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The Semivariogram in Comparison
to the Co-Occurrence Matrix for
Classification of Image Texture

James R. Carr and Fernando Pellon de Miranda

Abstract— Semivariogram functions are compared to co- classification results show that the spatial co-occurrence matrix

occurrence matrices for classification of digital image texture, method is a powerful and accurate textural classifier.
and accuracy is assessed using test sites. Images acquired over

the following six different spectral bands are used:
Il. SPATIAL AUTOCORRELATION THE SEMIVARIOGRAM

1) SPOT HRV, near infrared;
2) Landsat thematic mapper (TM), visible red; Let the gray levels comprising a given digital image be
3) India Remote Sensing (IRS) LISS-II, visible green; represented a&/(x, y). Then, the variogram for these gray
4) Magellan, Venus,S-band microwave; levels is written [5] as
5) shuttle imaging radar (SIR)-C, X -band microwave;
6) SIR-C, L-band microwave. . ;a2
The semivariogram textural measure provides a larger classifica- 2y(h) = /m /y[G(a:, y) = Gl )l dy da
tion accuracy than a classifier based on a co-occurrence matrix ) ] ) ) )
for the microwave images and a smaller classification accuracy in Which & is the Euclidean distance (lag distance) between
for the optical images. the pixel value@ at row x, pixel ¢, and the pixel valug7 at
Index Terms—Correlation, covariance analysis, image classifi- FOW ', pixel y'. In practice, this integral is approximated as
cation, image texture analysis, pattern classification. . N
29(h) = =Y [G - G2, y¥N)?
[. INTRODUCTION (k) N;[ (=, v) (@, )]
EXTURE information is assumed to be contained in

. . , In which N is the total number of pairs of pixel values
the overall, or average, spatial relationship among gr

: . ; . &'(x y) and G(&', /)] that are separated by a distanke
levels for a particular image [1]. OFf primary importance t(;rﬁote that this accommodates the compression from a double

this work, this spatial relationship is considered to be the : : . L
. ; : : iNtegral to a single summation. In practice, the semivariogram
covariance of pixel values as a function of distance between :

. . . IS computed rather than the variogram

pixels. Such textural information can be extracted from an
image using gray-tone spatial-dependence matrices [1] or co- 1 X

occurrence matrices [2], [3]. Alternatively, texture can be y(h) = aN E [G(z, y) — G, ¥
=1

extracted using a spatial autocorrelation function [2], [4]. The

semivariogram is one example [5]. Classification of texture ifihe semivariogram often approaches the value of the statistical
microwave imagery based on the semivariogram has yieldggtiances? of G as the spatial correlation af approaches
compelling, albeit qualitative results, because classificatigg,q (as separation distanaebecomes large).

accuracy was not measured [6]-[8]. Computer algorithms [9] cajculation of the semivariogram can be constrained to par-
are subsequently used to develop quantitative comparis@Rg|ar spatial directions, hence, implying a vector calculation.

of textural classifications based on the semivariogram aftfle following four examples show E-W, N-S, NE-SW, and
spatial dependence (co-occurrence) matrices. This compariggfy—SE calculations, respectively:

is attempted primarily because the spatial co-occurrence matrix

method is widely accepted for classifying texture, and tHe~W: N

semivariogram is logically compared to it. Such a comparison 1 9
is not attempted or forwarded as a means for criticizing the v =55 ;[G(x’ y) = Gla+hy)l
use of spatial co-occurrence matrices; in fact, subsequ%p_ts, =
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NW-SE: absolute value]. Solution

N

1
v(h) = oN ;[G(% y) — Gz +h, y+h) For h = 1 [pairs]:

= 1—14+1-2|+]2=-2|+]2-5|+1[3 -2
In egch of these equationdy is the. total r_lumber 01_‘ pairs F2=3[+B=1+ 1 =1 +]0—1]+]1—1]
of pixel values separated by a distankein a particular
spatial direction. Moreover, the NE and NW computations +1=0[+[0—1]+[3—-2[+|2—4[+ |40
assume the pixel distance to be even increments, afven

: ) ) : +0—1+ 21+ 1-1+1-2|+]2-2

though technically the actual distance is equalifg/(2)]. | [+ [+ [+ [+ |
The assumption is invoked for simplicity. Moreover, a further =0+14+0+3+1+1+2+0+14+0+1+1

simplification uses the absolute value, rather than the square,

. . 1+424+4+141404140
of pixel difference [9] R

=21/(2N) = 21/40 = 0.53.

1 & For h = 2 [pairs]:
! / - .
v =35y ;ABS{G(% v) = Gl )l 1—2[+[1—2[+[2=5+|3-3|+]2— 1]

When applied for image processing, the semivariogram TR =1+ [0 =1+ 1 =0+ [1—1[+[3 4|
function is obtained by starting ak = 1 (a one-pixel +12=0/+]4—1|+]2—1+ |1 —2[+|1 -2
offset), then incrementing by one through a maximum of
20 increments. This is the present software limitation [9]; such =1+1+3+0+1+2+1+1
a restriction is arbitrary and can be changed depending on the +04+14243414+141
complexity and spatial extent of a texture (fewer increments
for some textures, more increments for others). Some texts on =19/(2N) = 19/30 = 0.63.
geostatistics show example hand calculations demonstratin?\] ) ] o
the procedure for computing a semivariogram [10]. ote in this example that the value of the semivariogram

A semivariogram, either directional or omnidirectional, dgNCreases as increases. This is the anticipated behavior if
pending on the nature of the texture, is computed for eallpage pixels are spat_|ally_ correlated; p|>_(els located closer
class using training sites of siZe x M. Then, classification [°9€ther are more similar in value than pixels spaced farther
of texture in an entire image proceeds pixel by pixel. APart. This change in semivariance with increasing the
semivariogram is computed for a region, also of sizex M statistical signature that is relied upon for classifying texture.
surrounding a pixel to be classified. The essential premise of
this classification experiment is to compare the semivariogram ll. Co-OCCURRENCE MATRICES

for a neighborhood surrounding a pixel to be classified to Co-occurrence (spatial dependence) matrices are widely
those for the chosen classes. This comparison necessagfitepted for the classification of texture [2], [3].

requires semivariograms be computed for similar-sized regionsExample: Given the 5x 5 digital image used in the forego-

in an effort to match Semivariogram Signatures of textures ﬁ@ examp|e, a co-occurrence matrix is deve|oped as follows
closely as possible. A numerical distance metric is used whgn\w direction only). First, the number of different pixel

comparing these signatures values are determined. Second, these pixel values are ranked,
X smallest to largest. Third, the digital image is scanned in the
distance— Z[%(i) o (i)] direction noted (E-W in this case) to determine the frequency

with which one of these pixel values follows another.

With respect to the digital image presented earlier, six
wherein K is the number of increments &f allowable given different pixel values are observed: 0-5. Hence, the co-
the constraint of the window sizé/ and the subscripts occurrence matrix is a & 6 matrix (note that, in this case,

t and p represent the training site and pixel neighborhoaghe co-occurrence matrix igrger than the input image); let
semivariograms, respectively. A pixel is assigned to the clagss matrix be called [A]
for which the value, distance, is a minimum (a minimum-

i=1

distance algorithm). 012 3435
Example: Given the following 5x 5 digital image: 0: 03 000 0
- 1: 1 4 2 0 0 0
Llz2n [Al=2. 012 11 1
52 5 1 3: 01 2 0 0 O
01 1o 4: 1.0 0 0 0 O
o240l 5: 0 0 0 0 0 O
21 1 2 2

Once this matrix is determined, seven statistical parameters
compute semivariogram values far= 1 andh = 2, E-W are computed as follows [3] (these seven parameters are
direction only [assume the simplified procedure based chosen for this study; more parameters may be computed
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for higher orders of element difference and inverse element
difference).

1) Each entry in matrix [A] is divided by, the number of
pixels that satisfy the algorithm (in this case, one pixel
to the right); in this examplep is 20; let this resultant
matrix be called [C].

Once step 1) is finished, the first statistical parameter is
extracted, and it is the maximum value for any entry in
[C]; in this example, the maximum value is 4/20 or 0.2.
First-order element difference moment is computed

Z Z(t — J)¢ij-

Notice that if ABSi — j) is used instead ofi — j),

the simplified semivariogram computation (Section II)
is obtained for a lag distance equal to what is used to
develop the co-occurrence matrix (a lag distahce 1,
E-W direction in this example).

2)

3)

4)
Z Z(L —J)%cij-

Moreover, this value represents the value of Waei-
ogramat a lag distance equal to that used to develop the
co-occurrence matrix. Therefore, the co-occurrence ma-
trix and [semi] variogram capture the same information;
except, the variogram represents spatial variation over
all possible lags, whereas the co-occurrence matrix is
developed for a particular lag. Only in the case for which
texture obeys a Markov law [2] does the co-occurrence
matrix capture spatial variation over all possible lags.
We address this issue later when discussing classification
results.

First-order inverse element difference moment is com-

puted
Cij
22 Gy

Second-order inverse element difference moment is

5)

6)
computed

Second-order element difference moment is computegig_ 1

of a portion of the Grand Canyon, AZ. A 400 row 400 pixel region is
displayed. Image courtesy of EOSAT Corporation (see Acknowledgment).

1947

India Remote Sensing (IRS) LISS-Il, band 2 (visible green) image

Fig. 2. 1988 Landsat TM, band 3 (visible red) image of a portion of
Yellowstone National Park, WY. The Old Faithful geyser is in the upper left
portion of this image (bright deposits); Shoshone Lake is in the right center
portion of the image. A 400 row 400 pixel region is displayed. Copyright

22 e

7) Entropy is computed
- Z Z cijlog ¢;;.
i

8) Uniformity is computed

EOSAT, 1988.

IV. APPLICATIONS

Digital images representing the following six different spec-

22
% J 1)

Once these statistical parameters are computed for an
M x M training class, a similar sized window is used, 2)
centered over pixels to be classified. Similar statistical
measures are computed, from which a minimum distance
metric is computed to determine to which class, or threshold,3)
pixels are assigned.

tral bands are classified:

India Remote Sensing (IRS) LISS-II band-2, visible-
green image of the Grand Canyon, AZ (Fig. 1);
Landsat thematic mapper (TM), band-3, visible-red im-
age of Old Faithful geyser and Shoshone Lake, Yellow-
stone National Park, WY (Fig. 2);

SPOT HRV band-3, near-infrared image of 1989 Brazil-
ian deforestation (Fig. 3);
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Fig. 3. 1989 SPOT HRV, band 3 (near-infrared) image of Brazilian rain-
forest deforestation. Regular geometric patterns mark deforested ground. A
400 row x 400 pixel region is displayed. Copyright CNES/SPOT Image,
1989.

Fig. 5. SIR-C,X-band microwave image of San Francisco, CA. Image was
acquired in April 1994. A 400 rowx 346 pixel region is displayed. Image
courtesy of NASA/Jet Propulsion Laboratory (JPL), Pasadena, CA.

Vel

Fig. 4. MagellanS-band microwave image of Venus. Mass-wasting features
are noted in the central portion of the image. These features are near 10
188 E. A 400 rowx 400 pixel region is displayed. See Acknowledgment
for image source.

4) Magellan, 5-band microwave image of mass wastingig 6. sIR-C, L-band (horizontally transmitted and vertically received)
features on Venus, located near 10 S, 188 E (Fig. 4);microwave image of Mt. Rainier, WA. Image was acquired October 1, 1994,
5) shuttle imaging radar (SIR)-CY-band microwave im- A 400 row x 400 pixel region is displayed. Image courtesy of NASA/JPL.
age of San Francisco, CA (Fig. 5); ) ] o )
6) SIR-C,L-band microwave image, horizontally transmitmatrix methods when computing the minimum distance to
ted and vertically received, of Mt. Rainier, WA (Fig. 6).8ach class.
Training and test site data are reviewed (Table 1). Classification
accuracy is summarized for each of the six images using“a IRS LISS-Il, Landsat TM, and SPOT HRV Images
recommended procedure [11]. A mean digital number (DN) Classification accuracy in terms of training site homo-
was used with both the semivariogram and co-occurrengeneity and test site accuracy is presented as contingency
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TABLE | TABLE 1l
TRAINING AND TEST SITE INFORMATION. ROw AND PIXEL CONTINGENCY TABLES, LANDSAT TM IMAGE. CLASSES ARE
COORDINATES ARE RELATIVE TO IMAGE SizES REPORTED IN CAPTIONS INDICATED BY NUMBER; T' REPRESENTSLOSS TO THRESHOLD
Method Training Test
Upper, Left Coordinates .
Training Site Test Site Semi-variogram 1 2 3 4 B T 1 2 3 4 5 T
Image Class, Code Row # Pixel # Size Row # Pixel # Size
1 100 0 G a 0 [} 95 5 Q Q Q [}
LISS-II 1 A 116 271 7x7 191 381 10x10
2 47 53 Q ) 0 Q 47 40 0 12 1 Q
2 B 81 361 Tx7 31 281 10x10
3 bl 0 63 0 37 [+ o] ol 65 o] 35 [}
3 o] 281 81 Tx7 361 201 10x10
4 Q o} Q 96 4 Q 0 [} C £5 35 0
Landsat-TM 1 D 240 360 X7 310 240 9x9
5 0 [} o 12 88 Q o} 0 Q 11 88 G
2 E 200 320 7x7 280 360 9x9
average 71
3 F 65 120 7x7 250 25 9x9
4 C 6 360 7x7 320 380 9x9
Co-occurrence 1 2 3 4 5 T 1 2 3 4 5 T
5 o] 6 260 T7x7 180 80 9x9
1 10¢C o] 0 0 [} Q 95 [} 0 4 [} 0
SPOT 1 A 6 6 7x7 385 360 9x9
2 67 33 4] 0 [0} 0] 41 25 a 15 18 0
2 A 44 6 Tx7 258 380 9x9
3 Q 2 51 G 2 45 0 0 3¢ C 3 67
3 G 120 6 7x7 360 180 9Ix9
4 2 [} 0 98 G 0 Q 0 o 27 73 Q
Magellan, S 1 H 244 201 7x7 181 241 9x39
S o} 0 o] 0 100 0 C o} o] 0 100 0
2 I 241 241 7x7 260 156 9x9
average 56
3 J 6 6 7x7 280 380 9x9
SIR-C, X 1 D 11 11 7x7 101 331 9x9 . .
Min Dist 1 2 3 4 5 T 1 2 3 4 5 T
2 X 221 101 X7 246 246 9x9
1 76 24 ol Y o} Q 57 43 0 bl 0 0
3 o} 351 11 Tx7 11 131 9x9
2 27 13 [} 0 0 o) 4 83 aQ 12 1 Y
SIR-C, L 1 G 361 61 Tx7 381 81 10x10
3 0 0 84 ¢ 15 C c o 74 G 26 0
2 A 81 1381 7x7 11 202 10x10
4 0 o 0 %0 10 0 a [} 0 75 25 Q
3 L 281 181 7x7 241 241 10x10
S 0 bl G 8 92 a o} ol 0 6 94 0
Codes: A = vegetated (several types); B = canyon; C = native/sparsely average 76
vegetated; D = deep water; E = shallow water/silty; F = geyser deposits;
G = deforested ground; H = hummocky ground/landslide; | = radar dark;
J = radar bright/nonhummocky ground; K = urban; L = nonvegetated
volcanics
TABLE IV
TABLE I CONTINGENCY TABLES FOR SPOT HRV MAGE. CLASSES ARE
INDICATED BY NUMBER; 1" REPRESENTSLOSS TO THRESHOLD
CONTINGENCY TABLE FOR IRS LISS Il IMAGE. CLASSES ARE
INDICATED BY NUMBER; 1' REPRESENTSLOSS TO THRESHOLD
Method Training Test
Method Training Test Sewml-variogram 1 2 3 T 1 2 3 T
Semi-variegram 1 2 3 T 1 2 3 T 1 84 Y 16 Y 67 0 33 0
1 88 0 12 0 100 c 0 I} 2 ol 63 37 [} Q0 22 78 [}
2 27 53 20 o 41 34 25 ) 3 37 14 49 [} 32 35 33 o
3 6 2 92 o 2 0 98 ] average 4l
average 77
Co-occurrence 1 2 3 T 1 2 3 T
Co-occurrence 1 2 3 T 1 2 3 T 1 90 0 10 0 77 0 23 0
1 98 0 2 0 99 0 1 o 2 4 78 18 0 37 41 22 0
2 0 88 12 o o 50 50 o 3 47 2 51 o 67 o ¢ 33
3 31 o 69 o 100 ol Q 0 average 39
average 50
Min Dist 1 2 3 T 1 2 3 T
Min Dist 1 2 3 T 1 2 3 T i 84 0 16 0 81 o 19 ¢
1 73 27 0 0 100 0 0 0 2 2 86 12 0 2 58 40 0
2 25 55 20 0 35 39 22 o 3 22 10 68 0 15 30 S5 0
3 0 8 92 0 o 0 100 o average 65
average 80

to-mean classifier for two of these images, IRS LISS-II
tables (Tables II-1V). A simple minimum-distance-to-meafband 2) and Landsat TM (band 3), and yields comparable
classification based solely on mean DN yields largest accuramcuracy to the semivariogram method for the SPOT HRV
for all three images. It is further noted that, whereas the coear-infrared image, it does provide the largest accuracy
occurrence method yields smaller accuracy in comparisonfty the second class of the IRS LISS-II band 2 image
the semivariogram textural classifier and minimum-distancef the Grand Canyon. This pertains to both training site
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TABLE V TABLE VI
CONTINGENCY TABLES, MAGELLAN IMAGE. CLASSES ARE CONTINGENCY TABLES, SIR-C IMAGE OF SaAN FrRANCISCO. CLASSES
INDICATED BY NUMBER; 1" REPRESENTSLOSS TO THRESHOLD ARE INDICATED BY NUMBER; 7" REPRESENTSL0OSS TO THRESHOLD
Method Training Test Method Training Test

Semi-variogram 1 2 3 T i 2 3 T Semi-variogram 1 2 3 T 1 2 3 T
1 78 4 18 o] 73 3 18 0 1 100 [} o} bl 100 0 o} 0

2 o 100 0 0 Q 100 [} 2 2 [} 82 8 0 0 73 27 ¢

3 0 Q 100v 0 Q 1 99 0 3 a 22 78 0 o] 56 44 Q0

average 93 avarage 72

Co-occurrence 1 2 3 T 1 2 3 T Co~occurrence 1 2 3 T 1 2 3 T
1 47 10 25 18 61 12 17 10 1 100 0 0 4 100 Q Q2 0

2 57 31 8 4 30 0 [} 70 2 ol 39 34 27 ] 2 3 95

3 61 10 21 8 44 2 o] 54 3 o} 18 27 55 0 8 25 67

average 20 average 42

Min Dist 1 2 3 T 1 2 3 T Min Dist 1 2 3 T 1 2 3 T
1 59 18 23 0] 63 7 30 [} 1 1C0 o) a ol 2100 0 [« 0

2 0 100 o] 0 4 36 0 o 2 0 94 6 0 [} 53 41 bl

3 is o] 84 0 23 o] 77 o} 3 0 25 75 [} o] 48 52 G

average 79 average 70

homogeneity and test site accuracy. This class represents TABLE VII

the canyon, and its textural characteristics, as described by CONIT'NGENCY TABKIES' S'Ff'% 'gAGE OF MTL RA'N'ERT- CLASSES ARE
a co-occurrence matrix, evidently outweigh in importance NDICATED BY [NUMBER; 1 REPRESENTSLOSS TO THRESHOLD
its DN and semivariogram signatures. The co-occurrence

matrix method also yields largest accuracy for two of the . M frainiss feas ,
classes associated with the Landsat TM image of a portion of =" """ o
Yellowstone National Park: class 1, deep water (Shoshone s s a1 o e e 2 o
Lake); and class 5 (native ground, type I, a subjective s 2 a6 o W 1 s o
assignment). The semivariogram method vyields accuracy average s
comparable to that of the co-occurrence method for class

1 (deep water), and both yield classification accuracy for this co-occurrence T2 3 o 12 3 ox
class larger than that from the minimum-distance-to-mean 118 17 51 8 s 18 s8 16
classifier based solely on DN. In general, minimum-distance- 2 14 43 43 0 1733 21 29
to-mean classification based on mean DN yields largest 312 12 7% 0 6 38 33 W7
classification accuracy for these images acquired in the visible average 26
and near-infrared portions of the electromagnetic spectrum.

Occasionally, either the semivariogram or co-occurrence ™ *** oo T oo T
matrix methods of textural classification may yield larger Lo e om0
accuracy for a class. j 12 zz :i Z z 5; i: 4:

average 63

B. Microwave Imagery

Classification accuracy for the three microwave images is

summarized as contingency tables (Tables V-VII). Average o _ )
classification accuracy is largest for all three images usiffgtion based on the co-occurrence matrix is associated with a

textural classification based on the semivariogram. In the cadgnificant number of pixels lost to thresholding. With respect
of the MagellanS-band microwave image of mass-wasting® the SIR-C,X-band microwave image of San Francisco,
features on Venus, all three classes (Table V) are identififte semivariogram method vyields the largest accuracy for
more accurately using the semivariogram than when usifio of the three classes (Table VI); minimum-distance-to-
the co-occurrence matrix (smallest accuracy) or minimuri?éan classification based solely on DN yields largest accuracy
distance-to-mean classification based solely on mean O the third class (native; nonurban). As happened with
(intermediate accuracy). In this microwave image, the spatfie Magellan,S-band microwave image, the co-occurrence
autocorrelation (semivariogram) signature for a class seemgnethod resulted in a majority of pixels lost to thresholding.
be its most consistently identifiable feature. Furthermore, theFinally, in application to the SIR-CL-band image (hori-
semivariogram classifier yields a 14% larger accuracy wittontally transmitted and vertically received) of Mt. Rainier,
respect to minimum-distance-to-mean classification. Classtifite semivariogram method yields largest accuracy for two of
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TABLE VIII TABLE X
CONTINGENCY TABLES, RECLASSIFICATION OF THEMAGELLAN IMAGE USING RECLASSIFICATION OF MICROWAVE IMAGES USING THE CO-OCCURRENCEMATRIX
ALGORITHMS OPERATING IN THE NORTH-SOUTH DIRECTION ONLY. CLASSES METHOD WITH A TWO-PIXEL SPACING, EAST-WEST SPATIAL DIRECTION ONLY.
ARE INDICATED BY NUMBER; I' REPRESENTSLOSS TO THRESHOLD CLASSES ARE INDICATED BY NUMBER; 1’ REPRESENTSLOSS TO THRESHOLD
Method Training Test Image Training Test
Semi-variogram 1 2 3 T 1 2 3 T Mageilan, S-band 1 2 3 T 1 2 3 T
1 71 4 25 0 48 0 52 0 1 33 5 20 41 47 s} 27 26
2 0 100 [} 0 0 100 0 0 2 I} 92 ol 8 Q g6 0 4
3 o 0 100 0 4 0 96 0 3 18 29 5 47 0 37 0 63
average 81 average 48
Co-occurrence 1 2 3 T 1 2 3 T SIR-C, L-band i 2 3 T 1 2 3 T
1 6 0 37 0 5 0 95 0 1 100 0 o o 67 20 & 7
2 0 92 8 Q 25 38 37 0 2 31 33 14 22 1 32 20 47
3 24 Q 76 o 80 11 9 0 3 2 57 25 16 ol 13 30 57
average 17 average 43
TABLE IX method still yields smallest accuracy, yet interestingly no

CONTINGENCY TABLES, RECLASSIFICATION OF THELANDSAT TM IMAGE USING pixels are lost to thresholding. With respect to the Landsat
ALGORITHMS OPERATING IN THE NORTH-SOUTH DIRECTION ONLY. CLASSES T™i Table 1X). th . hod vield
ARE INDICATED BY NUMBER; 1" REPRESENTSLOSS TO THRESHOLD Image ( a e. )' the CQ'Occurrence ma.trlx.met od yields
larger accuracy in comparison to the semivariogram method
when these methods are applied in the N-S direction only.

Method Training Test
Semi variogran L s o4 s 712 s 4 s = An additional aspect to consider with respect to the spatial
1 76 24 o o o o 84 16 o0 o o o co-occurrence matrix method is its algorithmic implementation
2 31 e o 0 o o 35 38 26 o 0 o in terms of pixel distance. Results (Tables 1I-IX) are devel-
3 0 9092 o 8 o 0 0 22 0 78 o0 oped using a one-pixel distance, as was done in the example
4 0 0 0 75 26 0 0 0 0 25 52 0 presented in Section Ill. Results (Table X) show the change
5 0 0 0 8 82 0 0 0 0 1& 8 0 in classification accuracy for this method using a two-pixel
average 55 distance when applied to two of the three microwave images.
Although overall accuracy remains small, substantial increases
coroccurrence A in accuracy did occur for some classes (class 2, Magellan, and
oL o class 1, SIR-CL-band). Changing the algorithmic design of
s e e e e e s e e e w the co-occurrence matrix method can result in larger classifi-
. s o 0 9 0 o b oo soea o cation accuracy for microwave imagery than what is reported
5 0 0 0 6 94 o 0 o 1 98 0 herein'
average s Furthermore, at least with respect to microwave imagery,

the fact that the semivariogram textural classifier yields larger
accuracy than what is obtained using the co-occurrence matrix
method suggests that texture in the microwave domain may
three classes (class 1, clear-cut, deforested ground and clagsBobey a Markov law [2]. The co-occurrence matrix at one
nonvegetated volcanics). For class 2, vegetated/river vallgpatial distance (one pixel to the east) does not seem to capture
a minimum-distance-to-mean classification based solely gie entire autocorrelation function. With respect to Landsat
DN yields largest accuracy. The co-occurrence matrix methg®i, SPOT HRV, and IRS LISS-Il data, the co-occurrence
yields the smallest accuracy; moreover, as with the other twad semivariogram textural classifiers yield similar accuracy.
microwave images, a significant number of pixels are lost this may indicate that a Markov law for texture is valid for
thresholding. visible and near-infrared imagery.

V. DISCUSSION VI. CONCLUSION

Results (Tables II-VIl) pertain only to an E-W classi- The semivariogram function has been applied previously for
fication scheme imposed on the co-occurrence matrix aremote-sensing and image processing applications [12]—[15].
semivariogram methods. Another analysis of two of the imagls application to image classification, however, is relatively
(Tables VIII and IX) shows the effect when imposing a N—-8ew [6]-[9]. Therefore, this method is necessarily compared
classification scheme. In the case of the Magellséfhand to the well-known and accepted co-occurrence method [2]
microwave image (Table VIII), the semivariogram methotbr classification of texture. For visible and near-infrared,
for textural classification yields largest accuracy, although itgtically acquired imagery, the semivariogram classifier may
ability to classify the first class (hummocky ground/landslide)ield larger accuracy, but textural classification may not yield
is substantially diminished. The co-occurrence classificati@s great an accuracy as simple minimum-distance-to-mean
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classification based on mean DN. When textural classificatiom] F. P. Miranda, J. A. MacDonald, and J. R. Carr, “Application of the

is attempted for optically acquired imagery, the co-occurrence Semivariogram textural classifier (STC) for vegetation discrimination
. . . . using SIR-B data of Borneo,Int. J. Remote Sensingiol. 13, pp.

matrix method often results in larger accuracy in comparison  534q 5354, Aug. 1992.

to the semivariogram method. [7] F.P.Miranda and J. R. Carr, “Application of the semivariogram textural

Previous studies [61-[81. although subiective. suggest large clagsifier (S_TC) for vegetation disc_rimination using SIR-B data of the
. [6]-1 ]T . 9 . J » Sugg . .g Guiana Shield, northwestern BrazilRemote Sens. Rewol. 10, pp.
accuracy when using semivariogram signatures for classifying 155168 1994

microwave imagery. No quantitative assessment was attemptél F. P. Miranda, L. Fonseca, J. R. Carr, and J. V. Taranik, “Analysis
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