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SUMMARY HTTP Adaptive Streaming (HAS) has become a popular
solution for multimedia delivery nowadays. Because of throughput vari-
ations, video quality fluctuates during a streaming session. Therefore, a
main challenge in HAS is how to evaluate the overall video quality of a
session. In this paper, we explore the impacts of quality values and quality
variations in HAS. We propose to use the histogram of segment quality val-
ues and the histogram of quality gradients in a session to model the overall
video quality. Subjective test results show that the proposed model has very
high prediction performance for different videos. Especially, the proposed
model provides insights into the influence factors of the overall quality, thus
leading to suggestions to improve the quality of streaming video.
key words: video quality model, adaptive streaming, subjective test, his-
togram

1. Introduction

HTTP Adaptive Streaming (HAS) has become a popular so-
lution for multimedia delivery nowadays. In HAS, a video is
encoded into multiple versions with different bitrates (and so
different quality levels) [1]. Each version is further divided
into short segments. Based on the estimated throughput,
a client downloads a series of segments with suitable ver-
sions. Because of throughput variations, segment quality
values fluctuate drastically during a session. Therefore, a
main challenge in HAS is how to evaluate the overall quality
of a session with strong quality variations.

There have been many studies on video quality models.
Some studies find out and quantify the impacts of different
factors on video quality, such as quantization parameter (QP)
[2]–[4], resolution [5], frame rate [6], PSNR [7], and motion
activity [8]. It should be noted that, in video encoding, QP
is used to control the quantization [9] and is considered to
be a key factor affecting the video quality. More specifically,
the higher the QP is, the lower the video quality becomes.

For adaptive streaming sessions with quality variations,
the overall quality is generally estimated based on the instant
quality values (here after referred to as segment quality)
[10]–[12]. A segment quality value can be a subjective
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score [11], [13] or an objective score which can be predicted
(sometimes represented) using encoding parameters such as
bitrate [14], [15], and QP [12], [16].

To predict the overall quality of a session, most of pre-
vious quality models use the average [11], [17], the median
[12], the minimum [12], the standard deviation [11] of the
(segment) quality values as well as the switching frequency
[11], [14]. However, the impacts of the quality values and
the switch amplitudes on the overall quality are still not fully
understood yet.

In this paper, we propose a quality model to predict
the overall quality of a session in HAS. The statistics of
the different quality values and the statistics of the quality
changes in a session, which are respectively represented by
the histogram of quality values and the histogram of quality
gradients, are considered to be the key features of the overall
quality. Besides, the quality of a segment, which is assumed
to be constant, is computed using the average QP of that
segment. Through subjective test results and comparison
with two reference models, we show that the overall quality
can be predicted well by our proposed quality model. In
addition, based on model parameters, we can quantify the
impacts of different factors, namely segment quality, switch
amplitude, and content on the overall quality.

This paper is organized as follows. In Sect. 2, we high-
light the related work and our contributions. Section 3
presents our proposed model in detail. Subjective test re-
sults and evaluation of the quality model are presented in
Sect. 4. Section 5 discusses influence factors on the overall
quality. Finally, Sect. 6 concludes the paper.

2. Related Work

In general, the quality of experience (QoE) of a streaming
session is affected by the perceptual quality, initial delay, and
stalling (or interruptions). The perceptual quality is in turn
determined by 1) the quality amplitude (i.e., high or low) and
2) the quality variations of the session. Recent studies have
investigated, both qualitatively and quantitatively, different
factors that impact the quality of a session in HAS [10]–[20].

Regarding the impact of the total time on a certain
quality level on human perception, an observation in [13] is
that the time on the maximum quality level has a significant
impact on human perception. In [15], the impact of main-
tenance of low quality values is considered, and the authors
show that this impact grows exponentially with maintenance

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers



556
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.2 FEBRUARY 2017

time.
In addition, some qualitative observations have been

presented in recent literature regarding the impacts of qual-
ity switching on human perception. In [18], the authors give
some findings about the impacts of the amplitude and the
frequency of quality switches. In particular, for user satis-
faction, both the switching amplitude and the frequency of
quality switches should be kept as low as possible. In [19],
the authors also investigate the impact of quality switching
on human perception, including the impacts of the direction
(up/down), the amplitude (smooth/abrupt), and the number
of switches. Specifically, for up-switches, the perceptual dif-
ference between smooth and abrupt switches is negligible.
In contrast to up-switches, the higher the down-switching
amplitude is, the more negative its impact becomes. This
observation is the same as the conclusion in [13]. Regard-
ing the number of switches, the authors in [19] show that
the impact of switching frequency on perceptual quality is
negligible, which agrees with a finding in [13].

Recency is also one of factors affecting human percep-
tion. However, its impact actually has not been clear yet.
In recent literature, recency effect is formulated by different
time-weighted functions [14], [15], but these functions have
not been clearly proved by subjective tests with video con-
tents. Based on the analysis of subjective test results, the
authors in [19] observe that recency effect caused by quality
values at the end of a session is significant. In contrast, the
authors in [13] observe that recency effect can be neglected
if more than two switches occur.

The authors in [10] considered initial buffering time,
quality of segments and interruptions as metrics that directly
impact a session’s overall quality. Each segment quality
value is computed as a linear function of QP. The over-
all quality is then predicted as the accumulation of instant
quality values, which are weighted by human memory ef-
fects. The work in [16] investigated the impacts of QP and
interruptions on the overall quality which are based on a
methodology called Pseudo-Subjective Quality Assessment.
However, the work in [10] and [16] did not consider the
impact of quality variations on the overall quality.

The work in [14] proposed a model based on segment
quality values in the temporal dimension and the number of
switches. Each segment quality value is derived based on
bitrate and motion parameter of video content. It is claimed
that the quality values at the beginning and the end of a
session have higher impacts on user impression. So, the
weight of each segment is decided by the impression to user
based on memory effects. In [17], the authors presented
a QoE model, where the quality amplitude of a session is
represented by the average of the segment quality values.
Meanwhile, the factor of quality variations is represented
by the frequency, types, and temporal locations of quality
switching.

In [12], two quality models are proposed. In the first
model, quality variations in a session are decomposed into
frequency components. The overall quality is then predicted
from the quality levels of the composing frequency com-

ponents. It is observed that the frequency component with
the worst quality among all frequency components has the
biggest impact on the overall quality. The second model is
based on the median and the minimum of segment quality
values. Here, the minimum quality value can be considered
as a measure of quality variations. Though being very sim-
ple, the second model is found to have better performances
than the first one. The authors in [11], [20] proposed a model
which considered four quality metrics, namely PSNR/SSIM,
bitrate, version level, and segment quality in the mean opin-
ion score (MOS). The finding is that the segment-quality
based model provides the best performance. Specifically,
the overall quality is predicted from the average, the standard
deviation, and the switching frequency of segment quality
values. In other words, the average of segment quality val-
ues is considered as the session’s quality amplitude, and the
standard deviation and the switching frequency of segment
quality values are used to represent quality variations.

The work in [15] is one of the first studies that combines
multiple influence factors into a QoE model, namely initial
delay, stalling and quality variations. In this work, segment
quality values are obtained as VQM metric and the quality
variations are modeled by a heuristic function of low quality
values and switch amplitudes.

As mentioned, most of the previous quality models use
the average, the median, the maximum, the minimum, the
standard deviation of segment quality values, as well as the
number of switches, to predict the overall quality of a ses-
sion. However, the impacts of segment quality values and
switch amplitudes on overall quality are not fully understood
yet. In this paper, this problem is quantitatively tackled by
employing the segment quality histogram and the quality
gradient histogram of a session. Our key contributions in
this paper are as follows.

– First, we present a new quality model with very high
prediction performance for different videos.

– Second, we quantify of the weights of different seg-
ment quality values and highlight the importance of
high quality values in a session.

– Third, we show that switch-up events have a weight of
zero, but switch-down events (especially large switches)
have significant impacts on the overall quality.

– Fourth, the dependence of quality models on the content
is investigated for the first time in this work.

– Finally, based on the findings, various suggestions to
improve the quality of streaming service are provided.

It should be noted that the quality model proposed in
this paper can be extended with factors of the initial delay and
stalling in the same manner as [15]. Moreover, the recency
effect can be incorporated in our model as in [10].

3. Proposed Quality Model

In HTTP Adaptive Streaming, we assume that each segment
is represented by a quality value. Typically, QP, resolution,
and frame rate are factors affecting the segment quality val-
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ues. In this paper, we currently focus chiefly on the impact of
QP on the segment quality. However, because our proposed
model is essentially based on segment quality values (irre-
spective of QP, frame rate, or resolution), it could be applied
to the cases of different resolutions and frame rates. In fu-
ture work, we will consider applying our model to data sets
with multiple quality dimensions (i.e. resolution, frame rate
and QP). In this current work, each segment quality value is
modeled as a function of the segment’s average QP. Then the
distribution of segment quality values and the distribution of
switch amplitudes are used to predict the overall quality in
a session. Note that QP values can be easily obtained from
the headers of groups of pictures (GoP) and pictures/slices
of a segment.

3.1 Histogram of Segment Quality Values

Previous studies have identified and quantified the impact of
different factors on the perceptual quality, such as QP [2], [3],
resolution [5], frame rate [6], PSNR [7]. In this paper, we
assume that video versions have the same frame rate and the
same resolution. We adopt the model in [2] to determine the
segment quality based on the average QP. When the versions
have different resolutions and frame rates, segment quality
values can be predicted in a similar manner as shown in [2].

In H.264/AVC, every increase of 6 in QP is equal to a
double of quantization step size (QS) [9]. Specifically, QS
and QP are related by

QS = 2
QP−4

6 . (1)

The video quality QQS of a segment given quantization
step size QS is defined by [2]:

QQS = Qmin ×
1 − e

−σ
(
QSmin

QS

)
1 − e−σ

, (2)

where Qmin is the video quality given the lowest quantization
step size QSmin and σ is a model parameter.

In our method, segment quality values of each session
are split into N bins {BQn } where n ∈ {1, 2, . . . , N }. Each
bin BQn corresponds to an interval IQn of segment quality
values, which is defined by

IQn =
[
n − γLn, n + γUn

)
, (3)

where γUn and γLn are parameters to define the width of the
interval IQn .

The histogram of segment quality values, which repre-
sents the distribution of different bins, is defined based on
the frequency of segment quality values within the corre-
sponding intervals. In the current work, the quality is based
on the mean opinion score (MOS), which varies in the range
[1, 5]. So we split segment quality values into N=5 bins with
γUn = γLn = 0.5 (1 ≤ n ≤ 5).

An example of the segment quality histogram of a
streaming session is shown in Fig. 1, where the frequency
values are normalized to the range [0, 1]. We can see that

Fig. 1 An example of the segment quality histogram.

the segment quality values vary from 1 to 5 (MOS), and
about 25% of segment quality values in this session belong
to bin 1 and bin 2 of the histogram.

3.2 Histogram of Segment Quality Gradients

As mentioned above, quality variations are considered as the
prominent feature (and also challenge) of HTTP Adaptive
Streaming. In this study, we use the concept of “quality
gradient” to represent quality variations. The instant gradient
of segment quality values is given by

∇Q =
∂Q
∂t
, (4)

where ∂Q is the difference between segment quality values.
Currently, we use the quality changes between two consec-
utive segments to represent the instant gradients of a ses-
sion. A positive (negative) gradient represents a switch-up
(switch-down).

As the quality is mostly affected by switch-down events,
we mainly focus on the negative gradients. Specifically, the
negative gradients are split into M groups, corresponding
to different switch-down amplitudes. So the histogram of
instant gradient values is composed of M+2 bins {B∇Qm }
where m ∈ {−M,−M + 1, . . . ,−1, 0, 1}. Each bin B∇Qm

corresponds to an interval I∇Qm of instant gradient values,
which is defined by

I∇Qm
=
[
m − δLm,m + δUm

)
, (5)

where δUm, δLm are parameters to define the width of the
interval I∇Qm

.
Currently, M is set to 4 and the histogram of instant gra-

dients has 6 bins. The bin B∇Q1 corresponds to the interval
of the positive instant gradient values, which is defined by
I∇Q1 = [0.5, 4.5). The other bins correspond to the intervals
with δLm = δUm = 0.5 (−4 ≤ m ≤ 0).

It can be seen that the bin B∇Q1represents the quality
increases, the bin B∇Q0 represents the quality maintenance
(or unchange), and the bins {B∇Qm

} with (−4 ≤ m < 0)
represents the quality decreases.

The instant gradient histogram, which belongs to the
same session of Fig. 1, is shown in Fig. 2, where the fre-
quency values are also normalized to [0, 1]. This histogram
shows that there are a lot of switch-up events (for all switch
amplitudes) in this session. Meanwhile, the number of
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Fig. 2 An example of the instant gradient histogram.

switch-down events is very small, especially with switch
amplitudes of −3 or −4 (MOS).

3.3 Overall Quality Model

The overall quality of a session is modeled by a pooling
strategy of the above statistics of segment quality values and
quality gradients. Let FQn denote the frequency of segment
quality values in bin BQn (1 ≤ n ≤ N ), and F∇Qm

denote the
frequency of quality gradients in bin B∇Qm

(−M ≤ m ≤ 1).
The predicted overall quality of a session Qpred is given by

Qpred =

N∑
n=1
αnFQn +

1∑
m=−M

βmF∇Qm, (6)

where αn and βm are the weights of the corresponding fre-
quencies FQn and F∇Qm in the quality model.

As mentioned, the total time on each quality level and
quality switching are factors affecting on human perceptual
quality. In Eq. (6), the time on each quality level is rep-
resented by the component of segment quality values, and
quality switching is represented by the component of quality
gradients. In particular, the time on each quality level in a
session is represented by the frequency of segment quality
values in a corresponding bin. Regarding quality switching,
each switching type determined by the switching direction
and the switching amplitude is represented by quality gradi-
ent value, and the number of quality switches of each type
in a session is represented by the frequency of the corre-
sponding quality gradient values. Based on the values of αn
and βm, the impacts of the time on quality levels and qual-
ity switching (including the direction, the amplitude, and
the number of switches) on the human perception could be
quantified. More discussions regarding the impacts of these
factors will be provided in Sect. 5. In the following sections,
content-specific and content-generic quality models will be
obtained and validated by subjective data.

4. Model Evaluation and Analysis

4.1 Experiment Settings

To create versions for HTTP Adaptive Streaming, there are
two kinds of video encoding modes, namely Constant Bi-
trate (CBR) (e.g. [11], [14]) and Variable Bitrate (VBR)
(e.g. [12], [28]). With CBR mode, it is not easy to obtain

Fig. 3 Snapshots of three test videos.

segment quality values because the quality actually varies
during a version or even a segment. Therefore, obtaining
the segment quality values from the constant bitrate or ver-
sion index of each version like in [11], [14] is not always
correct. In contrast to CBR mode, although VBR mode has
variable bitrate, it has consistent quality during each version.
Therefore, the segment quality values can be accurately ob-
tained from encoding parameters. In this study, a dataset
in VBR mode is used to build and to evaluate our proposed
model. Note that our model can be directly employed in
VBR streaming [28]. In future work, we will investigate our
model in the context of CBR streaming.

In this experiment, we use three videos of 74 seconds
(1776 frames) from public short movies [21], namely Big
Buck Bunny (denoted by BBB), Sintel (denoted by ST), and
Tears of Steel (denoted by ToS) with starting timestamps
of 00:05:00, 00:00:20, and 00:04:30, respectively. Fig. 3
shows the snapshots of the video contents. Features of the
videos are presented in Table 1. The videos are encoded by
using H.264/AVC (libx264) with a frame rate of 24 fps and
a resolution of 1280x720. For each video, 9 versions are
generated with corresponding QP of 20, 24, 28, 32, 36, 40,
44, 48, and 52. The duration of each segment is 2 seconds. A
GoP structure of “IBBP” with a GoP length of 24 is used for
all videos. Our data set has 49 streaming sessions. The first
44 sessions are generated using two adaptation methods of
[22], [23] and 34 bandwidth traces (extracted from [24]) with
different types of variations. The average bandwidth of each
trace varies between 1Mbps and 4 Mbps. Figure 4 shows
some bandwidth traces of the experiment. Additionally, we
generate 5 sessions with fixed QPs, which are 24, 32, 36,
40 and 48. We can see that the first 44 sessions are of
the variable-quality type and the last 5 sessions are of the
constant-quality type.

Before doing actual subjective tests, the subjects are
trained to get accustomed to the rating procedure and the
range of video quality. During the tests, the test sequences
of each video are randomly presented. The sequences are
displayed on a 14-inch screen with a resolution of 1366×768
and a black background. There are totally 25 subjects taking
part in this experiment.

The Absolute Category Rating (ACR) method is used
in our experiments [25]. The viewers give a rating score at
the end of each test sequence with the score ranging from 1
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Table 1 Features of source videos.
Video Content Type Motion

activity
Spatial com-
plexity

Video #1
(BBB)

Slow move-
ments of char-
acters

Animated video Low Complex
(Forest scene)

Video #2
(Sintel)

A fight be-
tween 2 char-
acters

Animated video High Simple
(Snow moun-
tain)

Video #3
(ToS)

Conversations
of characters

Natural video Low Complex
(Street scene)

Fig. 4 Examples of bandwidth traces.

Fig. 5 CDF of MOS values corresponding to 49 streaming sessions.

Fig. 6 Confidence intervals of the subjective MOSs of each video.

(worst) to 5 (best). Every 20 minutes, there is a break for the
subjects. The mean opinion score (MOS) is determined as
the average of viewers’ scores.

Figure 5 shows the distribution of the MOS scores cor-
responding to 49 streaming sessions. We can see that the
MOS values span across the range [1, 5]. The 95% con-
fidence intervals of the 49 streaming sessions of all videos
are shown in Fig. 6. The confidence intervals are generally
smaller at the two ends of the score range. This is because
the subjects are more confident in rating sessions of very

Fig. 7 Normalized MOS and predicted normalized MOS.

Table 2 Quality model.
Video1
(BBB)

Video2
(ST)

Video3
(ToS)

σ 7.4 6.1 7.4
PCC 0.998 0.996 0.999
RMSE 0.14 0.13 0.05
ACI 0.22 0.26 0.18

high (or low) quality scores.

4.2 QP-MOS Relationship

As mentioned, the quality of a segment can be represented
by different measures, e.g. PSNR, subjective MOS, objective
MOS, bitrate, etc. As our goal is to obtain a quality model
for real-time session monitoring, we use the objective MOS
predicted from QP (or QS).

To obtain segment quality values based on QP, we em-
ploy 7 test sequences of with the corresponding QP of 20, 24,
28, 32, 36, 40, and 44 for each of the three videos described
in Sect. 4.1. Figure 7 shows the normalized MOS versus QS
and the 95% confidence intervals for the BBB video. For
closed-form relationship, the function of Eq. (2) is fitted to
the corresponding data.

Table 2 summarizes the values of model parameter σ,
the Pearson Correlation Coefficient (PCC) values, the Root
Mean Squared Error (RMSE) values, and the average 95%
confidence intervals (ACI) of the experiment. We can see
that the model well matches the quality for each video. In
practice, parameter σ can also be obtained by machine learn-
ing [25]. Based on the corresponding value of σ and content
features, the training videos are clustered into groups. Then,
classification is performed with any test video to derive the
corresponding value of σ.

4.3 Prediction Performance

The segment quality values in each session are determined
by the corresponding QP values of the segments. Figure 8
shows an example of segment quality variations given a band-
width trace.

Similar to other studies (e.g. [4], [11], [16]), the gen-
erated sessions in this experiment are divided into two sets,
namely a training set of 29 sessions and a test set of 20 ses-
sions. Parameters {αn, βm} in Eq. (6) for content-specific
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Table 3 Parameters of the proposed quality model.
Parameter Video1

(BBB)
Video2
(ST)

Video3
(ToS)

All
videos

α1 1.2 1.3 1.2 1.2
α2 1.6 2.0 1.8 1.8
α3 2.6 3.4 2.6 2.8
α4 4.2 3.9 4.1 4.1
α5 4.6 4.8 4.6 4.7
β1 0.0 0.0 0.0 0.0
β0 0.0 0.0 0.0 0.0
β−1 -1.7 -1.3 -1.6 -1.5
β−2 -1.7 -5.5 -2.7 -3.2
β−3 -15.4 -9.7 -13.9 -11.1
β−4 -15.4 -13.1 -13.9 -11.1

Fig. 8 An example of segment quality variations in a session.

Table 4 Performance of the proposed model.
Set Metrics Video #1 Video #2 Video #3 All videos

Training PCC 0.95 0.97 0.95 0.95
RMSE 0.26 0.20 0.26 0.27

Test PCC 0.96 0.94 0.95 0.94
RMSE 0.28 0.25 0.24 0.28

models (i.e. for each test video) and a content-generic model
(i.e. for all test videos) are determined by curve-fitting to
the MOS data of the corresponding training data. Then,
the prediction performance of a model is evaluated by the
corresponding test set.

The parameters of our content-specific and content-
generic quality models are shown in Table 3. It can be seen
that the lower the segment quality value is, the smaller the
corresponding weight in the model is. In addition, the weight
of positive gradients is zero. This means that it is unnec-
essary to quantify the weights of different positive gradient
values (like negative gradients). However, when the quality
decreases, the lower the quality gradient value is, the higher
the impact on the overall quality becomes. More discussion
about the impacts of different factors in our quality model
will be provided in the next section.

The relationship between the predicted MOS and the
subjective MOS in the training set and the test set for each
video and all videos are shown in Fig. 9. The accuracy for the
training set and the test set (i.e. PCC and RMSE) is shown in
Table 4. For the test sets, our model achieves very high PCC
values (0.94∼0.96) and low RMSE values (0.24∼0.28).

In this part, we also compare our proposed model with
two reference methods of [12] and [11], using the same
training sets and test sets. Note that segment quality values
in these models are also MOS. The best quality model in

Fig. 9 Scatter diagram of subjective MOS and predicted MOS.

Table 5 Model parameters of the reference methods.
Quality
models

Para-
meter

Video1
(BBB)

Video2
(ST)

Video3
(ToS)

All
videos

Qref−1 [12] α 0.6 0.7 0.5 0.6
β 0.4 0.4 0.5 0.4

Qref−2 [11]
α 1.0 1.0 1.0 1.0
β 0.69 0.6 1.0 0.7
γ 0.0 0.0 0.0 0.0

[12] predicts the overall quality from the median and the
minimum of the segment quality values as follows.

Qre f−1 = αQmedian + βQmin, (7)

with α and β being the model parameters.
In [11], the overall quality is predicted from the average,

the standard deviation, and the switching frequency of the
segment quality values as follows.

Qre f−2 = αQaver − βQstd − γQSwFreq, (8)

with α, β and γ being the model parameters.
The parameters of content-specific and content-generic

models using the reference methods are shown in Table 5.
The PCC and RMSE of the two reference models and our
proposed model, together with average 95% confidence in-
tervals (ACI) of the experiment, are shown in Table 6.

It can be seen that, compared to the two reference mod-
els, our model achieves higher PCC values and lower RMSE
values. The model of [11], which uses average quality and
quality standard deviation, performs better than that of [12].
Interestingly, the weight of switching frequency in Eq. (8)
is zero, implying that this factor has no contribution in the
overall quality, which is inline with the qualitative finding
in [13]. In addition, among the three considered models,
RMSE of our proposed model not only is the lowest but also
is lower than the corresponding ACI for all test videos.

The above results show that, using the proposed model,
we can not only quantify the impacts of segment quality
values and quality gradients on the overall quality, but also
predict the overall quality accurately. In the next section, we
will discuss different influence factors in the quality models.
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Table 6 Comparison of the quality models.
Quality
models

Metrics Video1
(BBB)

Video2
(ST)

Video3
(ToS)

All
videos

Qre f −1[12] PCC 0.91 0.84 0.92 0.88
RMSE 0.41 0.44 0.32 0.43

Qre f −2[11] PCC 0.96 0.91 0.93 0.93
RMSE 0.35 0.32 0.28 0.34

Qpred
PCC 0.96 0.94 0.95 0.94
RMSE 0.28 0.25 0.24 0.28

Average confidence
interval (ACI) 0.29 0.29 0.28 0.29

5. Discussions

5.1 Impacts of the Number of Quality Bins

In this part, we investigate the accuracy of the proposed
model with respect to the number of the segment quality
bins N, where N is 3, 5, 7. The intervals of segment quality
values for N of 3 and 7 are shown in Table 7. For each
N, we randomly select 20 training sets, each set includes 29
streaming sessions among 49 sessions of each video. In each
selection, the 20 remaining sessions is used for the test set.
The performance of our model is averaged over the 20 sets.
Note that the number of quality gradient bins M is changed
according to the value of N. In particular, the number of
quality gradient bins corresponding to N = 3 and N = 7 are
M = 2 and M = 6, respectively.

Figure 10 shows the average PCC and the average
RMSE of all test sets versus the number of the segment
quality bins for each video. We can see that, in general, PCC
increases and RMSE decreases as N is increased from 3 to 7.
However, the performance difference between N=5 and N=7
is very small, especially for BBB and ST videos. In addi-
tion, PCC values are equal to or higher than 0.94, and RMSE
values are equal to or lower than 0.29 for all test sets when
N is equal to or higher than 5. Therefore, to achieve good
performance and low complexity for the proposed model, a
reasonable number of segment quality bins is 5. Besides, it
is interesting that the performance with N=3 is not bad. This
could be because the users cannot differentiate many close
quality levels. In future work, we will consider customizing
both the histogram of segment quality and the histogram of
quality gradient.

5.2 Impact of Training Set Size

In this part, we investigate the accuracy of the proposed
model with respect to the training set size. Among 49 ses-
sions, we select S sessions for the training set, where S is
20, 24, 26, 28, 29, 30, 32 and 34 for each video. The (49-S)
remaining sessions of each video are used for the test set. For
each value of S, 20 different training sets of size S are ran-
domly selected. The performance of our model is averaged
over the 20 sets.

Figure 11a shows the average PCC corresponding to
the training set and the test set versus the training set size

Table 7 Interval values of 3 and 7 segment quality bins.

N Intervals IQn

IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7

3 [1.0;2.3) [2.3;3.6) [3.6;5.0] NA

7 [1.0;1.6) [1.6;2.2) [2.2;2.8) [2.8;3.4) [3.4;4.0) [4.0;4.6) [4.6;5.0]

Fig. 10 PCC and RMSE vs. the number of segment quality bins.

Fig. 11 Performance vs. size of training set for each video: (a): left,
PCC; (b): right, RMSE.

for each video. We can see that, for the training set, when
S increases, PCC decreases. On the other hand, for the test
set, PCC is improved as S increases. When S is equal to or
higher than 28, PCC values of the test set are higher than
0.92 for all videos.

Similar results of the average RMSE are shown Fig. 11b.
For the training set, when S increases, RMSE increases as
well. On the other hand, for the test set, RMSE decreases as S
increases. In other words, when S increases, the MOS values
of sessions in the test set are more accurately predicted. We
can see that, when S is equal to or higher than 28, RMSE
values of both the training set and the test set are stable.

Therefore, to achieve stable and good performance for
the proposed model, at least 28 sessions should be used for
the training set of each video. Based on the dataset we have,
the RMSE values are in the range of 0.19∼0.27 for training
sets and are in the range of 0.26∼0.29 for test sets.

5.3 Impacts of Model Parameters and Their Implications

As mentioned, the overall quality is affected by quality am-
plitudes and quality variations. In previous models, the first
component is represented by the average [11], [17] or the
median [12] of the segment quality values. Instead of using
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the average quality, the study in [13] focuses on the impacts
of different quality levels (in the context of 2-3 levels). It is
observed that the time (or frequency) on the highest video
quality level has a significant contribution to the overall qual-
ity. Meanwhile, the second component is represented by the
standard deviation of quality values [11] and switching fre-
quency [11], [14], or simply by the minimum quality value
[12].

Our proposed model can quantify the weight of each
segment quality bin of the histogram, which is the contri-
bution in the overall quality. From Table 3, we can see that
the lower the segment quality value is, the smaller the corre-
sponding weight in the model is. One of the implications of
this finding is that the highest quality bin has the biggest con-
tribution to the overall quality, which is similar to the finding
in [13]. Note that, only two quality levels are considered in
[13] while our solution supports any kinds of quality value
distributions.

In addition, our quality model also quantifies impacts
of variations by the weight of each quality gradient bin.
Regarding quality decreases, Table 3 shows that the higher
the switch amplitude (or the lower the bin of negative quality
gradient) is, the larger the absolute value of the weight (i.e.
contribution) in the overall quality is. Especially, the weight
of bin −3 is equal to the weight of bin −4 for video #1 and
video #3 and content-generic case. This implies that these
types of quality decreases have the same negative impact on
users and should be avoided. This supports the motivations
of proposals to avoid large quality decreases (e.g. [26], [27]).

On the other hand, when the quality increases, the
weight of the positive instant gradients in the model is zero.
That means, while the impact of switch-down events are
significant, the impacts of switch-up events themselves are
negligible. This could be explained that, when the quality
is increased, the important factor to the overall quality is the
time on higher quality values, not the switches themselves.
So, a streaming client should focus on switching up to, and
then maintaining, a high quality level, rather than gradual
switching-up. To better understand the impacts of the aver-
age, the median, the minimum, etc., Fig. 12 illustrates some
cases of segment quality variations. We can see that these
cases have the same statistics (namely the median, the min-
imum, the average, and the standard deviation of quality
values). However, the switch amplitudes of these cases are
very different, and so their overall quality measures are also
different. Thus, the median, the minimum, the average, and
the standard deviation are not able to fully represent quality
variations in a streaming session. Similarly, using switch-
ing frequency (or number of switches), all types of switch
amplitudes could not be differentiated. Moreover, as seen in
the evaluation of the model of [11] (Sect. 4.3), the weight of
switching frequency turned out to be zero. So, the switching
frequency should not be used in a quality model.

From the above results and discussion, it can be seen that
using the histograms of segment quality values and quality
gradients is more flexible and comprehensive than existing
models, which use the medium, the median, the standard de-

Fig. 12 Examples of the quality variations with the same statistics.

viation, or the minimum, etc., of the segment quality values.
Also, our model provides the insights into the contributions
of different quality values and gradients, which are not iden-
tified or quantified in existing quality models.

5.4 Impact of Content Characteristics

One of the goals in this study is to investigate the dependence
of overall quality on the content. It should be noted that this
issue has not been considered in previous studies of adaptive
streaming. From Table 3, it can be seen that the behaviors
of the model parameter sets for all test videos are consistent
and actually dependent on the content. For all test videos,
the impacts of quality gradients in bin −3 and bin −4 on the
overall quality are the most significant. However, video #2
has high motion activity, so the weight of bin −2 is much
higher than in the other videos.

The performance of a quality model is also dependent
on the content. For quality models of [12] and [11], the
performance in term of PCC is the lowest with video #2.
In addition, from Table 4, we can see that generic model
for all videos always have lower performance (for both PCC
value and RMSE value) than content-specific models for the
test sets. It is because that the impacts of the segment qual-
ity values and the switch amplitudes on the overall quality
depend on the content characteristics (e.g. low or high mo-
tion activity). In practice, specific quality models could be
generated for different content types using machine learning
approaches (e.g. [25]).

It should be noted that, in HAS, the metadata of each
video content is sent to the client before a streaming session.
So, the above finding suggests that content-specific mod-
els could be obtained in advance and then included in the
metadata for the purpose of QoS monitoring and adaptation.

5.5 Investigation with a Test Set of Different Resolutions

In this part, an evaluation of the above model given a test
set of different resolutions is conducted. Now, the inputs to
the model are not the QP values, but segment quality values
obtained from a subjective test.

For each of the three videos of Sect. 4.1, an adaptation
set of five versions having resolutions of 1280x720, 854x480,
640x360, 426x240, and 256x144 is generated. Each version
is encoded with the QP of 24 and the frame rate of 24 fps. For
each video, a test set of 20 streaming sessions is generated
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Fig. 13 Subjective experiment results with fixed resolution.

Table 8 Performance of our model for the test set of different resolutions.
Metrics Video1

(BBB)
Video2
(ST)

Video3
(ToS)

All
videos

PCC 0.95 0.92 0.93 0.91
RMSE 0.27 0.29 0.29 0.26

using the adaptation method of [22] and 20 bandwidth traces
(extracted from [24]).

To validate our proposed model for the test set of dif-
ferent resolutions, a subjective test is conducted with par-
ticipations of 25 subjects. This subjective test includes two
parts for each video. The first part, which includes 5 test
sequences with 5 corresponding fixed resolutions, is used
for determining the versions’ MOS scores, which are shown
in Fig. 13. The quality value of each segment is then the
MOS score of the corresponding version. The second part
is used for validating the obtained model for the test set of
20 streaming sessions above. The distribution of segment
quality values and the distribution of quality gradients are
used to predict the overall quality of a session.

Table 8 shows the average PCC and the average RMSE
corresponding to the test set of different resolutions for each
video. We can see that, our model achieves high PCC values
(0.91∼0.95) and low RMSE values (0.26∼0.29). Therefore,
our proposed model, which is obtained by a training set
of varying-QP sequences, can also be applied to sequences
with varying-resolutions. More investigations with data sets
of different quality dimensions will be carried out in our
future work.

6. Conclusions

In this paper, we have presented a quality model for HTTP
adaptive streaming. The model took into account the seg-
ment quality histogram and the quality gradient histogram of
a session. It was shown that the proposed quality model had
very high prediction performance for different videos. Espe-
cially, we showed that switching-up events had a weight of
zero, but switching-down events (especially large switches)
had significant impacts to the overall quality. It was also
found that model parameters were dependent on content char-
acteristics. Based on these findings, various suggestions to
improve the quality of streaming service were provided. For
future work, we will employ our quality model to evaluate in
real-time the performance of different adaptation strategies
for adaptive streaming.
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