
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2018 1

Tag Cardinality Estimation using
Expectation-Maximization in ALOHA-based RFID
Systems with Capture Effect and Detection Error

Chuyen T. Nguyen, Van-Dinh Nguyen, and Anh T. Pham

Abstract—Tag cardinality estimation is one of the most crucial
issues in radio frequency identification (RFID) technology. The
issue, however, usually faces with challenges in wireless fading
environments due to the presence of the so-called capture effect
(CE) and detection error (DE). The aim of this study is to
provide an efficient and accurate estimation method to cope with
the CE and DE using Expectation-Maximization algorithm and
the standard Aloha-based protocol. We show that the proposed
method gives more accurate estimates than a conventional one.
Thanks to this fact, the Aloha frame size used for the tag
identification process can also be optimally selected so that the
identification efficiency can be improved. Computer simulations
are presented to confirm the merit of the proposed method.

Index Terms—RFID, Aloha, capture effect, detection error, EM
algorithm, estimation.

I. Introduction

TAG cardinality estimation holds a crucial task in Radio
Frequency Identification (RFID) technology with many

practical applications such as intelligent transportation, indoor
stadium, and warehouse systems. The task has been investi-
gated in several previous works [1], [2] with a frame slotted
Aloha (FSA) protocol, which is originally and standardly used
to detect RFID tags’ Identity (ID) [3]. In those works, tags
randomly transmit their IDs in a frame of time slots. Then,
observations of the number of responses in each slot, i.e,
no response, one response, and multiple responses [4], can
be utilized for the tag cardinality estimation. The tags’ ID
identification process can be significantly improved with an
accurate estimate of the cardinality.

On the other hand, under effects of wireless channel im-
pairments, the observations of time slots may not accurately
reflect the real number of responses. Indeed, due to the
channel fading phenomenon, a tag might be detected with a
probability in a multiple-response slot, which is well-known
as the capture effect (CE) [5]. The observed state of the slot,
in this case, is assumed to be singleton to differentiate from
one-response. In addition, a tag might not be detected with
a probability in the corresponding one-response slot, which
is referred to as the detection error (DE) [6]. Similarly, the
observed state of the slot is called empty, while in other cases,
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the state is observed as collision. These phenomena has been
extensively studied in the literature of RFID both in theoretical
and experimental aspects [6]. They are usually hidden from
the reader, and therefore, affect the estimation accuracy of
conventional methods.

Several works have been proposed to deal with the cardinal-
ity estimation in the presence of the CE [7]-[9]. The method
in [7], i.e., capture-aware backlog estimation (CMEBE), esti-
mates the tag cardinality and the CE probability by minimizing
the norm-2 distance between theoretical and observed vectors
of empty, singleton and collision slots. In [8], they are found by
using Bayesian approach. Also, in [9], the capture probability
is analyzed in a more accurate approach by considering the
number of contention tags in a time slot and physical layer
parameters. Thanks to the approach, a closed-form solution
of the optimal frame length is found, which then improves
the identification performance. The key limitation of those
works, nevertheless, is that the DE is completely ignored. On
the other hand, the cardinality estimation in the presence of
both the CE and DE was recently studied in [10] based on
the maximum likelihood (ML) approach. In the approach, an
approximation of the likelihood function of the tag cardinality,
CE and DE probabilities, for given observations of slots is
determined. Nevertheless, to maximize the likelihood function,
the method adopted an exhaustive search algorithm to check all
possible values of the tag cardinality and the probabilities. This
approach thus resulted in a very high computational complex-
ity, and affected the overall performance of the identification
process. Although, the complexity could be reduced with a
simple transmission model such as flat Rayleigh fading where
a deterministic relation between CE and DE probabilities could
be obtained [10], it would be much more challenging in
practical ones.

In this work, we propose a new method employing the
Expectation-Maximization (EM) algorithm [11] and FSA pro-
tocol to efficiently and accurately estimate the tag cardinality
in presence of both CE and DE. The method includes iterative
estimation rounds. In each round, the cardinality is first
estimated by ML approach given expected values of hidden
data/observations caused by the CE and DE. The CE and
DE probabilities can then be found in closed-forms for the
given estimate, which significantly reduces the computational
complexity in comparison with the method in [10]. Simulation
results also confirm the effectiveness of our proposed method
compared to the conventional methods.
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Fig. 1. A reading round of Aloha-based identification operation.

II. Protocol Description and ProposedMethod

A. Protocol Description

Our considered RFID system consists of a reader and n tags
in its communication range. The FSA protocol is implemented,
in which the reader first broadcasts a request consisting of a
time slotted frame size of L. Then, each tag responds to the
reader by its identity (ID) randomly in one of the L slots.
The reader tries to estimate the tag cardinality based on the
observed numbers of empty, collision, and singleton slots,
denoted as E, S , and C, respectively [4].

Practically, the DE and CE may happen in any slot with
tags’ responses. To focus on the tag cardinality estimation,
we use the similar model as in [10], in which, each one-
response slot is assumedly detected as an empty one with an
average DE probability of β, while a multiple-response slot
is recognized as singleton with an average CE probability of
α. The inaccurate cardinality estimation problem due to the
CE and DE can be illustrated as in Fig. 1, which presents a
reading round in an Aloha-based RFID system with a reader
and 5 tags. In this example, a request L = 4 is initially used
and the correct observation should be E = 1, S = 1, C = 2.
Nevertheless, due to the impact of the CE and DE, tag 3 is
detected in slot 3 (CE), while tag 1 is not detected in slot
1 (DE). The reader therefore has a wrong observation with
E = 2, S = 1, C = 1; and consequently, it will inaccurately
estimate the cardinality of tags in the system.

B. Proposed Method

In our method, we first denote pE , pS and pC as the average
probabilities of observing an empty, a singleton and a collision
slot, respectively; and they can be expressed as

pE ≈ p0 +βp1, pS ≈ (1−β)p1 +αp2, pC ≈ (1−α)p2, (1)

where p0, p1 or p2 is a probability that a slot is, respec-
tively, no-response, one-response or multiple-response, i.e.,
p0 ≈

(
1− 1

L

)n
, p1 ≈

n
L

(
1− 1

L

)n−1
, and p2 ≈ 1− p0− p1 [10]. It is

noted in (1) that the DE is assumed to not happen in multiple-
response slots due to signal diversity, which has also been
validated in [10] under the assumption of a simple Rayleigh
fading channel model. More practical models of the DE, CE,
and status of each slot should be investigated in future works.

Then, the estimates of n, α, and β denoted by n̂, α̂ and β̂,
respectively, can be approximately found as(

n̂, α̂, β̂
)

= arg max
n∈N, α, β∈[0,1]

f
(
E,S ,C|n,α,β

)
≈ arg max

n∈N, α, β∈[0,1]

(E + S +C)!
E!S !C!

pE
E pS

S pC
C , (2)

where f
(
E,S ,C|n,α,β

)
is the likelihood function of n, α

and β, given E, S and C. It should be also noted in (2)
that the likelihood function has been approximately modeled
as a multinomial distribution with L repeated independent
trials, where each trial has one of three outcomes: empty,
singleton, or collision. Although this approximation does not
reflect the exact likelihood function [12], it results in accurate
estimates as ML ones especially when L is large, which has
been numerically validated in [2] and [10]. Since there is
no guarantee on the convergence of the (pseudo) likelihood
function, it could be possible to solve (2) by an exhaustive
search algorithm or finding a deterministic relation between
the two probabilities in an assumed fading channel model [10].
Nevertheless, while the former costs a very high computational
complexity, the latter is difficult to obtain for practical fading
models.

In what follows, we utilize the EM approach to find the
estimates of the tag cardinality and the probabilities. EM is
an iterative estimation algorithm, which is especially useful
when necessary information/data is hidden/missing. In our
model, the hidden data is the number of one-response and
multiple-response slots observed as empty and singleton ones
denoted by S 1 and C1, respectively. In particular, each EM
iteration includes two steps, namely E-step and M-step. In E-
step, expected values of the hidden data S 1 and C1, which
are respectively denoted by S 1 and C1, are estimated. In
M-step, the estimates of n, α and β are found for a given
complete (observed and hidden) data, i.e.,

[
E,S ,C;S 1,C1

]
.

This estimation process is repeated until convergence that is
defined as

ε=

√
(n̂{r}− n̂{r−1})2 + (α̂{r}− α̂{r−1})2 + (β̂{r}− β̂{r−1})2≤εp, (3)

where ε is the norm-2 distance between two estimated vectors
of n, α and β at two consecutive iterations. n̂{r}, α̂{r} and
β̂{r} are, respectively, the estimates of n, α and β at the r-
th iteration. εp is a predefined constant. The two steps are
described in details as

1) E-step: From (1), S 1 and C1 are easily found as follows

S 1 =βn
(
1−

1
L

)n−1

, C1 =αL

1−(1− 1
L

)n

−
n
L

(
1−

1
L

)n−1
 . (4)

It is noted that, values of n, α and β in (4) are taken from
the following M-step, while they can be initially set as S +2C,
0.5, and 0.5, respectively.

2) M-step: Given the complete data
[
E,S ,C;S 1,C1

]
,

the likelihood function of n, α and β denoted by
f
(
E,S ,C,S 1,C1|n,α,β

)
is written as

f
(
E,S ,C,S 1,C1|n,α,β

)
=

(E + S +C)!

(E−S 1)!S 1!(S −C1)!C1!C!

× pE−S 1
0 pS 1

01 pS−C1
10 pC1

12 pC
C , (5)
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Algorithm 1 EM estimation algorithm
1: Initialization: Generate L for the first request, and observe

E, S and C. Set n = S + 2C, α = 0,5, β = 0.5
2: repeat
3: E-step:
4: S 1 = βn

(
1− 1

L

)n−1

5: C1 = αL
(
1−

(
1− 1

L

)n
− n

L

(
1− 1

L

)n−1
)
.

6: M-step:
7: n̂ = argmaxn∈N g1(n)
8: α̂ =

C1
C1+C

, β̂ =
S 1

S +S 1−C
,

9: until Convergence

where p01 = βp1, p10 = (1 − β)p1, and p12 = αp2. Since
E, S , C, S 1 and C1 are constants, the estimates
can be found by maximizing the function g

(
n,α,β

)
=

ln
(
pE−S 1

0 pS 1
01 pS−C1

10 pC1
12 pC

C

)
, which can be re-written as

g
(
n,α,β

)
= g1(n) +g2(α) +g3(β), (6)

where g1(n) = (E − S 1) ln(p0) + (S 1 + S −C1) ln(p1) + (C1 +

C) ln(p2), g2(α) = C1 ln(α)+C ln(1−α), g3(β) = S 1 ln(β)+ (S −
C1) ln(1−β). Since n, α and β are independent, the estimates
are easily obtained by maximizing g1(n), g2(α), and g3(β) with
respect to n, α, and β, respectively, i.e.,

n̂ = argmax
n∈N

g1(n), (7)

α̂ =
C1

C1 +C
, β̂ =

S 1

S + S 1−C
. (8)

It is also noted that (7) can be efficiently solved by the Chen’s
method [2] where g1(n) is numerically proven to be converged.
We summarize the EM estimation iterations in Algorithm 1.
The initial value of n is selected as a lower bound after
observing E, S and C. Also, the initial values of α and β can be
arbitrary in (0,1). Nevertheless, since we have no knowledge
of α and β a priori, they are both initially set as 0.5.

The Aloha frame size can be selected based on the above
estimates to improve the performance of tag identification.
In particular, the size is found by maximizing the system
efficiency which is defined as the average number of detected
tags per time slot and denoted by η. Here, η is written as

η=
(
1−β

) n
L

(
1−

1
L

)n−1

+α

1−(1− 1
L

)n

−
n
L

(
1−

1
L

)n−1
 . (9)

By letting the differentiation of η in (9) with respect to L be
zero (assuming the continuous relaxation of L), we can find
the optimal frame size denoted by Lopt as

Lopt = n−
α (n−1)

1−β
. (10)

In other words, by substituting (7) and (8) into (10), the frame
size could be optimally selected.

III. Numerical Results and Discussions

In this section, we evaluate the performance of the proposed
estimation method via computer simulations. The frame size
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Fig. 2. Convergence behavior of the proposed algorithm with different number
of tags (n), for L = 256, α = 0.3 and β = 0.3.
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L and the predetermined constant εp are set by 256 and 10−4,
respectively. The simulation results are obtained by Monte
Carlo method with the number of simulation runs R = 1000,
and are also compared with those of the conventional CMEBE
and Bayesian methods.

First, we investigate the typical convergence behavior of
the proposed algorithm by plotting the norm-2 distance ε with
different numbers of tags {n = 300, 400} in Fig. 2, for α = 0.3
and β = 0.3. It is seen that the proposed method converges
very fast, within only a few iterations in all cases.

Next, Figs. 3 and 4 show the root mean square errors
(RMSEs) of n and α (denoted by en and eα, respectively) of
the CMEBE, the ML-based method in [10], Bayesian estimate
[8], and the proposed method for L = 256, β = 0 or 0.3. Here,
the RMSEs are defined as

en =

√√√
1
R

R∑
i=1

(n̂i−n)2, eα =

√√√
1
R

R∑
i=1

(α̂i−α)2, (11)

where n̂i and α̂i are, respectively, the i-th estimates of n and
α. It should be noted that the estimates in [10] are obtained by
maximizing the approximated likelihood function in (2) with
an exhaustive search algorithm over all possible values of n, α,
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Fig. 5. The total number of slots used to detect n = 400 tags with respect to
the DE (dash lines) or CE (solid lines) probability.

and β. Therefore, [10] can be approximately considered as a
lower bound of all considered methods. We can see that while
our method can be comparable with CMEBE and Bayesian
when β = 0, it significantly outperforms them in term of the
estimation accuracy when β > 0. This is because only the CE
has been taken into account in CMEBE and Bayesian methods.
Nevertheless, the performance of EM-based algorithms greatly
depends on the initial values of estimated parameters. Indeed,
it is seen in Fig. 4 the degraded performance of the proposed
method for small values of α (α < 0.15). This fact is also
observed for α = 0.3, 0.4 where the performance of the
proposed method is even better than that of [10].

We now provide the worst-case per-iteration complexity
analysis of Algorithm 1 and compare to that of [10]. Recall
that the per-iteration complexity of the method presented in
[10] is O(n3). The complexity of Algorithm 1 is mostly due
to solving (7) (i.e., step 7 of Algorithm 1), which requires the
complexity of O(n). This is to say, given the same convergence
condition as in (3), the proposed algorithm requires signifi-
cantly lower complexity, compared to that of [10], especially
when n is large.

Finally, we plot the total number of slots used to detect
n = 400 tags with respect to different values of α (β is set

by 0.3) or β (α is set by 0.3) in Fig. 5 to see the impact of
estimation methods on identification performance. Here, the
frame sizes of the methods are optimally determined by (10)
in which β is set by 0 for CMEBE and Bayesian. We can see
that the consumed time slots is proportional to α for given
β, while inversely proportional to β for given α. The reason
is that more tags are detected in multiple-response slots, but
more tags are also hidden in one-response slots. Nevertheless,
in the both cases, the proposed method takes a smaller number
of time slots than conventional ones, especially when the DE
and (or) CE are more significant. This is because both the DE
and CE have been considered in our estimation scheme thanks
to the EM approach.

IV. Conclusion

This paper investigated the issue of tag cardinality es-
timation with FSA protocol in RFID systems considering
impacts of both CE and DE. The EM approach was utilized
to iteratively estimate the tag cardinality, the CE, and DE
probabilities. Computer simulations confirmed that the pro-
posed method was guaranteed to converge after only a few
iterations and provided more accurate estimates than that of the
conventional methods. The proposed method was also proven
to improve the efficiency of the identification process.
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