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SUMMARY The present paper introduces a novel type of structured
ternary sequences having a zero-correlation zone (���) for both periodic
and aperiodic correlation functions. The cross-correlation function and the
side lobe of the auto-correlation function of the proposed sequence set are
zero for phase shifts within the ���. The proposed ��� sequence set can be
generated from an arbitrary pair of an Hadamard matrix of order `h and a
binary/ternary perfect sequence of length `p . The sequence set of order 0 is
identical to the r-th row of the Hadamard matrix. For m � 0, the sequence
set of order (m + 1) is constructed from the sequence set of order m by
sequence concatenation and interleaving. The sequence set has `p subsets
of size 2`h . The periodic correlation function and the aperiodic correlation
function of the proposed sequence set have a ��� from �(2m+1 � 1) to
2m+1 � 1. The periodic correlation function and the aperiodic correlation
function of the sequences of the i-th subset and k-th subset have a ��� from
�2m+2 (`h +1)(( j � k) mod `p ) to �2m+2 (`h +1)(( j � k) mod `p ). The
proposed sequence is suitable for a heterogeneous wireless network, which
is one of the candidates for the fifth-generation mobile networks.
key words: zero-correlation zone, ternary sequence, asymmetric ���, inter-
subset ���

1. Introduction

A sequence set having the property that the out-of-phase
autocorrelation and cross-correlation functions are all equal
to zero in a specified zone of phase shift is called a
zero-correlation zone (���) sequence set [6]. Sequences
having good correlation properties, such as ��� sequence
sets, perfect sequences, complementary sequences, and M-
sequences, are used in various applications, including com-
munication systems, radars, position sensing, and ultrasonic
imaging [3], [28], [40], [59].

We have proposed a class of ��� sequence sets, which
are sometimes referred to as asymmetric ��� sequence sets,
having subsets and a wider inter-subset ��� as follows
[16], [21]: The correlation function of the sequences of a
pair of di�erent subsets, referred to as the inter-subset corre-
lation function, has a ��� with a width wider than that of the
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correlation function of sequences of the same subset (intra-
subset correlation function). There exist several sequence
sets having similar subset and inter-subset correlation func-
tions, which are wider than intra-subset correlation functions
[13], [16], [18]–[21], [26], [35], [43], [44], [47], [48], [52],
[55]–[58], [61]. We have proposed a class of ternary ���
sequence sets for both periodic and aperiodic correlation
functions whose sequence sets can work with both even and
odd correlations for spectrum spreading communications.
[13], [16], [18]–[21].

The previously reported sequence set in [16] has sim-
ple subsets. However, we need a more complex structure of
subsets for some applications. The proposed sequence con-
struction scheme is an enhancement of previously reported
schemes [13], [16], [18]–[20]. In this paper, we introduce a
novel type of structure of the subsets.

For a given Hadamard matrix of order `h and a binary or
ternary perfect sequence of length `p , the proposed sequence
set of order m has `p subsets of size 4`h for all m � 0. The
length of the sequence is equal to 2m+2(`h +1)`p; The phase
shift of the ��� for the whole sequence set is from�(2m+1�1)
to (2m+1 � 1).

The width of the ��� between a sequence of the j-th
subset and one of the k-th subset is almost proportional to the
di�erence | j � k |, which is defined as the distance between
the j-th subset and the k-th subset. The structure of the
proposed intra-subset ��� is quite di�erent from previously
reported structures [13], [16], [18]–[20], [26], [35], [47],
[57], [61].

In this paper, we refer to a ��� sequence set which has
a particular structure for the width of the ��� between a
sequence of the j-th subset and one of the k-th subset as a
structured ��� sequence set.

The wide intra-subset ��� of the proposed sequence set
can achieve improved performance in applications of ���
sequence sets. For the application of a ��� sequence set
to wireless communication systems, the ��� is mainly used
for synchronization and channel separation. A ��� allows
the signal time-delay within it to be canceled. Since the
signal delay is longer for a longer signal path, the signal
delay between a pair of devices of di�erent cells is longer
than the delay between a pair of devices of a common cell.
Thus, the wide intra-subset ��� of the proposed sequence
set can cancel a longer signal delay between di�erent cell
devices. For wireless communication applications, we must
consider the distance between the particular cells. We need

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers
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to prepare a longer ��� for a cell-pair which has a longer
distance, which the existing ��� sequences are unable to
achieve. We can assign subsets to cells provided that the
path lengths of the nodes related to the subsets are longer for
the cells which are farther apart from each other. Then, the
proposed sequence set can realize a longer ��� for a greater
distance between cells.

Applications of a ��� sequence set to ���� systems
have been widely investigated. In a ��-���� system, a
sequence set is used for channel separation. However, inac-
curate synchronization and multi-path propagation cause a
time delay that destroys the orthogonality of the channel sep-
aration. In an approximately synchronized ���� (��-����)
system or quasi-synchronous ���� (��-����) system, a ���
sequence set allows co-channel interference to be eliminated
[40]. The application of a ternary ��� sequence set to an
��-���� system was demonstrated in [41]. The proposed
ternary ��� sequence set can be applied to ��-���� in the
same manner. The time delay is shorter for the nodes closer
to the access point. In the case of the signals from a node far
from the access point causing a larger time delay, the node is
usually located in the cell of a di�erent access point. A subset
of the proposed tree-structured sequence set can be assigned
to a cell. As mentioned above, for the cells which are distant
from each other, assigning subsets to distant nodes should
be performed according to the path lengths of the nodes.

In this paper, after an examination of preliminary con-
siderations in Sect. 2, a scheme for constructing the proposed
sequence set is presented in Sect. 3. The properties of the
proposed sequence sets are shown in Sect. 4. The applica-
tions of the proposed sequence sets are discussed in Sect. 5.
Finally, we present some concluding remarks in Sect. 6.

2. Preliminary Considerations

The following is a brief introduction of the definitions and
notation used in the paper.

The floor function of x, bxc, gives the greatest integer
that is less than or equal to x; the ceiling function of x, dxe,
gives the least integer that is greater than or equal to x.

The quotient and modulo operations for integers a and
b are denoted by a ↵ b and a mod b for b > 0, respectively,
and are defined as follows:

a ↵ b =
8><>:

h
a
b

i
if b > 0,j

a
b

k
if b < 0,

(1a)

a mod b = a � b(a ↵ b). (1b)

A set of k sequences vr of length `v , {v0, v1, . . . ,
vk�1}, is denoted by {vr |0  r < k}, where vr =
[vr, 0, vr, 1, . . . vr, `v�1].

The norm of a sequence vr of length `v is denoted by
|vr | and is defined as

P`v�1
j=0 vr, j vr, j .

The aperiodic correlation function
�
✓vr ,vs (⌧), the peri-

odic correlation function
�
✓vr ,vs (⌧), and the odd correlation

function
�
✓vr ,vs (⌧) of a pair of sequences vr and vs of length

`v for a phase shift ⌧ are defined, respectively, as follows:

�
✓vr ,vs (⌧) =

8>>>><>>>>:

P`v�⌧�1
j=0 vr, j vs, j+⌧ if 0  ⌧ < `v,
P`v+⌧�1

j=0 vr, j�⌧ vs, j if �`v < ⌧ < 0,
0 if |⌧ | � `v ;

(2a)

8k, 0  ⌧ < `v,
�
✓vr ,vs (k `v + ⌧) =

�
✓vr ,vs (⌧) +

�
✓vr ,vs (⌧ � `v ), and (2b)

�
✓vr ,vs (k `v + ⌧) =

�
✓vr ,vs (⌧) �

�
✓vr ,vs (⌧ � `v ). (2c)

When each of sequences r and s has a run of zero
elements of length `0 at its tail, the correlation functions of
the sequence pair r and s , each of length `v , satisfy the
following: If the absolute value of phase shift |⌧ | is less than
or equal to the run length `0, then the aperiodic correlation
function

�
✓r,s (⌧), the periodic correlation function

�
✓r,s (⌧),

and the odd correlation function
�
✓r,s (⌧) have the same value.

This implies the following:

For |⌧ | < `0 + 1,
�
✓r,s (⌧) =

�
✓r,s (⌧) =

�
✓r,s (⌧). (3)

Here a k-element shift S (k; vr ) of a sequence vr of length
`v is defined as follows:

S (k; vr ) = [vr, k, vr, k+1, . . . , vr, `v�1, vr, 0, . . . , vr, k�1]. (4)

Sequence shifting is used for the generation of the proposed
sequence set.

The correlation functions of S ( j; vr ) and S (k; vs)
satisfy the following [12]:

�
✓S ( j; vr ),S (k; vs ) (⌧) =

�
✓vr ,vs (k � j + ⌧). (5)

2.1 Sequence Interleaving

An interleaved pair of sequences I (+) (vr, vs) and
I (�) (vr, vs) of a pair of sequences vr and vs , each of length
`v , is defined as follows:

I (+) (vr, vs) =
⇥
vr, 0, vs, 0, vr, 1, vs, 1, · · · , vr, `v�1, vs, `v�1|                                                {z                                                }

2`v

⇤
, (6a)

I (�) (vr, vs) =
⇥
vr, 0, �vs, 0, vr, 1, �vs, 1, · · · , vr, `v�1, �vs, `v�1|                                                       {z                                                       }

2`v

⇤
. (6b)

The correlation functions of I (+) (vr, vs) and I (�) (vr0, vs0 )
satisfy the following [12]:

�
✓I (+) (vr ,vs ),I (+) (vr0,vs0 ) (2⌧)

=
�
✓vr ,vr0 (⌧) +

�
✓vs,vs0 (⌧), (7a)
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�
✓I (+) (vr ,vs ),I (+) (vr0,vs0 ) (2⌧ + 1)

=
�
✓vr ,vs0 (⌧) +

�
✓vs,vr0 (⌧ + 1), (7b)

�
✓I (�) (vr ,vs ),I (�) (vr0,vs0 ) (2⌧)

=
�
✓vr ,vr0 (⌧) +

�
✓vs,vs0 (⌧), (7c)

�
✓I (�) (vr ,vs ),I (�) (vr0,vs0 ) (2⌧ + 1)

= �
�
✓vr ,vs0 (⌧) �

�
✓vs,vr0 (⌧ + 1), (7d)

�
✓I (+) (vr ,vs ),I (�) (vr0,vs0 ) (2⌧)

=
�
✓vr ,vr0 (⌧) �

�
✓vs,vs0 (⌧), (7e)

�
✓I (+) (vr ,vs ),I (�) (vr0,vs0 ) (2⌧ + 1)

= �
�
✓vr ,vs0 (⌧) +

�
✓vs,vr0 (⌧ + 1), (7f)

�
✓I (�) (vr ,vs ),I (+) (vr0,vs0 ) (2⌧)

=
�
✓vr ,vr0 (⌧) �

�
✓vs,vs0 (⌧), (7g)

�
✓I (�) (vr ,vs ),I (+) (vr0,vs0 ) (2⌧ + 1)

=
�
✓vr ,vs0 (⌧) �

�
✓vs,vr0 (⌧ + 1). (7h)

Equations (7a)–(7h) are used to ensure that the proposed
sequences have ���.

2.2 Sequence Concatenation

We use a sequence concatenation C (aj, vr ) of sequence vr
of length `v with a sequence aj of length `a as follows:

C (aj, vr )
= [C(aj, vr )0,C(aj, vr )1, . . .C(aj, vr )`a`v�1]
= [a j,0vr, . . . , a j,`a�1vr ]
=
⇥

a j,0vr, 0, . . . , a j,0vr, `v�1|                        {z                        }
`v

,

a j,1vr, 0, . . . , a j,1vr, `v�1|                        {z                        }
`v

, . . . ,

a j,`a�1vr, 0, . . . , a j,`a�1vr, `v�1|                                {z                                }
`v

⇤

9>>>>>>>>>>>=>>>>>>>>>>>;

`a . (8a)

From the above definition of C (aj, vr ), we have the follow-
ing:

For i = `vi
0 + i

00,

C(a j,,vr )i = C(a j,,vr )`v i0+i00 = a j,i0vr, i00 . (8b)

The correlation functions of C (aj, vr ) and C (ak, vs) sat-
isfy the following:

For ⌧ = `v⌧0 + ⌧00,
�
✓C (a j,vr ),C (ak,vs ) (⌧)

=
�
✓C (a j,vr ),C (ak,vs ) (`v⌧0 + ⌧00)

=

`a`v�1X

i=0
C(aj, vr )iC(ak, vs)i+`v⌧0+⌧00

=

`a�1X

i0=0

`v�1X

i00=0

⇣
C(aj, vr )(`v i0+i00)

C(ak, vs)(`v (i0+⌧0)+(i00+⌧00))
⌘

=

`a�1X

i0=0

`v�1X

i00=0

⇣
a j,i0vr, i00

a j,(((`v (i0+⌧0)+(i00+⌧00))↵`v ) mod `a )

vs, ((`v (i0+⌧0)+(i00+⌧00)) mod `v )
⌘
. (9a)

We also have the following:

(`v (i0 + ⌧0) + (i00 + ⌧00)) ↵ `v

=
8><>:

i
0 + ⌧00 if 0  i

00 + ⌧00 < `v
i
0 + ⌧00 + 1 if `v  i

00 + ⌧00 < 2`v .
(9b)

Putting these together, we obtain the following:

For ⌧ = `v⌧0 + ⌧00,
�
✓C (a j,vr ),C (ak,vs ) (⌧)

=

`a�⌧0�1X

i0=0

✓ `v�⌧00�1X

i00=0
a j,i0ak, (i0+⌧0)vr, i00vs, (i00+⌧00)

◆

+

`a�1X

i0=`a�⌧0

✓ `v�⌧00�1X

i00=0
a j,i0ak, (i0+⌧0�`a )vr, i00vs, (i00+⌧00)

◆

+

`a�⌧0�1X

i0=0

✓ `v�1X

i00=`v�⌧00

⇣
a j,i0ak,(i0+⌧0+1)

vr, i00vs, (i00+⌧00�`v )
⌘◆

+

`a�1X

i0=`a�⌧0

✓ `v�1X

i00=`v�⌧00

⇣
a j,i0ak, (i0+⌧0+1�`a )

vr, i00vs, (i00+⌧00�`v )
⌘◆

=

`a�1X

i0=0
a j,i0ak, (i0+⌧0)

`v�⌧00�1X

i00=0
vr, i00vs, (i00+⌧00)

+

`a�1X

i0=0
a j,i0ak, ((i0+⌧0+1) mod `a )

`v�1X

i00=`v�⌧00
vr, i00vs, (i00+⌧00�`v )

=

`a�1X

i0=0
a j,i0ak, (i0+⌧0)

�
✓vr ,vs (⌧00)
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+

`a�1X

i0=0
a j,i0ak, ((i0+⌧0+1) mod `a )

�
✓vr ,vs (⌧00 � `v ). (9c)

Consequently, we have the following:

For ⌧ = `v⌧0 + ⌧00,
�
✓C (a j,vr ),C (ak,vs ) (⌧)

=
�
✓a j,ak (⌧0)

�
✓vr ,vs (⌧00)

+
�
✓a j,ak (⌧0 + 1)

�
✓vr ,vs (⌧00 � `v ). (9d)

Equation (9d) is used to ensure that the proposed sequence
set has a wide intra-subset ���.

2.3 ��� Sequence Set

If a length-`v sequence set {vr |0  r < N } satisfies the
following conditions, then the sequence set has a ��� and is
denoted by Z (`v, N, z) [6].

• All of the periodic auto-correlation functions of vr ,
�
✓vr ,vr (⌧), are zero when the absolute value of the phase
shift |⌧ | is not zero and |⌧ | is less than or equal to a
specified integer z.

• All of the periodic cross-correlation functions of vr and
vs ,

�
✓vr ,vs (⌧), are zero when the absolute value of the

phase shift |⌧ | is less than or equal to a specified integer
z.

These conditions are formulated as follows:

8r,8⌧, 0 < |⌧ |  z,
�
✓vr ,vr (⌧) = 0, and (10a)

8r , s,8⌧, |⌧ |  z,
�
✓vr ,vs (⌧) = 0. (10b)

We denote the ��� sequence set for aperiodic correlation

functions by
A
Z (`v, N, z) and the ��� sequence set for odd

correlation functions by
O
Z (`v, N, z). From the definition of

the ��� sequence set, the rows of the Hadamard matrix of
order `h are Z (n, n, 0).

A ��� sequence set satisfying the theoretical bound
on the sequence member size and the sequence period is
called an optimal ��� sequence set [5], [14], [22]–[24], [27]–
[29], [31], [36], [41], [42], [49]–[51].

2.4 Perfect Sequence

A perfect sequence p = [p0, p1, . . . , p`p�1] of period `p is a
sequence that satisfies the following:

�
✓p,p (⌧) =

8><>:
|p | if ⌧ ⌘ 0 (mod `p),
0 otherwise.

(11)

3. Sequence Construction

A novel scheme for the construction of a set of ternary se-
quences with a ��� is presented in this section.

For a given Hadamard matrix H = (hi, j ) of order `h
and a binary or ternary perfect sequence of length `p , the
proposed scheme can recursively construct a series of sets
U (m) = {u (m, j)

r |0  j < `p, 0  r < 2`h } for m � 0. The
proposed sequence set is U (m) for m � 0, which consists of
`p subsets of the sequence, each of length 2m+2(`h + 1)`p
as follows:

For m � 0,

U (m) =

`p�1[

j=0
U (m, j) . (12a)

For m � 0, 0  j , k < `p,

U (m, j) \U (m,k) = ;. (12b)
For m � 0, 0  j < `p,

U (m, j) =
(
u (m, j)
r |0  r < 2`h

)
. (12c)

The proposed sequences u (m,k)
r for 0  k < `p and

0  r < 2`h are constructed as follows.
First, sequences wr of length `w = 2(`h + 1) are gener-

ated for 0  r < 2`h by the concatenation of the r-th row of
the Hadamard matrix H denoted by hr = [hr,s |0  s < `h].
The inner product of the rows hr and hs satisfies the follow-
ing:

For r , s,

hr · hs = 0. (13)

The sequences wr are generated by the concatenation of hr

and zero filling as follows:

For 0  r < `h,

w2r+0 = [hr, 0,hr, 0]
=
⇥
hr,0, . . . , hr,`h�1, 0, hr,0, . . . , hr,`h�1, 0

⇤
, (14a)

w2r+1 = [hr, 0,�hr, 0]
=
⇥
hr,0, . . . , hr,`h�1, 0,�hr,0, . . . ,�hr,`h�1, 0

⇤
. (14b)

The length of the sequence wr is denoted by `w and is equal
to 2(`h + 1). The generated w2r+0 and w2s+1 satisfy the
following:

For 0  r, s < `h, 8⌧,
�
✓w2r+0,w2s+1 (⌧)

= (
�
✓[hr ,0],[hs,0](⌧) +

�
✓[hr ,0],[hs,0](⌧ � (`h + 1)))

� (
�
✓[hr ,0],[hs,0](⌧) �

�
✓[hr ,0],[hs,0](⌧ � (`h + 1))) = 0.

(15a)

The correlation functions of w2r+0 and w2s+0, and those of
w2r+1 and w2s+1, satisfy the following:
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For 0  r, s < `h,
�
✓w2r+0,w2s+0 (0) =

�
✓w2r+1,w2s+1 (0)

= 2hr · hs

=
8><>:

0 if r = s,

2`h otherwise.
(15b)

For 0  r, s < `h,
�
✓w2r+0,w2s+0 (1) =

�
✓w2r+1,w2s+1 (1) =

= (
�
✓[hr ,0],[hs,0](1) +

�
✓[hr ,0],[hs,0](1))

= 2 *.
,
`h�2X

i=0
hr,ihs,i+1 + hr,`h�1 · 0+/

-
= 2

�
✓hr ,hs (1), (15c)

�
✓w2r+0,w2s+0 (�1) =

�
✓w2r+1,w2s+1 (�1) =

= 2
�
✓hr ,hs (�1). (15d)

Next, sequences z ( j)
r are generated for 0  k < `p and

0  r < 2`h by the concatenation of wr with j-shifted ele-
ments of p, (S ( j; p) = [pj , pj+1, . . . , p`p�1, p0, . . . ,pj�1])
as the coe�cients to wr as follows:

For 0  j < `p, 0  r < 2`h,

z ( j)
r = C (S ( j; p),wr )
=
⇥

pjwr, pj+1wr, · · ·, p`p�1wr, p0wr, · · ·, pj�1wr|                                                            {z                                                            }
`w`p=2(`h+1)`p

⇤
.

(16)

The length of z ( j)
r is denoted by `z and is equal to 2(`h+1)`p .

From Eqs. (9d), (15), and (16), the correlation functions of
the constructed sequences z ( j)

r and z (k)
r satisfy the following:

For 0  j, k < `p, 0  r, s < 2`h, ⌧ = `w⌧0 + ⌧00,
�
✓
z ( j )
r ,z (k )

s
(⌧) =

�
✓
z ( j )
r ,z (k )

s
(`w⌧0 + ⌧00)

=
�
✓p,p ( j � (k + ⌧0))

�
✓wr ,ws (⌧00)

+
�
✓p,p ( j � (k + ⌧0 + 1))

�
✓wr ,ws (⌧00 � `w ),

=

8>>>>>>>>>><>>>>>>>>>>:

|p |
�
✓wr ,ws (⌧ � `w ( j � k))

if ⌧0 = j � k ,

|p |
�
✓wr ,ws (⌧ � `w ( j � k � 1) � `w )

if ⌧0 = j � k � 1,
0 otherwise,

=

8>>>>>>>>>><>>>>>>>>>>:

|p |
�
✓wr ,ws (⌧ � `w ( j � k)),

if `w | j � k |  ⌧ < `w (| j � k | + 1)

|p |
�
✓wr ,ws (⌧ � `w ( j � k))

if `w (| j � k | � 1)  ⌧ < `w | j � k |,
0 otherwise,

=

8>>>>>>>>>><>>>>>>>>>>:

|p |
�
✓wr ,ws (⌧ � `w ( j � k))

if | j � k |  ⌧ ↵ `w < | j � k | + 1 ,

|p |
�
✓wr ,ws (⌧ � `w ( j � k))

if | j � k | � 1  ⌧ ↵ `w < | j � k |,
0 otherwise.

(17)

From Eq. (17), we have the following:

For 1 < | j � k | < `p � 1, |⌧ |  `w ( | j � k | � 1),
�
✓
z ( j )
r ,z (k )

s
(⌧) = 0. (18)

From Eqs. (7) and (15), we obtain the following:

For |⌧ |  1,
�
✓
z ( j )

2r+0,z
(k )
2s+0

(⌧) =
�
✓
z ( j )

2r+1,z
(k )
2s+1

(⌧), (19a)
�
✓
z ( j )

2r+0,z
(k )
2s+0

(2) =
�
✓
z ( j )

2r+1,z
(k )
2s+1

(2) = 2 |p |
�
✓hr ,hs (1), (19b)

�
✓
z ( j )

2r+0,z
(k )
2s+1

(2) =
�
✓
z ( j )

2r+1,z
(k )
2s+0

(2) = 0. (19c)

Then, sequences z (k)
r also satisfy the following:

For j = k, and r = s, 0 < |⌧ |  1,
�
✓
z ( j )
r ,z (k )

s
(⌧) = 0. (20a)

For j , k, or r , s, 0  |⌧ |  1,
�
✓
z ( j )
r ,z (k )

s
(⌧) = 0. (20b)

For 1 < | j � k | < `p � 1, |⌧ |  `w (| j � k | � 1),
�
✓
z ( j )
r ,z (k )

s
(⌧) = 0. (20c)

For a pair of even numbers r = 2⇢ and s = 2�, we also have
the following:

For 0  j, k < `p, r = 2⇢ + 0, s = 2�,
�
✓
z ( j )
r ,z (k )

s
(2) =

�
✓
z ( j )

2⇢+0,z
(k )
2�+0

(2)

=
�
✓
z ( j )
r+1,z

(k )
s+1

(2) =
�
✓
z ( j )

2⇢+1,z
(k )
2�+1

(2), (20d)
�
✓
z ( j )
r ,z (k )

s+1
(2) =

�
✓
z ( j )

2⇢+0,z
(k )
2�+1

(2)

=
�
✓
z ( j )
r+1,z

(k )
s

(2) =
�
✓
z ( j )

2⇢+1,z
(k )
2�+0

(2) = 0. (20e)

Next, a sequence pair u (0,k)
2r+0 and u (0,k)

2r+1 is generated from the
sequence pair z (k)

2r+0 and z (k)
2r+1 by using sequence interleaving.

Each sequence has a run of zero elements at its tail. For
simplicity, we denote the length, member size, and length of
the run of zero elements at the tail of z (k)

r by L
(m) , N

(m) ,
and T

(m) , respectively. The sequence pair u (0,k)
2r+0 and u (0,k)

2r+1
is generated from z (k)

2r+0 and z (k)
2r+1 as follows:

For 0  r < `h,
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u (0,k)
2r+0 = I (+) (z (k)

2r+0, z
(k)
2r+1)

=
⇥

z
(k)
2r+0,0, z

(k)
2r+1,0, · · · , z

(k)
2r+0,L(m)�1, z

(k)
2r+1,L(m)�1|                                                       {z                                                       }

2`z=2`w`p

⇤
, (21a)

u (0,k)
2r+1 = I (�) (z (k)

2r+0, z
(k)
2r+1)

=
⇥

z
(k)
2r+0,0, �z

(k)
2r+1,0, · · · , z

(k)
2r+0,L(m)�1, �z

(k)
2r+1,L(m)�1|                                                            {z                                                            }

2`z=2`w`p

⇤
.

(21b)

From Eqs. (7), (21a), and (21b), we have as follows:

For 0  j, k < `p, 0  r (= 2r
0 + 0), s(= 2s

0 + 0) < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(2⌧) =

�
✓
u (0, j )

2r0+0,u
(0,k )
2s0+0

(2⌧)

=
�
✓
z ( j )

2r0+0,z
(k )
2s0+0

(⌧) +
�
✓
z ( j )

2r0+1,z
(k )
2s0+1

(⌧), (22a)
�
✓
u (0, j )
r ,u (0,k )

s
(2⌧ + 1) =

�
✓
u (0, j )

2r0+0,u
(0,k )
2s0+0

(2⌧ + 1)

=
�
✓
z ( j )

2r0+0,z
(k )
2s0+1

(⌧) +
�
✓
z ( j )

2r0+1,z
(k )
2s0+0

(⌧ + 1). (22b)

For 0  j, k < `p, 0  r (= 2r
0 + 1), s(= 2s

0 + 1) < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(2⌧) =

�
✓
u (0, j )

2r0+1,u
(0,k )
2s0+1

(2⌧)

=
�
✓
z ( j )

2r0+0,z
(k )
2s0+0

(⌧) +
�
✓
z ( j )

2r0+1,z
(k )
2s0+1

(⌧), (22c)
�
✓
u (0, j )
r ,u (0,k )

s
(2⌧ + 1) =

�
✓
u (0, j )

2r0+1,u
(0,k )
2s0+1

(2⌧ + 1)

= �
�
✓
z ( j )

2r0+0,z
(k )
2s0+1

(⌧) �
�
✓
z ( j )

2r0+1,z
(k )
2s0+0

(⌧ + 1). (22d)

For 0  j, k < `p, 0  r (= 2r
0 + 0), s(= 2s

0 + 1) < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(2⌧) =

�
✓
u (0, j )

2r0+0,u
(0,k )
2s0+1

(2⌧)

=
�
✓
z ( j )

2r0+0,z
(k )
2s0+0

(⌧) �
�
✓
z ( j )

2r0+1,z
(k )
2s0+1

(⌧), (22e)
�
✓
u (0, j )

2r0+0,u
(0,k )
2s0+1

(2⌧ + 1) =
�
✓
u (0, j )

2r0+0,u
(0,k )
2s0+1

(2⌧ + 1)

= �
�
✓
z ( j )

2r0+0,z
(k )
2s0+1

(⌧) +
�
✓
z ( j )

2r0+1,z
(k )
2s0+0

(⌧ + 1). (22f)

For 0  j, k < `p, 0  r (= 2r
0 + 1), s(= 2s

0 + 0) < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(2⌧) =

�
✓
u (0, j )

2r0+1,u
(0,k )
2s0+0

(2⌧)

=
�
✓
z ( j )

2r0+0,z
(k )
2s0+0

(⌧) �
�
✓
z ( j )

2r0+1,z
(k )
2s0+1

(⌧), (22g)
�
✓
u (0, j )
r ,u (0,k )

s
(2⌧ + 1) =

�
✓
u (0, j )

2r0+1,u
(0,k )
2s0+0

(2⌧ + 1)

=
�
✓
z ( j )

2r0+0,z
(k )
2s0+1

(⌧) �
�
✓
z ( j )

2r0+1,z
(k )
2s0+0

(⌧ + 1). (22h)

Then, the correlation functions of the sequences u (0,k)
r also

satisfy the following:

For ( j, r) = (k, s), 0 < |⌧ |  1, 0  r, s < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(⌧) = 0. (23a)

For ( j, r) , (k, s), 0  |⌧ |  1, 0  r, s < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(⌧) = 0. (23b)

For 1 < | j � k | < `p � 1, |⌧ |  2`w (| j � k | � 1), 0  r,

s < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(⌧) = 0. (23c)

The correlation functions of the sequencesu (0,k)
r also satisfy

the following:

For 0  j, k < `p, 0  r (= 2r
0 + 0), s(= 2s

0 + 0) < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(2) =

�
✓
u (0, j )

2r0+0,u
(0,k )
2s0+0

(2)

=
�
✓
u (0, j )

2r0+1,u
(0,k )
2s0+1

(2). (24a)

For 0  j, k < `p, 0  r (= 2r
0 + 0), s(= 2s

0 + 1) < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(2)

=
�
✓
u (0, j )

2r0+0,u
(0,k )
2s0+1

(2) = 0. (24b)

For 0  j, k < `p, 0  r (= 2r
0 + 1), s(= 2s

0 + 0) < 2`h,
�
✓
u (0, j )
r ,u (0,k )

s
(2)

=
�
✓
u (0, j )

2r0+1,u
(0,k )
2s0+0

(2) = 0. (24c)

Next, a sequence pair u (m+1,k)
2r+0 and u (m+1,k)

2r+1 is generated
from the sequence pair u (m,k)

2r+0 and u (m,k)
2r+1 by using sequence

interleaving. Each sequence has a run of zero elements at
its tail. For simplicity, we denote the length, member size,
and length of the run of zero elements at the tail of u (m,k)

r by
L

(m) , N
(m) , and T

(m) , respectively. The length L
(0) , member

size N
(0) , and length T

(0) of the tail run of zero elements of
the proposed sequence u (m,k)

r satisfy

L
(0) = 2`w`p = 4(`h + 1)`p, (25a)

N
(0) = 2`h`p, (25b)

T
(0) = 2. (25c)

The sequence pair u (m+1,k)
2r+0 and u (m+1,k)

2r+1 is generated from
u (m,k)

2r+0 and u (m,k)
2r+1 as follows:

For 0  r < `h,

u (m+1,k)
2r+0 = I (+) (u (m,k)

2r+0 ,u
(m,k)
2r+1 )

=
⇥

u
(m,k)
2r+0,0, u

(m,k)
2r+1,0, · · · , u

(m,k)
2r+0,L(m)�1, u

(m,k)
2r+1,L(m)�1|                                                        {z                                                        }

2L(m)

⇤
, (26a)

u (m+1,k)
2r+1 = I (�) (u (m,k)

2r+0 ,u
(m,k)
2r+1 )

=
⇥

u
(m,k)
2r+0,0, �u

(m,k)
2r+1,0, · · · , u

(m,k)
2r+0,L(m)�1, �u

(m,k)
2r+1,L(m)�1|                                                            {z                                                            }

2L(m)

⇤
.

(26b)

From Eqs. (7), (26a), and (26b), we have as follows:
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For 0  j, k < `p, 0  r, s < `h,
�
✓
u (m+1, j )

2r+0 ,u (m+1,k )
2s+0

(2⌧) =
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+0

(⌧)

+
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+1

(⌧), (27a)
�
✓
u (m+1, j )

2r+0 ,u (m+1,k )
2s+0

(2⌧ + 1) =
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+1

(⌧)

+
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+0

(⌧ + 1), (27b)
�
✓
u (m+1, j )

2r+1 ,u (m+1,k )
2s+1

(2⌧) =
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+0

(⌧)

+
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+1

(⌧), (27c)
�
✓
u (m+1, j )

2r+1 ,u (m+1,k )
2s+1

(2⌧ + 1) = �
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+1

(⌧)

�
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+0

(⌧ + 1), (27d)
�
✓
u (m+1, j )

2r+0 ,u (m+1,k )
2s+1

(2⌧) =
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+0

(⌧)

�
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+1

(⌧), (27e)
�
✓
u (m+1, j )

2r+0 ,u (m+1,k )
2s+1

(2⌧ + 1) = �
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+1

(⌧)

+
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+0

(⌧ + 1), (27f)
�
✓
u (m+1, j )

2r+1 ,u (m+1,k )
2s+0

(2⌧) =
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+0

(⌧)

�
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+1

(⌧), (27g)
�
✓
u (m+1, j )

2r+1 ,u (m+1,k )
2s+0

(2⌧ + 1) =
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+1

(⌧)

�
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+0

(⌧ + 1). (27h)

Then, sequences u (m,k)
r also satisfy the following:

For j = k, and, r = s, 0 < |⌧ |  2m+1 � 1,
�
✓
u (m, j )
r ,u (m,k )

s
(⌧) = 0, (28a)

For j , k, or r , s, 0  |⌧ |  2m+1 � 1,
�
✓
u (m, j )
r ,u (m,k )

s
(⌧) = 0, (28b)

For 1 < | j � k | < `p � 1, |⌧ |  2m+1`w ( | j � k | � 1),
�
✓
u (m, j )
r ,u (m,k )

s
(⌧) = 0. (28c)

For 0  j, k < `p, 0  r, s < `h,
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+0

(2) =
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+1

(2). (28d)
�
✓
u (m, j )

2r+0 ,u (m,k )
2s+1

(2) =
�
✓
u (m, j )

2r+1 ,u (m,k )
2s+0

(2) = 0. (28e)

From Eqs. (26a), (26b), and (27), the length L
(m) , member

size N
(m) , and length T

(m) of the tail run of zero elements
of the proposed sequence u (m,k)

r satisfy

L
(m+1) = 2L

(m), (29a)

N
(m+1) = N

(m), and (29b)
T

(m+1) = 2T
(m) . (29c)

From Eqs. (25) and (29), we obtain

L
(m) = 2m+2(`h + 1)`p, (30a)

N
(m) = 2`h`p, and (30b)

T
(m) = 2m+1. (30c)

Therefore, the proposed sequence u (m,k)
r has T

(m) = 2m+1

zero-value elements in its tail, as follows:

For L
(m) � T

(m) � 1  j < L
(m),

u
(m,k)
r, j = 0. (31)

4. Properties of the Proposed Sequence Set

From Eq. (3), when the absolute value of phase shift |⌧ | is
less than or equal to T

(m) +1(= 2m+1+1), the aperiodic cor-
relation function

�
✓u (m,k )

r ,u (m,k )
s

(⌧), the periodic correlation

function
�
✓u (m,k )

r ,u (m,k )
s

(⌧), and the odd correlation function
�
✓u (m,k )

r ,u (m,k )
s

(⌧) have the same value. This implies the fol-
lowing theorem:

Theorem 1:

For 0  k < `p,

0  r, s, < 2`h, 8|⌧ |  T
(m) + 1 = 2m+1 + 1,

�
✓u (m,k )

r ,u (m,k )
s

(⌧) =
�
✓u (m,k )

r ,u (m,k )
s

(⌧) =
�
✓u (m,k )

r ,u (m,k )
s

(⌧). (32)

Sequence set {u (m,k)
r } has a ��� for the periodic corre-

lation function
�
✓u (m,k )

r ,u (m,k )
s

(⌧), the aperiodic correlation

function
�
✓u (m,k )

r ,u (m,k )
s

(⌧), and the odd correlation function
�
✓u (m,k )

r ,u (m,k )
s

(⌧) for phase shift ⌧, which implies a second
theorem, as follows [14]:

Theorem 2: The periodic correlation function and the ape-
riodic correlation function of {u (m,k)

r } have a ��� from
�(2m+1 � 1) to 2m+1 � 1. That is, the following holds:

For 0  k < `p,

0  r < 2`h, 8|⌧ |  2m+1 + 1,
�
✓u (m,k )

r ,u (m,k )
r

(⌧) =
�
✓u (m,k )

r ,u (m,k )
r

(⌧)

=
�
✓u (m,k )

r ,u (m,k )
r

(⌧) = 0. (33a)

For 0  k < `p,

0  r , s, < 2`h, 8|⌧ |  2m+1 + 1,
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�
✓u (m,k )

r ,u (m,k )
s

(⌧) =
�
✓u (m,k )

r ,u (m,k )
s

(⌧)

=
�
✓u (m,k )

r ,u (m,k )
s

(⌧) = 0. (33b)

For 0  k , k
0 < `p,

0  r, s, < 2`h, 8|⌧ |  2m+1 + 1,
�
✓
u (m,k )
r ,u (m,k0)

s
(⌧) =

�
✓
u (m,k )
r ,u (m,k0)

s
(⌧)

=
�
✓
u (m,k )
r ,u (m,k0)

s
(⌧) = 0. (33c)

Theorem 2 indicates that the sequence set {u (m,k)
r } is

Z (2m+2(`h +1)`p, 2`h`p, 2m+1 �1). For example, the pro-
posed sequence construction can produce a set of sequences,
each of length 240 (= 21+2(4 + 1) ⇥ 6), from an Hadamard
matrix of order `h = 4 and a binary/ternary perfect sequence
of length `p = 6 for m = 1.

Since the proposed sequence set is constructed from an
Hadamard matrix without any restrictions, various types of
sequence sets can be constructed according to the construc-
tion of the Hadamard matrices [54]. The proposed sequence
construction is an extension of the sequence construction
reported in [16], [19].

4.1 Performance of the Proposed Sequence Set Construc-
tion

Since the theoretical upper bound on the sequence mem-
ber size of a Z (L, N, Z ) sequence is L

Z+1 [32], [41], [45],
[46], the ratio N (Z+1)

L indicates the performance of the
Z (L, N, Z ) sequence set. We denote this parameter by
✏ . Also, since the proposed sequence set is Z (2m+2(`h +
1)`p, 2`h`p, 2m+1 � 1), parameter ✏ of the sequence set is
equal to 2m+2`h`p

2m+2 (`h+1)`p
= `h
`h+1 .

An e�ective index of the performance of a ternary se-
quence is the estimated ratio ⌘ of the number of non-zero
elements to the sequence unit length [32], [41]. Based on
the definition of {u (m,k)

r }, the performance ⌘ of the pro-
posed sequence is `h

`h+1⌘p , where ⌘p denotes the ⌘ of the
binary/ternary perfect sequence p.

When the sequences of a ��� sequence set have many
zero elements, we can easily construct a ��� sequence set
having higher (close to one) ✏ [4]. However, the application
of a sequence with many zero elements will have a low signal-
to-noise ratio (S/N). Therefore, we are required to make the
zero elements of the sequences as few as possible [24]. For
this purpose, we must consider both parameters ✏ and ⌘ for
the performance evaluation of a sequence set by using their
product, ✏⌘  1 [24]. This product is

⇣
`h

`h+1

⌘2
⌘p , which

is approximately equal to ⌘p , the ⌘ of the binary/ternary
perfect sequence p, for su�ciently large `h .

From Theorem 2, the proposed sequence set {u (m,k)
r }

has a ��� for the aperiodic correlation functions, the even
correlation function, and the odd correlation function, si-
multaneously. The spreading sequence for an AS-CDMA
(QS-CDMA) system should have a ��� for both the even

and odd correlation functions, as in the case of the proposed
sequence [11], [30], [32], [40], [41]. The proposed sequence
set can be applied to AS-CDMA in the same manner as dis-
cussed in several previous studies [11], [30], [32], [40], [41].
Assigning the subset of the proposed sequence set to the
cells of CDMA systems can reduce the interference between
the nodes of the di�erent cells more e�ciently than can the
existing ��� sequences.

4.2 Structure of ��� Width Related to the Subsets of the
Proposed Sequence Set

The proposed sequence set {u (m,i)
r |0  i < `p, 0  r < 2`h }

has `p subsets of size 2`h . The j-th subset is {u (m, j)
r |0 

r < 2`h }.
The distance between the proposed sequence pairu (m, j)

r

and u (m,k)
s is denoted by ⇤( j, k), which is equal to the dif-

ference | j � k |.
From Eqs. (28a)-(28e), and (32), we have the following

theorem:

Theorem 3:

For ( j, r) = (k, s), 0 < |⌧ |  2m+1 � 1,
�
✓
u (m, j )
r ,u (m,k )

s
(⌧) =

�
✓
u (m, j )
r ,u (m,k )

s
(⌧) = 0. (34a)

For ( j, r) , (k, s), 0  |⌧ |  2m+1 � 1,
�
✓
u (m, j )
r ,u (m,k )

s
(⌧) =

�
✓
u (m, j )
r ,u (m,k )

s
(⌧) = 0. (34b)

For 1 < | j � k | < `p � 1, |⌧ |  2m+1(`w | j � k | � 1),
�
✓
u (m, j )
r ,u (m,k )

s
(⌧) = 0. (34c)

The ��� of sequence pair u (m, j)
r and u (m,k)

s for 1 <
| j�k | < `p�1 is wider than that common to all the sequences
of the sequence set {u (m, j)

r }.
For simplicity, we denote the ��� of sequence pair

u (m, j)
r and u (m,k)

s byZ (m) ( j, k; r, s). Theorem 3 shows the
following: For a longer distance | j � k | between the corre-
sponding subsetsU (m, j) andU (m,k) for 1 < | j�k | < `p�1,
the correlation function of phase shift ⌧ of the sequences
of u (m, j)

r 2 U (m, j) and u (m,k)
s 2 U (m,k) has a wider ���

(|⌧ |  2m+1(`w | j � k | � 1)). This width of the ��� of a
pair of the proposed sequences enables flexible design in
applications of the proposed sequence set.

The proposed sequence set can be generated from any
given binary/ternary perfect sequence and an Hadamard ma-
trix. There is no limitation of the length of the perfect
sequence or the order of the Hadamard matrix for the gener-
ation of the proposed sequence set.

Here, we discuss the applications of the proposed se-
quence set that is generated from a perfect sequence of length
4 or 7. For the case of a perfect sequence p of length 7
(`p = 7), the proposed sequence set can be applied to a
wireless LAN system having its access points on a common
circle as shown in Fig. 1. In Fig. 1, U (m, j) for 0  j < 7 are
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Fig. 1 Wireless LAN access points on a common circle for `p = 7.

Fig. 2 Ultrasonic transmit-receive elements equally spaced on a line for
`p = 4.

sequentially assigned to the wireless LAN access points. For
the case of p of length 4 (`p = 4), the proposed sequence
set can be applied to a system having ultrasonic transmit-
receive elements located at equal intervals on a common line
as shown in Fig. 2. Each rectangle in Fig. 2 is an ultrasonic
transmit-receive element. The notation in the rectangles and
the circles in Fig. 1 indicates the subset U (m, j) which is as-
signed to the transmit-receive element. The `p = 4 and 7
cases for Figs. 1 and 2, respectively, can similarly be con-
structed. Please note that the length of the perfect sequence
`p is not restricted to 4 or 7.

In Fig. 2, one of U (m, j) for 0  j < 4 is assigned to
each transmit-receive element in sequence.

5. Applications of the Proposed Sequence Set

The correlation properties of the proposed sequence can be
utilized for various applications, including signal detection,
synchronization, signal delay detection, and channel sepa-
ration. The proposed sequence set can also improve the
performance of radar systems. Assigning the sequences of
the proposed sequence set to the transmit-receive elements
of a synthetic-aperture ultrasonic imaging system [17] can
improve the S/N of the obtained image. We also evaluate the
performance of the application of the proposed sequence set
for radar pulse compression and ultrasonic imaging.

5.1 Ultrasonic Imaging Using the Proposed Sequence Set

In this section, we consider ultrasonic synthetic-aperture fo-
cusing techniques with a ��� sequence set, as well as tech-
niques with a Walsh sequence [33] and a ��� sequence set
[15], [17]. Ultrasonic waves are simultaneously transmitted
by transmitters and reflected by the observed objects. The
reflected ultrasonic waves are detected by receivers, which
convert the waves into digital signals, and the correlation
function of the digital signal and the transmitted signal (ref-
erence signal) is calculated. The phase shift of the peak of
the calculated correlation function is used to determine the

Fig. 3 Geometric relation between the transmit-receive elements and the
focal point.

delay of the detected wave. The delay indicates the length
of the path from the transmitter to the object and then to the
receiver. To compare the performance of ultrasonic imaging
using the proposed sequence set with the performance using
a ��� sequence set constructed by the previous method, an
ideal environment is simulated.

Because M-sequences have good low-correlation prop-
erties, they are used in various applications [2], [9]. How-
ever, low-correlation properties do not work well in ap-
plications with superimposed signals having various lev-
els of power; in these cases, the ��� property is prefer-
able [15], [17]. Various studies have examined ultrasonic
synthetic-aperture focusing techniques for sequences with
particular properties [1], [10], [15], [25], [33], [34], [53].

To evaluate the performance of the proposed sequence,
we simulated ultrasonic synthetic-aperture imaging that uses
the proposed sequence set. To focus on a target image,
synthetic-aperture imaging estimates the distance from the
ultrasonic transmitter to the target and the distance from the
target to the ultrasonic detector, as shown in Fig. 3 [8].

5.2 E�ect of the Proposed Sequence Set

Figure 3 demonstrates how the proposed sequence set can be
used for ultrasonic synthetic-aperture imaging. The circle in
the figure indicates the crack to be detected. The rectangles
indicate the sets of ultrasonic receive-transmit elements. A
set of ultrasonic receive-transmit elements can realize a set of
receive-transmit elements. The sequences u (m,k)

r of the k-th
subset U (m, j) are assigned to the k-th set of receive-transmit
elements. The symbol in the rectangle indicates the subset
assigned to the set of receive-transmit elements. In Fig. 3,
the k-th sets of receive-transmit elements for 0  k < 7 are
illustrated. The ��� for the sequence pair u (m,k)

r and u (m,k0)
r0

is used to synchronize with a particular signal and eliminate
interference from other signals. Therefore, the ��� of a pair
of sequences which are assigned to the elements at a longer
distance must be wider than the ��� of a pair of sequences
which are assigned to the elements at a shorter distance.
Therefore, the ��� of the sequence pair u (m,0)

r and u (m,3)
r0 is

designed to be wider than the ��� of the sequence pair u (m,0)
r
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Fig. 4 Simulated environment.

and u (m,1)
r0 .

The line segment in the figure indicates the path from
each set of receive-transmit elements to the target crack.

In Fig. 3, when the receiving element (element 5) de-
tects the signal sent by the transmitting element (element
1) in Fig. 3, the round-trip time ⇢1,5 of the signal is equal
to ⇢1 + ⇢5. The one-way time ⇢i is equal to ri/v , where
ri is the distance between the target and transmitter i, and
v is the propagation velocity of the ultrasonic wave. Since
|⇢1,6� ⇢1,1 | = |⇢6� ⇢1 | is larger than |⇢1,6� ⇢1,5 | = |⇢6� ⇢5 |
and |⇢1,2 � ⇢1,1 | = |⇢2 � ⇢1 |, the proposed sequence set
with 7 subsets can be applied to a system of receive-transmit
elements arranged in 7 sets.

The synthetic-aperture image S(x, y) is obtained as a
function of the position (x, y) by computing the convolution
of the detected waveform and the reference waveform, which
is the detected waveform at a single point located at (x, y) [8].
Details of the computation of synthetic-aperture imaging can
be found in [34].

5.3 Performance Evaluation of the Application to Ultra-
sonic Imaging

To evaluate the performance of the proposed sequence for
an ultrasonic imaging application, an ideal environment was
simulated, as shown in Fig. 4. In this simulation of ultra-
sonic imaging of cracks in a concrete medium, the following
parameters were used: the number of transmit-receive el-
ements was 16, the wavelength of the ultrasonic wave was
8 mm, the sampling rate was 40 mega-samples per second
(40 Msps), the number of ultrasonic waves per one element
of the sequence was 4, and the propagation velocity of the
ultrasonic wave was 6 km/s. We used the proposed sequence
set of length 160 and an M-sequence of length 163. The pro-
posed sequence is constructed from an Hadamard matrix of
order `h = 4, `p = 4, and m = 1; the length of the sequence
is L

(1) = 23(4 + 1) ⇥ 4 = 160.
A comparison of the performance of the ultrasonic

imaging using the proposed sequence set with that using an
M-sequence of length 163 and the simulated ideal environ-
ment is shown in Fig. 4. The coordinates of the three cracks
in Fig. 4 are (22.5 mm, 10.0 mm), (25.0 mm, 12.0 mm), and
(27.5 mm, 20.0 mm). Figure 5 shows an image constructed
by using the proposed sequence set, each sequence of length
160, and Fig. 6 shows an image constructed by using the
M-sequence. The intensity of each image is normalized by

Fig. 5 Image constructed by using the proposed sequence set with a
sensor array.

Fig. 6 Image constructed by using an M-sequence with a sensor array.

Table 1 Detected peaks in Figs. 5 and 6.
Coordinates

of the detected
peaks (mm)

Proposed
sequence (27.5, 20.0) (25.0, 12.0) (22.5, 10.0) Correctly
set (Fig. 5) detected

Correctly
M-sequence (27.5, 20.0) (25.0, 12.0) (22.5, 10.0) detected
(Fig. 6)

(24.0, 20.8) (21.0, 19.5) (26.5, 12.3) Incorrectly
detected

(23.5, 11.8) (21.0, 9.8) (24.0, 10.0)

setting the peak intensity to 1. The color bars indicate the in-
tensities of the contour curves in the figures. The simulated
results shown in Figs. 5 and 6 indicate that the proposed se-
quence set is better than a ��� sequence set constructed by the
previous method. In particular, Fig. 5 displays an image with
three clear peaks, which correspond to three target cracks and
are clear. The coordinates of the peaks detected in Figs. 5 and
6 are listed in Table 1. The coordinates of the three peaks
in Fig. 5 are (22.5 mm, 10.0 mm), (25 mm, 12.0 mm), and
(27.5 mm, 20.0 mm); all the peaks are identical, with respect
to their coordinates, to the original cracks. In contrast, we
can find nine peaks in Fig. 6. Three of the nine peaks have the
same coordinates as the original cracks shown in Fig. 5. The
image constructed by the M-sequence has six artifact peaks
at (24.0 mm, 20.8 mm), (21.0 mm, 19.5 mm), (26.5 mm,
12.3 mm), (23.5 mm, 11.8 mm), (21.0 mm, 9.8 mm), and
(24.0 mm, 10.0 mm), as shown in Fig. 6. These six peaks
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constitute noise with respect to crack detection.

5.4 Visible Light Communication

Multi-user visible light communication (VLC) requires a
channel separation mechanism [7], [38], [39]. Although
VLC uses binary (‘on’ and ‘o�’) codes, a ternary se-
quence set can be applied to multi-color or multi-wavelength
light. There exist various reports on multi-color or multi-
wavelength VLC [37], [60], [62]. Almost all existing VLC
systems are designed to be used without any signal delay.
However, it is not easy to synchronize the clocks of all the
devices for a VLC system. Therefore, it is necessary to
consider the di�erences in the clocks of the communication
nodes in an actual system. By applying the proposed binary
��� sequence set to a VLC system, the system can function
properly despite a clock di�erence within the time which is
associated with the ��� of the sequence set.

6. Conclusions

A new construction scheme for a ternary ��� sequence set
was presented. The proposed ��� sequence set can be gener-
ated from an arbitrary pair of an Hadamard matrix of order
`h and a binary or ternary perfect sequence of length `p for
an arbitrary non-negative parameter m � 0.

For m � 0, the sequence set of order (m + 1) is con-
structed from the sequence set of order m by sequence con-
catenation and interleaving. The sequence set has `p subsets
of size 2`h .

The proposed sequence set is U (m) for m � 0, which
consists of `p subsets of 2`h sequences, each of length
2m+2(`h + 1)`p . The periodic correlation function and the
aperiodic correlation function of a pair of the proposed se-
quence sets u (m, j)

r and u (m,k)
s satisfy the following:

For ( j, r) = (k, s), 0 < |⌧ |  2m+1 � 1,
�
✓
u (m, j )
r ,u (m,k )

s
(⌧) =

�
✓
u (m, j )
r ,u (m,k )

s
(⌧) = 0.

For ( j, r) , (k, s), 0  |⌧ |  2m+1 � 1,
�
✓
u (m, j )
r ,u (m,k )

s
(⌧) =

�
✓
u (m, j )
r ,u (m,k )

s
(⌧) = 0.

For 1 < | j � k | < `p � 1, |⌧ |  2m+1(`w | j � k | � 1),
�
✓
u (m, j )
r ,u (m,k )

s
(⌧) = 0.

The sequence set {u (m,k)
r } is Z (2m+2(`h + 1)`p, 2`h`p,

2m+1 � 1). The ��� of sequence pair u (m, j)
r and u (m,k)

s

for 1 < | j � k | < `p � 1 is wider than that common to all the
sequences of the sequence set {u (m, j)

r }. Such a greater width
in the latter case enables flexible design of applications of the
proposed sequence set. The proposed sequence is suitable
for a heterogeneous wireless network, which is one of the
candidates for the fifth-generation mobile networks.
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