM

	H(NCLUS)=0.0	00276000
	DO 100 I=1.NCLUS	002 77000
	DO 100 K=1.NSAMP	00278000
	AU=U(I,K)	00279000
	F(NCLUS)=F(NCLUS)+AU**2/ANSAMP	002 800 00
	IF (AU) 10C,100,101	00281000
	H(NCLUS)=H(NCLUS)~AU*ALOG(AU)/ANSAMP	00282000
101		00283000
100	CONTINUE	00284000
-	DIF(NCLUS)=1.0-F(NCLUS)	00284000
C		
C	CALCULATION OF OBJECTIVE FUNCTION	002 88000
C		00287000
	A=0.	•••
	DD 80 [=1,NCLUS	00289000
	DO BO J=1,NSAMP	002 90000
	DIST=0.	00251000
	DO 81 L=1,NDIM	00292000
	DO 81 M=1,NDIM	002 \$3000
81	OIST=DIST+((Y(J,L)-V(I,L))*CC(L,M)*(Y(J,M)-V(I,M)))	002 940 00
	A=A+({U(I,J)**QQ)*DIST)	00295000
80	VJM(NCLUS)=A	00296000
c		
С	OUTPUT BLOCK FOR CURRENT NCLUS	002 98000
C		
	WRITE(6,401)	00300000
401	FORMAT(! '///' FSTOP',7X,'1-FSTOP',5X,'ENTROPY',5X,'PAYOFF',5X,/)	00301000
	WRITE(6,699) F(NCLUS), DIF(NCLUS), H(NCLUS), VJM(NCLUS)	00362000
699	FORMAT(1H ,2(F6.3,4X),4X,F6.3,5X,E8.3)	00303000
	WRITE(6,59)	003 640 00
59	FORMAT(1X,100('-')//)	00305000
	WRITE(6+402)	00366000
402	FORMAT(///,15x, 'CLUSTER CENTERS V(1,J)',///)-	00307000
	DO 415 I=1.NCLUS	003 680 00
415	WRITE(6,404) (1,J,V(1,J),J=1,ND[M)	00309000
404	FORMAT(' 1=',13,3X,'J=',13,3X,'V(1,J)=',F0.4)	00310000
405	FORMAT(1H .7(F6.4,3X))	00311000
405	WRITE(6,59)	00312000
	WRITE(6,406)	00313000

406	FORMAT(1H ,///,25X,'MEMBERSHIP FUNCTIONS',///) D0 407 J=1,NSAMP	00314000 00315000
407	WRITE(6,408) J, (U(I,J), I=1,NCLUS)	00316000
408	FORMAT(1H , J=', I3, 5X, 8(F6.4, 3X))	00317000
	CONTINUE	00318000
	CONTINUE	00319000
C		00320000
č	OUTPUT SUMMARY FOR ALL VALUES OF C	00321000
C		00322000
0	WR [TE(6,450)	00323000
450	FORMAT('1',25X,'RUN SUMMARY')	00324000
	WRITE(6.460) NSAMP	00325000
460	FORMAT($\frac{1}{1}$ NUMBER OF SUBJECTS N = $\frac{1}{14}$	00326000
	WRITE(6,461) NDIM	00327000
461	FORMAT(1H0, NUMBER OF FEATURES NDIM = ',14)	003 280 00
	WRITE(6,462) EPS	00329000
462	FORMAT(1H0, MEMBERSHIP DEFECT BOUND EPS = ', F6.4)	00330000
FILE	: KMEANS FORTRAN A 03/18/83 11:05 VM/SP CONVERSATIONAL	MONITOR SYSTEM

		002 21 000
	E(6,464) ICON	00331000
464 FORM	AT(1H0, NORM THIS RUN ICCN = ', I1)	00332000
WRIT	E(6,465) QQ	003 33000
465 FORM	AT(1H0, WEIGHTING EXPONENT M = / ', F4.2)	00334000
	T.LE.49) GO TO 476	00335000
	E(6,70107)	00336000
70107 5004	AT(' ', CONVERGENCE FLAG: UNABLE TO ACHIEVE SATISFACTORY	CLUST00337000
	AFTER 50 ITERATIONS.')	00338000
		00339000
	E(6,466)	
	AT(' '//' NO. OF CLUSTERS',3X,'PART. COEFF.',5X,	00340000
C'LOW	ER BOUND',5X,'ENTROPY',5X,'NUMBER OF ITERATIONS')	00341000
WRIT	E(6,467)	00342000
	AT(1H0,6X,'C',17X,'F',15X,'1-F',12X,'H',10X,'IT')	00343000
	68 J=KBEGIN,KCEASE	00344000
	E(6,469) J,F(J),DIF(J),F(J),ITT(J)	00345000
		00346000
	AT(1H ,6X,I2,14X,F6.3,11X,F6.3,7X,F6.3,8X,I4)	00347000
55556 CONT	INUE	
	E(6,411)	00348000
411 FORM	AT(////1H , **** *** NORMAL END OF JOB *** ****)	00349000
STOP		00350000
END		00351000
LND		