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Abstract: Adaptive HTTP streaming has become a new trend to
support adaptivity in video delivery. An HTTP streaming client
needs to estimate exactly resource availability and resource de-
mand. In this paper, we focus on the most important resource
which is bandwidth. A new and general formulation for through-
put estimation is presented taking into account previous values of
instant throughput and round trip time. Besides, we introduce for
the first time the use of bitrate estimation in HT TP streaming. The
experiments show that our approach can effectively cope with dras-
tic changes in connection throughput and video bitrate.

Index Terms: HTTP streaming, adaptivity, throughput estimation,
bitrate estimation.

I. INTRODUCTION

Thanks to the abundance of Web platforms and broadband
connections, HTTP streaming has become a cost effective
means for multimedia delivery [1][2][3]. Besides, due to the
heterogeneity of today’s communication networks, adaptivity is
the most important requirement for any streaming client [3]. Es-
pecially, TCP, the underlying layer of HTTP, is notorious for its
throughput fluctuations [4]. Moreover, the bitrate of a video
encoded in VBR (variable bitrate) mode may also vary widely
according to the characteristics of the content [5]. So, the mis-
match of both throughput and video bitrate is a big challenge in
video streaming.

For adaptivity to networks and terminal capabilities, an HTTP
streaming provider should generate multiple alternatives (or ver-
sions) of an original video as well as the signaling metadata that
contains the characteristics of the alternatives (such as bitrate,
resolution, etc.) [6]. Based on the metadata and status of ter-
minal/networks, the client makes decision on which/when me-
dia parts are downloaded. This client-based approach is funda-
mentally different from the conventional server-based approach
(e.g., [7]), where the server plays a decisive role in streaming. In
order to make good decisions, the client needs to estimate cor-
rectly 1) resource availability and 2) resource demands. In this
paper, we focus on the most important resource type, which is
bandwidth/bitrate.

In video streaming, if the actual throughput is lower than the
estimated throughput, or similarly if the actual video bitrate is
higher than the specified bitrate, video data transmission will
be delayed and the decoding buffer will quickly become empty.
To cope with errors in both estimated throughput and specified
video bitrate, a client should buffer some amount of video data
before it can start playing [3][9]. Obviously, if the amount of

buffered data is large, the client can better cope with the future
mismatches. However, this action results in the so-called initial
buffering delay (sometimes up to tens of seconds), which badly
affects the quality of experience, especially for live streaming
[9]. So, the accuracy of throughput and video bitrate informa-
tion will be crucial to maintain a low and stable buffer level for
a streaming client. To this end, the main contributions of this
paper are as follows.

First, we propose a new and general formulation for through-
put estimation taking into account previous values of instant
throughput and round trip time (RTT). Currently, throughput
estimation is based on the previous segment throughputs [3]
[10][11], which is an average value that may not capture the
fast bandwidth fluctuations when the segment duration is long.
Second, we introduce for the first time the use of bitrate estima-
tion in HTTP streaming. With bitrate estimation, the client will
be able to dynamically select the highest possible bitrate at any
time. So far, previous studies have dealt with constant bitrate
(CBR) video only. To the best of our knowledge, our previous
standard contribution [12] is the first work that has mentioned
the importance of instant bitrate information in HTTP stream-
ing. As shown later, it is interesting that this solution may en-
able CBR-streaming even though the video is encoded in VBR
mode.

The paper is organized as follows. In Section II, we first pro-
vide an overview of adaptive HTTP streaming, bitrate concept,
and related work. A systematic method to estimate the through-
put is proposed in Section III. In Section IV, we present the
mechanisms for the client to estimate the instant bitrate for VBR
video content. Experiments with different scenarios are pre-
sented in Section V. Finally, conclusions and future work are
given in Section VI.

II. OVERVIEW OF ADAPTIVE HTTP STREAMING
A. HTTP streaming and Bitrate Adaptation

As discussed in [13][3], the general architecture of adap-
tive HTTP streaming consists of servers, delivery networks, and
clients. Video versions together with their metadata are hosted
at some servers and will be requested by the client. Based on the
metadata and status of terminal/networks, the decision engine at
the client makes decision on which/when media parts are down-
loaded.

Recently, a new standard called Dynamic Adaptive Streaming
over HTTP (DASH) has been developed by ISO/IEC MPEG,
specifying the metadata and media formats exchanged between



clients and servers [14]. In MPEG DASH’s terminology, the
metadata is called Media Presentation Description (MPD). A
long content item could be divided into one or more temporal
chapter (called period). Alternatives (called representations)
having some common characteristics (e.g. same content com-
ponent) are grouped into an adaptation set. Further, each repre-
sentation could be divided into media segments. An illustration
of media division hierarchy is shown in Fig. 1. More informa-
tion about the structure and basic concepts of DASH could be
found in [2][13].

Time
1% Period 2" Period
Segments
2
. E Alternative 1

@ Eﬂ Alternative 2

Fig. 1. Hierarchy of content division in MPEG DASH

Media will be delivered by a sequence of HTTP request-
response transactions. In most cases, for each request from the
client, the server will send one segment. The term "initial buffer-
ing" in this paper means the length (in seconds) of media needed
in the buffer before the playout can start.

HTTP streaming can be applied to both on-demand stream-
ing and live streaming. The main difference between these two
cases is the available time of segments. In live streaming, the
time distance between the requests of two consecutive segments
is approximately the duration of the first segment. So, if seg-
ments have the same duration of 7 seconds, the distance be-
tween requests will be 7 as well. Meanwhile, in on-demand
streaming, requests could be sped up to quickly fill the buffer
[15]. Note that in live streaming, the playback takes place with
a short delay (typically less that 10 s), so the client should main-
tain a small buffer.

As we focus on the difficult problem of maintaining a low and
stable buffer level, the initial buffering is also the target buffer
level to be kept during a session.

In general, the process of bitrate adaptation takes into account
1) the estimated throughput and 2) bitrates of alternatives which
are specified in the metadata (MPD). For each segment interval,
the bitrate can be decided as the highest value of the alternatives’
specified bitrates that is smaller than the estimated throughput.
Further, if the client has the ability to estimate instant bitrates of
alternatives, the estimated bitrates will be used instead of speci-
fied bitrates. Throughput estimation and bitrate estimation will
be tackled respectively in Sections III and IV.

B. Bitrate concept

Though bitrate is one of the most important concepts in video
transport, its definition is actually not simple. The definition of
bitrate depends on two basic factors, namely initial delay and

play time instant [16][17][18]. Note that this initial delay is spe-
cific to the context of bitrate definition; it is different from the
initial buffering delay which is used to cope with the fluctuations
of connection throughput.

Fig. 2 shows a playout curve (piece-wise curve) of a video
stream, which represents the accumulative played data size with
respect to time. This playout curve consists of four intervals
{(t;,ti+1)]0 < @ < 3} corresponding to four segments of the
video. The slope of the curve in each interval is the average
bitrate of the corresponding media segment. Suppose that, at
time ¢4, the client starts receiving video data at a rate B; then
the client starts playing the video data at time ;. The value
do = to — tq is called initial delay, which is the duration the
client must wait before consuming the data. Given an initial
delay dy, the bitrate of the whole video stream is the minimum
slope B of a tangent line that starts from point (¢4,0) and is
never lower than the playout curve at any time instant.

Obviously, the larger the initial delay is, the lower the bitrate
B becomes. However, this pair of bitrate-delay is just valid
when the video is played continuously from the beginning to
the end. If the user wants to play from ¢y (through random ac-
cess/seeking), the initial delay must be do to maintain the same
value of bitrate B. If initial delay dy (dy < d2) should be main-
tained, the defined bitrate at this point must be higher than B.
So, the value of bitrate is highly dependent on the targeted play
time instant (or random access point).
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In the standardization process of DASH, the relationship of
different initial delays and corresponding bitrates has been dis-
cussed in [18], and the notion of instant bitrate (or segment bi-
trate) was first presented in [12]. After several rounds of revi-
sion, the bitrate is finally derived by using the same initial delay
for any random access point [14]. That means, it is the high-
est value of instant bitrates given a fixed initial delay. In DASH
syntax, the initial delay and bitrate are represented by attributes
@minBufferTime and @bandwidth respectively.

In IETF Internet-Draft "HTTP Live Streaming", the definition
of bitrate also specifies that video bitrate is the highest segment
bitrate of all segments of an alternative [19]. Because initial
delay is not specified in the bitrate definition of [19], a segment
bitrate can be understood as the average segment bitrate with
initial delay equal to 0. With this definition, the slope of segment
(t2,t3), which is higher than the slopes of other segments, is the
very representative bitrate of the above stream. For simplicity,
in the following, segment bitrate means the average bitrate of a



segment.

So, in existing HTTP streaming standards, the highest seg-
ment bitrate of an alternative is used as the representative bitrate
of the alternative. This is obviously due to safety reason in adap-
tive streaming. However, for VBR video, this definition may re-
sult in a very poor bandwidth usage as shown later in Sections
IVand V.

C. Related Work

Some recent work provides good reviews of HTTP stream-
ing which mostly aims at delivering multimedia via the Web
[1][2]. As for DASH, overviews and basic ideas behind the de-
velopment of the standard are highlighted in [13][2]. A detailed
analysis on the use of DASH for live service is presented in [9],
where an initial buffering of about 2 segment durations is sug-
gested. Detailed investigations of adaptivity in some commer-
cial clients are carried out in [15][20], providing some insights
into the behaviors of the clients.

In [10], the measure of segment fetch time is used to de-
termine requested video bitrates in an aggressive decrease and
step-wise increase manner (like TCP congestion control [4]).
Instead of using a TCP-like mechanism, a reliable estimation
of throughput for city commuters using the prior-knowledge of
commuting routes (e.g. metro/bus tracks) is used to determine
video bitrate [21]. In [11], a Java client for HTTP streaming
on Android platform is developed and different algorithms us-
ing different throughput estimation ways are compared. In [3],
we presented a novel approach for throughput estimation, which
is stable to short-term fluctuations while responding quickly to
large fluctuations of the networks. Also, it is experimentally
shown that an initial buffering delay of two segment durations
could be achieved [3]. In [22][23], the issues of stability and
fairness when there are multiple clients or cross-traffic are in-
vestigated. To improve the stability, a special point of [23] is the
use of a randomized scheduler for requesting media segments.

Bitrate estimation has long been an interesting research topic
[24][25][26][27]. For network traffic control, if output video
bitrate from a live source is estimated to be higher than connec-
tion throughput, some bitrate scaling operation should be ap-
plied to avoid potential congestion [28]. Besides, a correct esti-
mate of video bitrate would help providers to efficiently manage
network resources [17]. Yet, there have been no studies on the
use of bitrate estimation for HTTP streaming. To the best of our
knowledge, [12] is the first work that discusses the importance
of instant bitrate in HTTP streaming.

III. THROUGHPUT ESTIMATION

As mentioned, media segments are delivered by a sequence of
HTTP request-response transactions. In this Section, we just fo-
cus on the sequence of received segments, without considering
their alternative indexes. The throughput in general is calculated
by dividing the amount of data (data size) by the delivery inter-
val. In fact, the difference between various throughput metrics
is due to the very choice of delivery interval.

The general framework of our method is shown in Fig. 3.
Here, feature extraction block provides one or more throughput
related parameters of the previous segments. Based on the fea-
tures, the controller block will decide to adjust the computation

model in the throughput estimation block.
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Fig. 3. Proposed framework of throughput estimation

Using this framework, in [3], we presented a throughput esti-
mation method that is based on previous segment throughputs.
The segment throughput is computed by dividing the segment
data size by the request-response duration, which is from the in-
stant of sending the request to the instant of receiving the last
byte of the response.

As discussed in [3][11], the aggressive method, where the last
segment throughput is simply used as the estimated throughput,
currently is the most responsive method to capture the dynamic
changes of throughput. However, when the segment duration is
long (e.g. 8-10s as in [19]), that method may not be effective to
track the fast fluctuations of the connection.

To cope with this problem, we present a new and general for-
mulation based on "download throughput" samples and RTT.
Download throughput is computed by dividing the segment data
size by the download duration, which is from the instant of re-
ceiving the first byte of the response to the instant of receiving
the last byte of the response. A download throughput sample
is an instant download throughput, computed over a short inter-
val (e.g. 1s) during downloading a segment. Fig. 4 illustrates
download throughput samples (upward arrows) and the related
concepts.
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Fig. 4. lllustration of download throughput samples

Before delving into the details, let’s have the following nota-
tions:

i): the presentation duration of segment ¢

1): the expected download duration for segment %
— T5(i): the estimated download throughput for segment
— RTT(i): the duration between the instant of sending the re-
quest for segment ¢ and the instant of receiving the first byte of
the corresponding response.
— Ty(i,7): the j*" sample of download throughput of segment
1.
— TD(z): the sequence of (download) throughput samples of
segment ¢, i.e. TD() = {T4(¢,0),Ta(i, 1), Ty(3,2), ...}

If we can estimate D°(¢) and T5(4), the expected amount of
data delivered for segment ¢ is D°(¢) = T3(4). So, the estimated
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segment throughput for segment ¢ is

Do) + T4 (i)
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Denote {T5(0),T5(1),T,(2), ...} the sequence of throughput
samples which is the combined sequence of {TD(0), TD(1),
TD(2), ...}. In general, T3(4) is a function of throughput sam-
ples:

Ts(z) = f[Ts(O)ﬂ Ts(1)7Ts(2)ﬂ ] 2

To compute T5(z), we apply the concept of running average
T of {Ts(k)|k =0,1,2,3,...} as follows [3][15]

(1= 8)To (k — 1) + 6T (k)
Ts(k - 1)

k>1

k=1 ©

720 = {
where ¢ is a weighting value.

Suppose that T (K;_1) is the last throughput sample of seg-
ment (i — 1), the average throughput 72V (K;_1) then is used as
the estimated throughput for segment 4:

TS() = T

S

(Ki-1) )
Usually, the higher the value of § is, the more the estimated
throughput depends on the recent throughput samples. To have a
smoothed value of throughput, a small value of ¢ should be used.
In this paper, we adopt the method in [3] to control the value of
d, so that the estimated value is stable to short-term fluctuations
while responding quickly to large fluctuations of the networks.

As for D®(i), this value is strongly dependent on the request
time instant. For that, we classify the problem into two cases,
non-pipelined and pipelined.

A connection is non-pipelined if a request is sent only after
the previous segment has been fully received. After a request is
sent, it takes about an RTT delay for the client to receive the first
byte of the response. So, the expected download duration is as
follows:

D¥(i) = D, (i) — RTT*() 5)

where RT'T®(i) is the expected RTT of segment i. RTT°(i)
also is computed as a running average of previous RTT values:

e [(1=~)RTT®(i —2) + yRTT(i —1) i>1
RTT®(i) = {RTT(z’ —1) i=1
(6)

where ~ is a weighting value which is similar to § of (3). Usual
~ takes a small value for a smooth RTT estimation. In this paper,
7 is set to 0.125 as recommended by [29].

The connection is of pipelined type if a request is sent before
having fully received the previous segment. In this case, the
expected download duration is as follows:

De(i) = Dp(3). @)

The highest possible value of segment bitrate B°(i) is com-
puted from the estimated throughput using a simple safety mar-
gin p as follows:

B(i) = (1 = p)The(i) ®)

where p usually takes a small value in the range [0, 0.5].

From (5) and (7), we can see that the use of pipelining can
help increase the download time (about one RTT), leading to the
increase in segment throughput. However, when segment dura-
tion is long (e.g. 6-10s), the improvement by using pipelining
is insignificant because RTT in today’s networks is just several
tens or hundreds of milliseconds. Moreover, pipelining leads
to a lot of complexity in handling and detecting timing of re-
sponses. So, in this study, we just focus on non-pipelined case.

IV. VIDEO BITRATE ESTIMATION

The previous Section provides the estimated throughput
which is used to decide the bitrate of the next segment. If video
is created with constant bitrate, the selection of appropriate al-
ternative would be straightforward. However, when the bitrate
is not constant, there may be two cases. First, the instant video
bitrate is much lower than the actual throughput, thus resulting
in poor bandwidth usage. Second, the instant video bitrate is
higher than the actual throughput, resulting in transmission de-
lay and then buffer underflow.

Our objective in this Section is that, through bitrate estima-
tion, the client will be able to dynamically select the highest
possible bitrate in both cases. Hereafter, the notation S(i,n)
means the segment of time (or segment) index ¢ and alternative
n; and B(i, n) means the bitrate of segment S(i,n).

We suppose that each video alternative now is encoded by a
quantization parameter (QP) value [30]. At time or segment in-
dex 7 — 1, suppose that the client has already received a segment
S(i — 1,a) and computed the actual bitrate B(¢ — 1, a) of that
segment. Then, before downloading a segment of time index ¢,
the client should estimate bitrates { B(i,n)|1<n<N}, where N
is the number of alternatives. For that, the client should estimate
first the bitrates {B(i — 1,n)|1<n<N and n # a}.

So, in our approach, bitrate estimation is divided into two
parts: 1) inter-stream estimation and 2) intra-stream estimation.
The former means estimating the bitrates of segments (in the
same interval) across different alternatives, while the latter im-
plies estimating the bitrate of a future segment within an alter-
native. The estimation models here are specific for AVC (Ad-
vanced Video Coding) [31], which is the most popular video
format and is used in our streaming system.

A. Inter-stream bitrate estimation

A number of models to represent the relationship between
video bitrate and QP value have been proposed in the literature
(e.g. [26][27]). In general, the bitrate of a segment is well re-
lated to the bitrate of another segment with the same time in-
dex. If the client has received a segment S(i — 1, a) with bitrate
B(i — 1, a), we can model the estimated bitrate B°(¢ — 1, n) of
any segment S(i — 1,n) as a function of B(i — 1, a):

(€))

In AVC, it is well-known that a 6-unit increase of QP would
roughly halve encoded video bitrate [28], [31]. More specifi-
cally, a 1-unit increase of QP means an increase of quantization
step size by approximately 12%, which results in a bitrate re-
duction of about 12% [31]. So, the bitrate of S(¢ — 1,n) can be
estimated from the bitrate of the received segment S(i — 1, a) as
follows.

B(i — 1,n) = finter[Bli — 1,a)].



B°(i —1,n) = 0.B(i — 1,a).2% 5" (10)
where (0, and @,, are the QP values of the alternatives and @ is
an empirical factor that compensate for the approximation error
of the model. It should be noted that, QP chiefly affects the
amount of bits used to encode video residual data. In a coded
video stream, a nontrivial amount of bits is used to convey other
data such as parameter sets and slice headers [31]. Based on our
experience, a reasonable value of 6 is 1.05.

Fig. 5 shows the estimated bitrate together with the actual
bitrate of a video clip which is taken from the "Tokyo Olympics"
sequence [30]. The estimated bitrate for a given QP is computed
by Eq. (10) with n = a — 1. We can see that the estimation
model provides very good results across different bitrate ranges.
In practice, the client can obtain QP value of each alternative
by simply downloading and then parsing the initial part of each
alternative, where the parameter sets of video are located. In
addition, the QP values can easily be put into MPD using the
syntax extensibility [3].
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Fig. 5. Estimated bitrates across different alternatives

B. Intra-stream bitrate estimation

In general, the bitrate of segment S (7, n) is a function of some
previous segment bitrates, i.e.

B®(i,n) = fintra[B(i—1,n), B(i—2,n), B(i—3,n),..] (11)

A large number of bitrate estimation methods have been pro-
posed in this area (e.g. [24][25]). However, most of them require
much knowledge of the content (e.g. shot changes) and/or high
processing power, which are not appropriate for fast estimation
in Web-based or lightweight streaming client.

In practice, a video sequence is usually composed of scenes
where GOPs in each scene would have similar characteristics.
That means, adjacent video segments would have similar bi-
trates. So, for intra-stream bitrate estimation, the previous
known instant bitrate of time index ¢ — 1 could be used as the
estimated bitrate B¢(i, n) of the segment i, i.e.

Be(i,n):{ B°(i—1,n)  n#a

B(i—1,a) n=a
Due to its simplicity, which causes nearly no computation
overhead, this simple model is used in our system. However,
as shown in the experiments, the results provided by this solu-
tion are already very effective.
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Fig. 6. Test-bed organization for the experiments

V. EXPERIMENTS

The organization of our test-bed is shown in Fig. 6. The
server is an Apache of version 2.2.21 run on Ubuntu 11.10 (with
default TCP CUBIC). For alive connections, the server’s timeout
is set to 100s and MaxRequest to O (i.e. unlimited). DummyNet
[32] is installed at the client to simulate network characteristics.
As random fluctuations of throughput would make it difficult to
compare the results of different experiment runs, the loss rate of
DummyNet is set to 0% for clear results. Here, we assume that
actual bandwidth trace used in the experiments already contains
the fluctuations caused by packet loss. RTT value of DummyNet
is set to 40ms. The safety margin u for deciding video bitrate is
set to be 0.05.

In our test-bed, the client is implemented in Java and runs
on a Windows 7 Professional notebook with 2.0GHz Core2Duo
CPU and 2G RAM. Video is encoded by the main profile of
AVC (Advanced Video Coding) [31]. Video component has the
frame rate of 30fps and resolution of 320x240. Media segments
are created with the same duration and stored in separate small
files. Distance between two consecutive segment requests nor-
mally is the segment duration; however, if the previous response
is delayed, the following requests will be sent right after fully
receiving a response until the buffer level is stable. The ini-
tial buffering delay (and also the target buffer level) is equal to
two segment durations. In the following, we present two exper-
iments, the first is for throughput estimation, and the second is
for bitrate estimation.

A. Experiment of throughput estimation

In the first experiment, video is encoded in CBR mode with 10
bitrates, from 2560kbps to 256kbps with a step size of 256kbps.
Download throughput samples are taken with a period of 1s. To
show the effectiveness of our method proposed in Section III,
the aggressive method ([3][11]) is selected to be the reference
method. As mentioned before, the aggressive method is simply
based on the last segment throughput and currently the most re-
sponsive to the fast fluctuations of bandwidth.A real bandwidth
trace obtained from a mobile network [33] is employed in the
experiment.

Fig. 7a and Fig. 7b show the client behavior for two cases
of throughput estimation: 1) using the aggressive method and 2)
using our proposed method. Each figure has four curves, rep-
resenting the bandwidth (controlled by DummyNet), estimated
throughput, selected bitrate, and the resulting buffer level. In
these figures, the segment duration is 6s and the target buffer
level is 12s (2x6s). It can be seen that, with the aggressive
method, the buffer level may be reduced by about 11.5s. Mean-
while, with our proposed method, the buffer is reduced by only
6s. The comparison using cumulative distribution functions
(CDFs) of bitrate and buffer level (Fig. 8) provides more in-



sights into the client’s overall behavior. The CDFs of bitrate
show that the bitrates of the two methods are very similar. Mean-
while, the CDFs of buffer level show that the buffer level of
the aggressive method varies widely from 12s to 0.5s. Espe-
cially, the buffer level of the proposed method stays mostly in
the range 10s-12s and sometimes goes down to 6s. That means,
the accuracy of our throughput estimation method can enable a
more stable buffer level, thus helping reduce the initial buffering
delay.
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Fig. 7. Client behavior with segment duration of 6s and throughput esti-
mation using (a) aggressive method and (b) proposed method
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Fig. 8. Comparison of the aggressive method and proposed method
with segment duration of 6s using (a) CDF of bitrate and (b) CDF of
buffer level

When segment duration is 8s, the similar behaviors are shown

in Fig. 9a and Fig. 9b. Now the target buffer level is 16s
(2x8s). We can see that, with our proposed method, the vari-
ations of buffer level are still within 5s. Meanwhile, with ag-
gressive method, the reduction of buffer level is up to 14s. The
corresponding CDFs of bitrate and buffer level (Fig. 10) also
show the results similar to those of Fig. 8. Especially, in terms
of buffer level, the improvement of the proposed method com-
pared to the aggressive method is up to 9s in Fig. 10b and 5.5s in
Fig. 8b. This implies that when segment duration is longer, the
responsiveness of the aggressive method would be worse. This
can be explained by the fact that the aggressive method uses a
throughput measure averaged over the whole segment duration.
Meanwhile the use of throughput samples enables the client to
track the fast fluctuations regardless of segment duration.

6000

20
------- Bandwidth —»— Bitrate
5000 —+— Est. throughput Buffer level
15
E 4000 o)
0 —
5 ]
3 3000 10 3
R 5
& 2000 £
5 @
1000
0 0
0 50 100 150 200 250
Time (s)
(a)
6000
------- Bandwidth —x—Bitrate 20
5000 —+—Est. throughput Buffer level
= 4000 15 &
2 ]
2 2
o 3000 | <
E 10 ﬁ
s Vi S
@ 2000 i @
5
1000
0 T 0
0 50 100 150 200 250
Time (s)
(b)

Fig. 9. Client behavior with segment duration of 8s and throughput esti-
mation using (a) aggressive method and (b) proposed method

B. Experiment of bitrate estimation

In the second experiment, we prepare the video alternatives
in VBR mode. Test video, which is taken from the "Tokyo
Olympics" sequence [30], consists of 125 segments. The du-
ration of each segment is set to 2s to clearly represent the varia-
tions of instant video bitrate. Similar to [30], video alternatives
are encoded with 7 different values of QPs, namely 22, 24, 28,
34, 38, 42, and 48. These alternatives are respectively denoted
by #7, #6, ..., #1. Fig. 11 shows the segment bitrates of each
alternative. We can see that the bitrate varies widely. The aver-
age bitrate and the highest bitrate of each alternative are listed
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Table 1. The average bitrate and highest bitrate of alternatives used in
the second experiment

Alternative | Average bitrate (kbps) | Highest bitrate (kbps)
#7 1320.2 2526.3
#6 1015.1 1966.7
#5 616.7 1215.7
#4 288.8 567.8
#3 173.4 329.3
#2 104.2 189.4
#1 45.4 92.7
in Table 1.
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Fig. 11. Segment bitrate of diffirent alternatives of test video

In order to clearly explain the client behavior, we first run the
experiment with flat bandwidth. Initially, suppose that the aver-
age bitrate of each alternative is used as its representative bitrate.
If the bandwidth is 1150kbps (resulting in a throughput of about
1090kbps), alternative #6 (with average bitrate of 1015.1kbps)
will be selected. However, due to the variations of segment bi-
trate, playing this alternative makes the buffer level gradually
reduced from 8s to 2s as shown in Fig. 12. In this case, the
initial buffering must be more than 6s (i.e. 8s - 2s) to support
a continuous playout. Obviously, it is difficult to determine in
advance the necessary amount of initial buffering when average
bitrate is used. This is the reason that average bitrate of a VBR
video stream usually is not used as the stream’s representative
bitrate.

Now let’s use the highest bitrate of each alternative as its rep-
resentative bitrate, which is the choice of existing HTTP stream-
ing standards as discussed in Section II. The available band-
width and throughput are kept as before, which are lower than
the highest bitrate of alternative #5. So, with this case, the se-
lected alternative will be #4 as shown in Fig. 13. The buffer
level is obviously very stable; however, the connection band-
width is significantly underused in this case. Especially, if the
highest bitrate is much higher than the usual values of segment
bitrates, the actual bandwidth usage will be very low.

If the client has the (instant) bitrate estimation capability as
presented in Section IV, it can intelligently switch between al-
ternatives #5, #6 and #7 depending on the estimated segment
bitrates. As shown in Fig. 14, the client now can achieve much
higher bitrate while the buffer is still stable. Note that, with this
stable buffer level, the initial buffering could be reduced from
two segment durations (4s) to only one segment duration (2s),
which will significantly improve the quality of experience for
users. Fig. 15 compares the CDFs of bitrate and buffer level
in these three cases, 1) using the average bitrate (ABR), 2) us-
ing the highest bitrate (HBR), and 3) using the estimated bitrate
(EBR). This figure reconfirms that the case using EBR provides
a good bitrate (close to the case using ABR) and stable buffer
level (close to the case using HBR).
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Fig. 13. Client behavior when the representative bitrate of an alternative
is its highest segment bitrate
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The bandwidth trace of the previous part is now employed to
see how bitrate estimation helps the client in practical settings.
Fig. 16 compares the bitrate and buffer level of two cases: 1)
using HBR and 2) using EBR. The case of ABR is not included
here because it is not usually used in practice. Also, the through-
put curves are not shown for the sake of clarity. We can see that
when the adaptation is based on EBR, the resulting bitrate curve
is significantly higher than the case of HBR. The CDFs of bi-
trate in Fig. 17a show that the advantage of using EBR exists
in the whole range of birate. Meanwhile, the buffer level of the
case using EBR is stable and nearly the same as that of the case
using HBR (Fig. 16 and Fig. 17b).

C. Discussion

The results in the first experiment show that our proposed
method can capture quickly the changes of throughput, and then
adjust video bitrate accordingly. In other tests with short seg-
ment duration (e.g. 2s or 4s), the improvement in buffer stabil-
ity of our proposed method compared to the aggressive method
is not significant (about 1s). This is because the number of
throughput samples in short segment case is not as many as that
in long segment case.

In the second experiment, an interesting finding is that, even
using the simple intra-stream bitrate estimation, which is using
the last segment bitrate, we can significantly improve the quality.
Sometimes the actual bitrate is higher than the throughput (as in
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16. Comparison of the client behavior when the adaptation is based
on the highest bitrate (HBR) or the estimated birate (EBR).
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Figs. 14 and 16); however, the errors are not big and the client
still maintains a good buffer with very small variations. This
suggests that it may be unnecessary to employ more complicated
methods for intra-stream bitrate estimation.

It should be noted that, when a video is encoded in CBR
mode, the visual quality would be changed in a similar way to
switching alternatives. If the number of alternatives is higher,
the switching will be smoother. So, in some sense, bitrate
estimation facilitates a kind of client-enabled CBR streaming,
where the video sources are in fact encoded in VBR mode. The
advantage of this client-enabled CBR streaming is that when
bandwidth is abundant, the client may turn off bitrate estima-
tion and then run in VBR mode. Meanwhile, when bandwidth
is low, the client will apply bitrate estimation and then achieve
(near) CBR streaming with VBR video sources. Of course, even
in case of low bandwidth, the client can still decide to use VBR
mode if preferred.

The complexity of our throughput and bitrate estimation
methods is very low because they are just based on analytical
formulations. From our experience, the decision delay of our
method, which is from the instant of receiving the last byte of
a segment to the instant of obtaining the selected bitrate for the
next segment, is very small (less than 1ms). That means the es-
timation methods essentially do not affect the playback quality.



VI. CONCLUSION

In this paper, we have studied the estimation of connection
throughput and video bitrate in adaptive HTTP streaming. A
general formulation for throughput estimation was proposed,
taking into account important factors such as instant download
throughput and RTT. Initial mechanisms for bitrate estimation
of VBR video were also presented. The experiment results
showed that the proposed solutions were effective to maintain
a stable buffer under fluctuations of bandwidth and video bi-
trate. Our goal in the future is to improve the throughput estima-
tion process so that the client can quickly recognize the different
throughput patterns of different networks and then automatically
adjust the estimation. Also, intra-stream bitrate estimation will
be improved by using some simple content features such as mo-
tion activity.
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