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PAPER
Free-Space Optical Systems over Correlated Atmospheric Fading
Channels: Spatial Diversity or Multihop Relaying?⇤

Phuc V. TRINH†, Member, Thanh V. PHAM††, Student Member, and Anh T. PHAM††a), Member

SUMMARY Both spatial diversity and multihop relaying are considered
to be e�ective methods for mitigating the impact of atmospheric turbulence-
induced fading on the performance of free-space optical (FSO) systems.
Multihop relaying can significantly reduce the impact of fading by relaying
the information over a number of shorter hops. However, it is not feasible
or economical to deploy relays in many practical scenarios. Spatial diver-
sity could substantially reduce the fading variance by introducing additional
degrees of freedom in the spatial domain. Nevertheless, its superiority is
diminished when the fading sub-channels are correlated. In this paper, our
aim is to study the fundamental performance limits of spatial diversity suf-
fering from correlated Gamma-Gamma (G-G) fading channels in multihop
coherent FSO systems. For the performance analysis, we propose to ap-
proximate the sum of correlated G-G random variables (RVs) as a G-G RV,
which is then verified by the Kolmogorov-Smirnov (KS) goodness-of-fit
statistical test. Performance metrics, including the outage probability and
the ergodic capacity, are newly derived in closed-form expressions and thor-
oughly investigated. Monte-Carlo (M-C) simulations are also performed to
validate the analytical results.
key words: FSO systems, spatial diversity, relaying techniques, atmo-

spheric turbulence, Gamma-Gamma channels, correlated fading

1. Introduction

Free-space optical (FSO) communications, which can pro-
vide full-duplex, gigabits per second connections in a
license-free spectrum, has become a promising candidate
for access, metro and mobile backhaul networks [1]. One of
the main challenges in FSO systems is the negative impact
of atmospheric turbulence-induced fading, especially when
the link range is longer than 1 km. Over the years, many
techniques have been proposed to deal with this problem, in-
cluding spatial diversity and multihop relaying transmission.

Multihop relaying transmission, with its ability to uti-
lize shorter distances in the resulting hops, not only mit-
igates the distance-dependent turbulence strength and at-
mospheric loss, but also avoids the light-of-sight require-
ment. The performance of multihop systems with various
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relaying strategies has been extensively studied for intensity
modulation/direct detection (IM/DD) FSO systems [2]–[4].
Recently, coherent FSO systems, which o�er a significant
performance enhancement compared to their IM/DD coun-
terparts, have received remarkable attentions thanks to recent
advances in digital signal processing [5]. The adoption of
multihop relaying in coherent FSO systems has been reported
recently for amplify-and-forward (AF) [6], [7] and decode-
and-forward (DF) [8] relaying techniques. It is obvious that
the fading can be considerably mitigated by employing a
large number of relays, however this is not a cost-e�ective
solution.

On the other hand, spatial diversity provides a less com-
plex but more economical solution, especially in the domain
of FSO communications. This introduces additional de-
grees of freedom in the spatial domain, hence substantially
reduces the fading variance. The performance of spatial di-
versity has been widely studied in both IM/DD and coherent
FSO systems [9]–[18]. Nevertheless, the e�ciency of spatial
diversity is diminished when the fading among underlying
sub-channels is correlated, i.e., the separation among receive
apertures is smaller than the correlation length of the fading
[15]–[18], for which the correlated log-normal [15], [16] and
Gamma-Gamma (G-G) [17], [18] models were considered.

The goal of this paper is to study the performance limits
of spatial diversity su�ering from correlated fading channels
in multihop coherent FSO systems. The popular G-G model
is employed as it is suitable for a wide range of practical
atmospheric conditions. In particular, we aim to clarify how
the correlation level quantitatively limits the advantage of
the spatial diversity, and to determine when the deployment
of a new relay becomes necessary for a given link range and
atmospheric conditions of FSO systems.

1.1 Related Studies

In most of previous studies on the performance of FSO sys-
tems with spatial diversity achieved by employing multi-
ple transmit/receive apertures, independent fading channels
were assumed [9]–[14]. Regarding the correlated fading, the
performance of FSO systems with spatial diversity over G-G
channels has been examined assuming a simplified model of
channel correlation, e.g., the exponential correlation model
[17], [18]. This model, which is borrowed from radio fre-
quency (RF) communications, does not represent the charac-
teristics of atmospheric turbulence channels in FSO systems.
Therefore, several studies have been recently performed as

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers
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an e�ort to investigate the impact of channel conditions on
the atmospheric turbulence-induced fading correlation [19]–
[21]. In [19] and [20], by means of wave-optics and Monte-
Carlo (M-C) simulations, the e�ects of turbulence strength,
aperture diameter, aperture separation, and link range on the
channel correlation have been clarified for receive diversity
and transmit diversity systems, respectively. However, since
simulation methods only focus on specific examples, it is
di�cult to extend the results to general cases. To deal with
this issue, in [21], the authors have presented the correlation
coe�cient as a function of the above-mentioned parameters.
Based on this result, an analytical study should be conducted
to examine the e�ects of parameterized channel correlation
on the performance of FSO systems. This paper therefore
attempts to fill in this gap.

1.2 Main Contributions

Our key contributions in this paper are therefore threefold.
Firstly, we analytically study the fundamental performance
limits of spatial diversity under correlated G-G fading in
multihop coherent FSO systems. Secondly, to analyze the
performance of the considered system, we propose a method
to accurately approximate the sum of correlated G-G ran-
dom variables (RVs). Specially, the sum of correlated G-G
RVs is approximated as a single G-G RV whose parame-
ters can be obtained in simple closed-form expressions. The
approximating G-G RV is then used as a benchmark to an-
alyze the system performance. The error behaviors of the
approximation for di�erent numbers of summands and cor-
relation coe�cients are also investigated by employing the
Kolmogorov-Smirnov (KS) goodness-of-fit statistical test.
Thirdly, employing the proposed method, closed-form ex-
pressions of the outage probability and the ergodic capacity
are newly derived for both DF and AF relaying schemes, con-
sidering the e�ects on channel correlation of the link range,
the turbulence strength, the number of receive apertures and
the spacing between them.

The remainder of the paper is organized as follows. In
Sect. 2, the system description is presented along with the
system assumptions. Section 3 presents the channel model
and the correlation model. The approximation on the sum
of correlated G-G RVs is introduced in Sect. 4. In Sect. 5,
multihop transmission with DF and AF relaying techniques is
explained. The outage probability and the ergodic capacity
of the system are investigated in Sect. 6. Finally, Sect. 7
describes the numerical analysis and Sect. 8 concludes the
paper.

2. System Description

We consider a full-duplex multihop FSO system in which
there are N � 1 (N � 1) relay nodes assisting the communi-
cation between the source node and the destination node. The
ith (1  i  N) relay node (the destination is indexed as the
N th node) is equipped with Mi receive apertures (along with
photodetectors), thereby creating N single-input multiple-

Fig. 1 Multihop SIMO system with two relay nodes and two receive
apertures at each node.

output (SIMO) links. The total aperture area is assumed to
be equal to that of single aperture systems in order to ensure
a fair comparison. The diameter of each aperture is consid-
ered to be far smaller than the link range, resulting in the case
of a point receiver, i.e., aperture averaging e�ect is limited.
Figure 1 shows an example of the system under consideration
with N = 3 and Mi = 2. Furthermore, we consider coherent
(i.e., heterodyne detection) FSO systems. At the relay nodes,
the incoming optical field associated with each receive aper-
ture is coherently combined with a local oscillator (LO) field
before it falls onto the photodetector. The electrical signals
collected from M photodetectors are then combined using
Maximum Ratio Combining (MRC). Thereafter, the signal
is either amplified or decoded before being forwarded to the
next node.

Atmospheric turbulence-induced fading is a slow time-
varying process with the coherence time in the order of a few
milliseconds. As a result, at typical bit-rates of FSO systems
(i.e., Gigabit per second), the fading remains constant over
a large number of transmitted bits. Therefore, it is feasible
to assume that the receiver can perfectly estimate the fading
amplitude. It is also reasonable to assume that the fading
among the sub-channels in each SIMO link is identical and
possibly correlated, while the fading among the SIMO links
is independent but not necessarily identical (i.n.i.d).

3. Channel Model

3.1 Atmospheric Channel Attenuation

The channel attenuation is caused by both molecular ab-
sorption and aerosol scattering suspended in the air. The
total channel attenuation is given as a = A

⇡
⇣
�L

2

⌘2 exp(��⌫L),

where A = ⇡D2/4, L, � and �⌫ are the area of the receive
aperture (with D denotes the receiver aperture diameter), the
link range, the angle of divergence of the optical beam in ra-
dian, and the atmospheric extinction coe�cient, respectively
[22].

3.2 G-G Turbulence-Induced Fading

The G-G model (also known as the Generalized-K model)
has been widely used to characterize the turbulence-induced
fading as it can cover a wide range of turbulence conditions
[22]. Let X be a RV representing the turbulent fading. Ac-
cording to the G-G model, X is considered to be the product
of two independent Gamma RVs which describe the fad-
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ing caused by the large-scale and the small-scale turbulence.
Assuming that the average of X is normalized to unity, its
probability density function (PDF) is given as

fX (x) =
2(↵�/⌦)(↵+�)/2

�(↵)�(�)
x (↵+�)/2�1K↵�� *,2

r
↵�x
⌦

+
- ,
(1)

where �(·) is the gamma function, K↵�� (·) is the modified
Bessel function of the second kind and order ↵ � �, and
the mean ⌦ = 1 [23]. ↵ and � are the PDF parameters
describing the turbulence with respect to the large-scale and
small-scale turbulence, and in the case of zero-inner scale
they are given by [23]

↵ =
8>><>>:

exp
2666664

0.49�2
R⇣

1 + 1.11�12/5
R

⌘7/6

3777775
� 1

9>>=>>;
�1

,

� =
8>><>>:

exp
2666664

0.51�2
R⇣

1 + 0.69�12/5
R

⌘5/6

3777775
� 1

9>>=>>;
�1

. (2)

The parameter �2
R

is the Rytov variance, assuming plane
wave propagation, it is given by �2

R
= 1.23C2

n
k7/6L11/6,

where k = 2⇡/�, with � is the optical wavelength, de-
notes the optical wave number, L is the link range and C2

n
is

the altitude-dependent index of the refractive structure pa-
rameter determining the turbulence strength. Typically, C2

n

varies from 10�17 to 10�12 according to the strength of at-
mospheric turbulence [24]. The pth moment of X is given
by E [X p] = �(↵+p)�(�+p)

�(↵)�(�) (↵�/⌦)�p [25]. Its cumulative
distribution function (CDF) is also given as

FX (x) =
1

�(↵)�(�)
G2,1

1,3

"
↵�x
⌦

�����
1

↵, �, 0

#
, (3)

where Gm,n
p,q [·] is the Meijer’s G-function [25].

3.3 Channel Correlation Analysis

3.3.1 General Turbulence Conditions

In practical MIMO FSO systems, the presence of correlation
among sub-channels is sometimes inevitable, especially, for
an extended link and/or relatively small aperture separation
[15], [19], [20]. This negative e�ect significantly reduces the
spatial diversity gain. Hence, the prediction of the channel
correlation plays a key role in evaluating the overall system
performance. The correlation coe�cient, denoted as ⇢, as
a function of the turbulence strength, the link range, the
aperture diameter, and the aperture separation between any
two receive apertures separated by the distance d, can be
given as ⇢ = ⇣ (d)

⇣ (0) [21]. Here, ⇣ (d) is the spatial covariance
function defined as

⇣ (d) = exp
(

8⇡2k2L
Z 1

0

Z 1

0
�n,e�()J0(d)

Fig. 2 (a) Correlation coe�cient versus aperture separation for di�erent
values of turbulence strength and link range L = 4000 m; (b) Correlation
coe�cient versus link range for di�erent values of turbulence strength and
aperture separation d = 8 cm.

⇥ exp
 �D22

16

! "
1 � cos

 
L2⇠

k

!#
dd⇠

)
� 1,

(4)

where D is the aperture diameter, J0(·) is the Bessel function
of the first kind and zero order, and �n,e�() represents the
e�ective atmospheric spectrum. Assuming the case of zero-
inner scale and infinity-outer scale,�n,e�() is given by [22]

�n,e�()=0.033C2
n
�11/3

266664exp *,�
2

2
X,0

+
-+

11/3

(2+2
Y,0)11/6

377775,
(5)

with 2
X,0 =

k

L

2.61
1+1.11�2

R

, 2
Y,0 =

3k
L

⇣
1 + 0.69�12/5

R

⌘
.

The relation between the correlation coe�cient ⇢ and
di�erent system parameters is demonstrated in Fig. 2. More
specifically, in Fig. 2a, it is seen that there is a threshold

value of the aperture separation where the fading switches
from correlated to independent fading. This value is referred
to as the correlation length of the turbulence fading. When
aperture separation is less than this threshold value, the cor-
relation coe�cient begins to increase rapidly. On the other
hand, the turbulence strength also plays an important role
in determining the correlation condition. For example, it is
seen in Fig. 2b that the correlation coe�cient is negligible in
weak and moderate turbulence regimes, when the link range
is shorter than 3000 m. The correlation coe�cient is how-
ever increased quickly in the case of strong turbulence and
becomes higher than 0.3.

3.3.2 G-G Turbulence Condition

To present a general model for correlated G-G subchannels,
the fading correlation ⇢ can be considered as arising partly
from large- and small-scale turbulent eddies. Originally
in [26], the G-G RVs is derived from the product of two
independent Gamma RVs, which represent the large- and
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small-scale turbulent eddies. As a consequence for the G-G
model, the fading correlation can be represented in terms of
the correlation coe�cients between large- and small-scale
turbulence components. Given Xi ⇠ ��(↵i, �i,⌦i)†, X j ⇠
��(↵ j, � j,⌦j ) and the independence of large- and small-
scale fading, the correlation coe�cient between Xi and X j

is given by [27]

⇢i j = ⇢ ji =
Cov(Xi, X j )p

Var(Xi)Var(X j )

=
⇢si j
p
↵i↵ j + ⇢li j

p
�i � j + ⇢si j ⇢li j

(
p
↵i + �i + 1)(

p
↵ j + � j + 1)

, (6)

where ⇢si j and ⇢li j represent small- and large-scale fad-
ing coe�cients between Xi and X j , respectively. Cov(·) and
Var(·) denote the covariance and variance operators. Specif-
ically, for the case of identically correlated (i.e., ⇢si j = ⇢s
and ⇢li j = ⇢l) and identically distributed G-G RVs (i.e.,
↵i = ↵ j = ↵, �i = � j = � and ⌦i = ⌦j = ⌦), Eq. (6) can
be re-written as the correlation coe�cient ⇢ between two
arbitrary sub-channels as follows.

⇢ =
⇢s↵ + ⇢l � + ⇢s ⇢l
↵ + � + 1

. (7)

In general, ⇢s and ⇢l should be appropriately set to pre-
dict the system performance accurately. From Eq. (7), math-
ematically speaking, given a value of ⇢, there is an infinite
number of solutions for ⇢s and ⇢l . However, in the strong

turbulence regime, the intensity fluctuations arising from the
small-scale turbulence can be averaged out e�ectively, which
leads to ⇢s ⇡ 0. On the other hand, under weak-to-moderate

turbulence regime, all turbulent eddies of any size a�ect
the propagating beam, resulting in ⇢s = ⇢l . Finally, un-
der moderate-to-strong turbulence regime

††, both large- and
small-scale turbulence components simultaneously a�ect the
multiple apertures, while the correlation for the large-scale
turbulence component is higher. Therefore, we have ⇢s < ⇢l
and the system performance lies between that of the cases
when ⇢s ⇡ 0 and ⇢s = ⇢l [19].

4. Approximation to the Sum of Correlated G-G Ran-
dom Variables

4.1 Approximation Method

In this section, we investigate the distribution of the sum
of correlated G-G RVs as the foundation for further perfor-
mance analysis in the paper. Let {Xi ⇠ ��(↵i, �i,⌦i)}M1 be
a set of M correlated G-G RVs. The sum of them is defined
as
†In this paper, we use the notation X ⇠ ��(↵, �,⌦) for indi-

cating that the RV X follows the G-G distribution with parameters
(↵, �, ⌦).
††For the sake of simplicity, this uncertain case is excluded in

our analysis.

Z =
MX

i=1
Xi . (8)

The exact statistic of Z , however, remains unknown. An
approximation approach, therefore, is of great interest due
to the computational advantage while still providing a good
accuracy. For the case of correlated G-G RVs, several ap-
proximation methods have been proposed in the literature. In
[28], the sum of two correlated G-G RVs was approximated
by an ↵-µ RV based on the moment matching method. Nu-
merical results confirmed a good accuracy of the approach.
However, the parameters of the approximating ↵-µ RV can
only be obtained numerically using software packages (e.g.,
MATLAB) due to the di�cult nonlinear equations. The use
of a Gamma RV as the approximating RV has been studied
in [27]. The main drawback of this approach is the need of
adjustment parameters, which are introduced to tighten the
accuracy in the case of large values of the standard deviation
of the summands. In [29], [30], the PDF and CDF of the
sum of correlated G-G RVs were approximately represented
through finite series forms that are cumbersome to use in an-
alyzing the performance of our considered SIMO multihop
systems.

In this study, our purpose is thus to approximate the
sum of correlated G-G RVs in such a way that is simple for
further usages while o�ering a su�cient accuracy. To do so,
we propose to use a G-G RV as the approximating RV as has
been studied for the case of independent G-G RVs in [31].
It is noted that the authors in [27] also mentioned the use of
a G-G RV for approximation. Nevertheless, expressions for
deriving the parameters of the approximating G-G RV have
not been clarified.

First, let us define the following definition.
Definition [32]: The amount of fading (AF) of the RV

X is defined as the ratio of the variance to the square of the
mean

AF =
Var(X )
�
E(X )

�2 , (9)

where E(·) is the expectation operator. For a RV X ⇠
��(↵, �,⌦), the AF is given by

AF =
1
↵
+

1
�
+

1
↵�
. (10)

It is noted that in the context of atmospheric turbulence chan-
nels, the AF is termed as scintillation index, which represents
the severity of the turbulence-induced fading. Assuming that
Z is approximated by a G-G RVY ⇠ ��(↵s, �s,⌦s). Follow-
ing the approach in [31], the basic idea of our approximation
is to match the AF of Z with that of Y . The parameters of Y
can then be obtained in closed-form expressions.

Since the fading among the sub-channels in each SIMO
link can be assumed to be identical, as mentioned in Section
II, we only focus on the case of identically correlated and
identically distributed (i.c.i.d) G-G RVs Xi (i.e., ↵i = ↵ j =
↵, �i = � j = �, ⌦i = ⌦j = ⌦, ⇢si = ⇢sj = ⇢s and
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Fig. 3 PDF plots for the sum of correlated G-G RVs and the approximat-
ing G-G RV.

⇢li = ⇢lj = ⇢l , 8i , j)†. In this case, the AF for Z is
expressed by [27, Eq. (14)]

AFs=
1 � ⇢s

M �
+

1 � ⇢l
M↵

+
1 � ⇢s ⇢l

M↵�
+
⇢s
�
+
⇢l
↵
+
⇢s ⇢l
↵�

=
(↵ + � + 1)(1 � ⇢ + M ⇢)

M↵�
. (11)

Proposition 1: The parameters ↵s , �s and ⌦s of the ap-
proximating RV Y can be given by

↵s = t �s, (12)

�s =
(t + 1) +

p
(t + 1)2 + 4tAFs

2tAFs

, (13)

⌦s = M⌦, (14)

where t = ↵
� .

Proof: See Appendix A.

4.2 Numerical Examples

We demonstrate the accuracy of the proposed method by
comparing the statistic of the approximating RV Y with that
of the simulation data for the i.c.i.d case, which is of our
interest in this paper. The simulated PDF and CDF of the
sum of G-G RVs generated from 2 ⇥ 106 samples by M-C
method are used for reference. The generation of M corre-
lated G-G RVs for the simulation is based on generating two
separate sets of M correlated Gamma RVs. In this study, we
employ the Decomposition Method [33] to generate corre-
lated Gamma RVs with arbitrary correlation coe�cients. In
Figs. 3 and 4, we compare the PDFs and CDFs of the approxi-
mating G-G RV with that of the simulation data, respectively.

†Similar method can be applied for the general case of arbitrar-
ily correlated but not necessary identically distributed (a.c.n.i.d),
we nevertheless do not include here due to the limitation of paper
length.

Fig. 4 CDF plots for the sum of correlated G-G RVs and the approximat-
ing G-G RV.

Two di�erent scenarios, ⇢s = ⇢l and ⇢s = 0, ⇢l > 0, are
considered. It is seen that for various values of ↵, �, ⇢s ,
⇢l and M , there are always excellent agreements between
the approximation and simulation results. To quantitatively
evaluate the error behavior of the proposed approximation,
we employ the Kolmogorov-Smirnov (KS) goodness-of-fit
statistical test, which measures the maximum value T of the
absolute di�erence between the empirical CDF of the sum
Z and the analytical CDF of the approximating RV Y , i.e.,

T �
=
���FZ (x) � FY (x)���. (15)

To verify an approximation, the KS goodness-of-fit test
compares the statistical test value T with a critical level Tmax

for a given significance level �. An approximation is said to
be accepted with significance level (1��) if T < Tmax , while
it is considered to be rejected with the same significance
level if T > Tmax . The critical value of Tmax is given by
Tmax =

q
� 1

2v ln �
2 , where � is the significance level and v

is the number of samples of RV for the simulation. Here, we
choose the typical values � = 5% and v = 104, resulting in
Tmax = 0.0136 [34].

Figure 5 presents the KS-statistical test T of our pro-
posed approximation method with M = 2, ⇢ = 0.4 (⇢s =
⇢l), ⌦1 = ⌦2 = 1 for di�erent values of ↵ and �. The
result is obtained by averaging the results of 50 simulation
runs. We observed that the proposed method is valid (i.e.,
T  0.0136) when ↵ � 2 and � � 2. On the other hand,
the test is not satisfied when either ↵ < 2 or � < 2, which
generally corresponds to the strong turbulence regime. The
proposed method however still o�ers a reasonable accuracy
(i.e., the analytical results still agree well with the simula-
tion ones) to a certain performance level of interest even
in strong turbulence regime and M = 2 as shown later in
Sect. 7 (Figs. 7–10 and 12). As for larger M , we present an
additional KS-statistical test in Fig. 6 for M = 6, ⇢ = 0.6
(⇢s = ⇢l), ⌦1 = ⌦2 = 1. In this case, the test is accepted for
any values of ↵ and � that are larger than or equal to 1. This
agrees with the observation in [31] that the larger M results
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Fig. 5 KS goodness-of-fit test for M = 2 and ⇢ = 0.4.

Fig. 6 KS goodness-of-fit test for M = 6 and ⇢ = 0.6.

in the better accuracy of the approximation.

5. Multihop Transmission

In this section, we analyze the multihop transmission of the
proposed FSO system utilizing DF and AF relaying tech-
niques. For the sake of simplicity, from now on, we assume
that the number of receive apertures at each hop is chosen to
be equal, i.e., Mi = M (1  i  N ).

5.1 DF Relaying

In DF relaying, the relay node decodes the received signal,
then remodulates and retransmits it to the next node. We
assume that all receivers’ parameters are the same and the
total average transmitted power, denoted as Pt , is allocated
equally to each transmit aperture. The ith receiver has a
LO power of w2

i
PLO, where

P
M

m=1 w
2
i,m = 1 so that the

total power of N local oscillators is the same with that of a
single aperture receiver (PLO) to ensure a fair comparison.
In addition, we assume that the phase noise can be fully
compensated at the receiver by means of a phase-locked loop
[35]. After heterodyning, combining Rthe multiple received

signals from M receive apertures, and lowpass filtering, the
output signal at the ith relay node (i = 1, 2, ..., N) can be
given as

yi (t) =
MX

m=1
xi,m(t) +

MX

m=1
ni,m(t), (16)

where xi,m(t) and ni,m(t) are the information carrying
part representing the AC terms and the noise term at the
mth receive aperture of the ith hop. Each noise term
ni,m(t) is dominated by the LO shot noise which can be
modeled as an AWGN with zero mean and variance of
�2
i,m = 2qw2

i,mRPLO� f [36], where q, R and � f respec-
tively denote the electron charge, receiver’s responsivity, and
e�ective noise bandwidth. Hence, the total noise variance
can be given as �2

i
= 2qRPLO� f . Using the result from

[35], xi,m(t) can be written as

xi,m(t) = 2R
q

Pi,mw2
i,mPLO cos(2⇡ f IF t + �m), (17)

where f IF = fc � fLO is the intermediate frequency with
fc and fLO are the carrier frequency and LO frequency,
respectively. The received optical power at the mth receive
aperture of the ith hop can be expressed as Pi,m =

aiPtXi,m

MiN
,

where Pt is the total transmitted power, ai = a(Li)/a(L)
denotes the normalized channel attenuation at the ith hop,
and Xi,m is the turbulence-induced fading associated with
the mth aperture.

The signal-to-noise ratio (SNR) of an optical receiver
is defined as the ratio of the time-averaged AC photocurrent
power and the total noise variance [36]. Thus, the instanta-
neous SNR at the ith hop can be given as

�i =

D
x2
i,m (t)

E

�2
i

=
2R2

⇣P
M

m=1 wi,m
p

Pi,m

⌘2
PLO

�2
i

=
R

⇣P
M

m=1 wi,m
p

Pi,m

⌘2

q� f
. (18)

By means of MRC, wi,m (1  m  M) is chosen so that the
SNR is maximized. By using the Cauchy-Schwartz inequal-
ity, the maximum SNR can be given as

�i =
R

q� f

MX

m=1
Pi,m =

ai�0
M N

MX

m=1
Xi,m, (19)

where �0 = RPt/q� f is the total path loss-free and
turbulence-free SNR of the system. It is assumed that Xi,m

(m = 1, 2, ...,M) are identically distributed and statistically
correlated G-G RVs with parameters (↵i,0, �i,0, 1) and the
correlation coe�cient between Xi,m and Xi,p is ⇢mp . Ac-
cording to the previous section,

P
M

m=1 Xi,m can be well ap-
proximated by a RV Xi ⇠ ��(↵i, �i,M), where ↵i and �i
are obtained following the procedures in the Proposition 1.
The instantaneous SNR at the ith node can be approximated
by
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�i =
ai�0
M N

Xi . (20)

After a simple transformation of random variable, the distri-
bution of �i can be expressed as

f�i (�) =
2(N↵i �i/ai�0)(↵i+�i )/2

�(↵i)�(�i)
� (↵i+�i )/2�1

⇥ K↵i��i
*.
,
2

s
N↵i �i�

ai�0

+/
-
. (21)

5.2 AF Relaying

Using the proposed approximation, the received signal at the
first relay can be rewritten as

y1 = 2R
p

P1PLO cos(!IF t + �m) + n1(t), (22)

where P1 = a1X1Pt/M N . The signal y1 is amplified by
the gain G1 so that it is normalized to unity. The amplified
electrical signal is then used to drive an external modulator
to modulate the carrier optical signal. The obtained optical
signal is then transmitted to the second node. The received
signal at the second node can be given as

y2 =(2R)2G1

q
P1P2P2

LO
cos2(!IF t + �m)

+ 2RG1
p

P2PLO cos(!IF t + �m)n1(t) + n2(t),
(23)

where P2 = a2X2Pt/M N . The signal y2 is amplified by G2,
optically modulated and transmitted to the next node. The
received signal at the third node can be given as

y3 =(2R)3G1G2

q
P1P2P3P3

LO
cos3(!IF t + �m)

+ (2R)2G1G2

q
P2P3P2

LO
cos2(!IF t + �m)n1(t)

+ 2RG2
p

P3PLO cos(!IF t + �m)n2(t) + n3(t),
(24)

where P3 = a3X3Pt/M N . Repeating the above procedures,
eventually, the received signal at the destination node can be
expressed as

yN =(2R)N *
,
N�1Y

i=1
Gi

+
-

vut
NY

i=1
(PiPLO) cosN (!IF t+�m)

+

N�1X

i=1
(2R)N�i *.

,
N�1Y

j=i

Gi

+/
-

vut
NY

j=i+1
(PjPLO)

⇥ cosN�i (!IF t + �m) + nN (t), (25)

where Pi = aiXiPt/M N . The inverse end-to-end SNR is
thus given by

1
�end
=

⇣P
N�1
i=1 �

2
i

Q
N

j=i+1

⇣
2R2PjPLO

⌘Q
N�1
j=i G2

j
+ �2

N

⌘

Q
N

i=1
�
2R2PiPLO

�Q
N�1
i=1 G2

i

.

(26)

With the assumption of available CSIs at receivers, the relay
node is able to perform a variable-gain amplification. More
specifically, each relay has an access to the instantaneous CSI
of its previous hop. Therefore, to satisfy the average power
constraint at the output of the ith relay, based on Eq. (26),
the gain Gi can be given as G2

i
= 1

2R2PiPLO+�2
i

. Using this
gain, the end-to-end SNR can be calculated as

�end = *
,

NY

i=1

 
1 +

1
�i

!
� 1+-

�1

, (27)

where �i =
⇣
2R2PiPLO

⌘
/�2

i
, which is identical to Eq. (20).

6. Performance Analysis

6.1 Ergodic Channel Capacity Analysis

It is well known that the atmospheric turbulence over FSO
channels is slow in fading, which is equivalent to commu-
nication over channels where there is a nonzero probability
that any given transmission rate cannot be supported by the
channel. Since the coherence time of the channel is in the
order of milliseconds, atmospheric turbulence-induced fad-
ing remains constant over a large number of transmitted bits
[9], [37]. Without any delay constraints, if the codeword
extends over at least several atmospheric coherence times,
which allows coding across both deep and shallow fade chan-
nel realizations, the fast fading regime can be assumed.
With proper coding and interleaving, the capacity can be
expressed as an average over many independent fades of the
atmospheric channel. The average (i.e., ergodic) capacity
is the expectation with respect to the gains of the instanta-
neous capacity [38]. Since there is no interference issue with
full-duplex transmission for an FSO communication relay-
ing system, the capacity of the full-duplex transmission is
simply double than that of the half-duplex transmission. In
this section, closed-form expressions of the ergodic channel
capacity are derived for both DF and AF relaying schemes.

6.1.1 DF Relaying

The capacity of a fading channel depends on what is known
about the CSI at the transmitter and the receiver. Under the
condition that the CSI is only available at the receiving side,
power or rate adaptation techniques cannot be realized at the
transmitter. The overall system achievable rate is therefore
the minimum of the achievable rates over each hop [39]. Let
Ci (i = 1, ..., N) be the capacity of the ith link, then the
ergodic capacity in DF multihop system can be expressed
as C = min {C1,C2, ...,CN }. The capacity of the ith SIMO
full-duplex link for an average power constraint Pt/N can be
calculated as Ci =

2
N

R 1
0 B log2 (1 + �i) f�i (�i)d�i , where

B denotes the transmission bandwidth and �i is given in
Eq. (20). A closed-form expression for Ci can be given in
terms of the Meijer-G function as
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Ci =
2B

N ln(2)
(N↵i �i/ai�0)(↵i+�i )/2

�(↵i)�(�i)

⇥ G4,1
2,4

266664
N↵i �i
ai�0

������
�↵i+�i

2 , 1 �
↵i+�i

2
↵i��i

2 ,
�↵i+�i

2 , �↵i+�i
2 , �

↵i+�i
2

377775 .
(28)

Proof of Eq. (28) can be found in Appendix B.

6.1.2 AF Relaying

For full-duplex AF relaying systems, the ergodic capacity
is a function of the end-to-end SNR and it is given as
C = 2

N
E(log2(1 + �end)). The end-to-end SNR given in

Eq. (27) is di�cult to extract in a tractable form. Therefore,
the framework for computing the ergodic capacity of mul-
tihop variable-gain relay system presented in [40] is very
useful. According to this framework, the ergodic capacity is
calculated as

C =
2

N ln(2)

QX

q=1

1
q
*
,

NY

i=1
E

  
1 +

1
�i

!�q!+
- + RQ, (29)

where Q � 1 and RQ is a truncation error. In this paper,
in order to obtain accurate results, Q is set to be 15000. A
closed-form expression for E

�
(1 + 1/�i)�q

�
can be given in

terms of the Meijer-G function as

E

  
1 +

1
�i

!�q!
=

(N↵i �i/ai�0)(↵i+�i )/2

�(↵i)�(�i)�(q)

⇥ G1,3
3,1

"
ai�0

N↵i �i

�����
1 + ↵i+�i

2 , 1 �
↵i��i

2 , 1 +
↵i��i

2
q + ↵i+�i

2

#
.

(30)

Proof of Eq. (30) can be found in Appendix C.

6.2 Outage Probability Analysis

In addition to the ergodic capacity, which is an important per-
formance measure, the outage probability is another mean-
ingful performance metric that should be investigated. Due
to the slowly time-varying nature of optical fade in FSO com-
munication channels, there is a non-zero probability that any
given transmission rate cannot be supported by the chan-
nel. Consequently, the outage probability is defined as the
probability that the transmission rate exceeds the instanta-
neous capacity of the channel. The outage probability at a
given rate R0 is given as Pout(R0) = Prob(C(SNR) < R0)
[41]. Since C(·) monotonically increases with respect to the
SNR, Pout(R0) = Prob(SNR < �th), where �th is the SNR
threshold.

6.2.1 DF Relaying

The outage probability of the ith intermediate SIMO link can
be given as Pout,SIMO,i = Prob (�i < �th). Substituting �i
from Eq. (20), we obtain

Pout,SIMO,i = Prob
 
Xi <

MiN�th
ai�0

!
= FXi

 
MiN�th

ai�0

!
,

(31)

where FXi
(·) is given as in Eq. (3). In multihop DF relaying

systems, an outage occurs when any of the intermediate
SIMO links fails. The outage probability is thus given by

Pout,DF =1�
NY

i=1

�
1�Pout,SIMO,i

�

=1�
NY

i=1
1�

G2,1
1,3

"
N↵i�i�th

ai�0

�����
1

↵i, �i, 0

#

�(↵i)�(�i)
. (32)

6.2.2 AF Relaying

For AF relaying, no decoding process is performed at re-
laying nodes, hence the outage probability will depend on
the end-to-end SNR at the destination node. The distribu-
tion of the end-to-end SNR in Eq. (27) is di�cult to ob-
tain. However, Eq. (27) can be tightly approximated by
�end⇡

⇣P
N

i=1
1
�i

⌘�1
[42]. This refers to the ideal case of AF

relaying where equivalently the gain is adjusted with respect
to the channel state, aiming to compensate signal attenuation
caused by the channel attenuation and turbulent fading, i.e.,
Gi =

M

(aiXi ) . In other words, the relay just amplifies the in-
coming signal with the inverse of the channel intensity gain
of the previous hop, regardless of the noise of that hop).

Numerical Evaluation: To evaluate the exact outage
performance, Pout,AF can be numerically evaluated as

Pout,AF ⇡ Prob (�end < �th) = Prob
 

1
�end

>
1
�th

!

= 1 � FY
 

ai�0
M N�th

!
,

(33)

where Y is a random variable defined as Y =
P

N

i=1 1/Xi

and FY (·) denotes the CDF of Y . FY (·) can be calculated
in terms of the inverse Laplace transform as in FY (y) =
L �1

s

(MY (s)
s

)
(y), whereMY (s) =

R 1
0 exp(�sy) fY (y)dy

is the moment generating function (MGF) of Y [43]. If
MY (s) is given in a closed-form expression, Eq. (33) can
be numerically evaluated using inverse Laplace transform
function supported in standard mathematical softwares (e.g.,
MATLAB). Noting that the fading among N point-to-point
SIMO links is independent,MY (s) can be given as

MY (s) =
NY

i=1
M1/Xi

(s) . (34)

M1/Xi
(s) can be calculated as

M1/Xi
(s) =

(↵i �i/M)(↵i+�i )/2

�(↵i)�(�i)
⇥ s(↵i+�i )/2
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⇥ G3,0
0,3

"
↵i �is

M

����� ↵i��i
2 ,

�↵i+�i
2 , �↵i+�i

2

#
.

(35)

Proof of Eq. (35) can be found in Appendix D. Substituting
Eq. (35) and Eq.(34) in Eq. (33), we obtain the exact-form
expression for the outage probability in the case of AF relay-
ing.

Closed-form Expression of Lower Bound: It is worthy
to note that the equivalent SNR in Eq. (27) is not tractable
in a closed-form expression due to the di�culty in deriving
its statistics. Therefore, an upper bound for the end-to-end
SNR �end can be derived by utilizing the inequality between
harmonic and geometric means for �1, �2, · · · , �N , which is
given as in [44]

�end  �b =
1
N

NY

i=1
�1/N
i
. (36)

For CSI-assisted relays, a lower bound of the outage proba-
bility can be obtained in a closed-form expression as

Pout,AF =

GN,2N
3N,N

"Q
N

i=1
ai

↵i �i

N2N

⇣
�0
�th

⌘N �����
⌅N,�(N, 1)
�(N, 0)

#
Q

N

i=1 � (↵i) � (�i)
, (37)

where ⌅N = {1 � �1, 1 � ↵1, · · · , 1 � �N, 1 � ↵N }, and
�(k, l) =

(
l

k
, l+1

k
, · · · , l+k�1

k

)
. Details of the derivation of

Eq. (37) can be found in Appendix E.

7. Numerical Results and Discussions

In this section, unless otherwise noted, system parame-
ters under consideration are selected as specified below.
The optical wavelength of � = 1.55 µm is chosen. The
AWGN noise variance N0 = 2 ⇥ 10�14 is assumed for
all receiver noises. The atmospheric extinction coe�cient
�v = 0.1 dB/km, the angle of divergence of the optical beam
✓ = 10�3 radian. For the sake of a fair comparison, the total
aperture area of the multiple apertures system is chosen to
be equal to that of a single aperture system, with the aperture
diameter of 8 cm. Furthermore, we assume an equal distance
between any two consecutive relay nodes.

7.1 Independent Fading

First, let us consider the outage performance in the case
of independent fading where the M apertures are placed
su�ciently far apart. Under a strong turbulence condition
with C2

n
= 10�14, the outage probability of the DF relaying

system as a function of the normalized SNR is shown in
Fig. 7 for di�erent numbers of hops N and receive apertures
M . It is seen that, in the case of independent fading, spatial
diversity is strongly preferable to the use of new relays. For
instance, at a target probability of 10�6, the performance of a
two receive apertures (M = 2) system with no relay (N = 1)
is about 10 dB better than that of a single aperture system

Fig. 7 DF relaying: Outage probability versus normalized SNR for in-
dependent fading with di�erent numbers of hops and receive apertures,
C

2
n = 10�14, L = 8000 m.

Fig. 8 DF relaying: Average channel capacity versus total SNR for in-
dependent fading with di�erent numbers of hops and receive apertures,
C

2
n = 10�14, L = 8000 m.

with one relay (N = 2). In another example, the (M = 2,
N = 2) system outperforms the (M = 1, N = 3) with
5 dB gain. Keeping the same system settings, the ergodic
capacity is shown in Fig. 8. The advantage of spatial diversity
is confirmed due to the fact that the ergodic capacity is
further reduced with the increase in the number of relays. In
particular, it is seen in Fig. 8 that the system with M = 1 and
N = 3 has the lowest capacity while the system with M = 2
and N = 1 has the highest capacity.

In Fig. 9 and Fig. 10, the outage probability and the
ergodic capacity of the system operating in the AF mode are
presented, however, under a weaker turbulence strength with
C2
n
= 5⇥10�15. Besides the exact outage probability in Fig. 9,

the lower bounds are also plotted. It is noted that for the case
of N = 1, the exact and the lower bound of the outage are the
same since equality holds in the inequality in Eq. (36). It is
seen that, similar to the DF case, employing spatial diversity
is still preferable, especially in the case of ergodic capacity.
Nevertheless, its advantage in the outage performance is not
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Fig. 9 AF relaying: Outage probability versus normalized SNR for in-
dependent fading with di�erent numbers of hops and receive apertures,
C

2
n = 5 ⇥ 10�15, L = 8000 m.

Fig. 10 AF relaying: Average channel capacity versus total SNR for
independent fading with di�erent numbers of hops and receive apertures,
C

2
n = 5 ⇥ 10�15, L = 8000 m.

as clear as in the case of stronger turbulence. For instance, it
is seen in Fig. 9 that the outage performance of the (M = 1,
N = 3) system is closer to that of (M = 2, N = 2) system
in comparison with its counterparts in Fig. 7. This is due
to the fact that as the turbulence strength is weaker, the
fading reduction benefited from spatial diversity becomes
less substantial.

Important Remarks:

• In the case of independent fading, instead of deploying
many relays within a fixed link range, one may consider
the utilization of fewer relays with receive diversity at
each relay, which is a more cost-e�ective solution to
achieve a targeted performance.

• The e�ectiveness of spatial diversity is less significant
in weaker turbulence. In this case, increasing the num-
ber of relays is the better choice to further improve the
system performance. Higher number of relays however
has a negative impact on the ergodic capacity. There-
fore, a trade-o� between the outage performance and

Fig. 11 DF relaying: Outage probability versus normalized SNR with
di�erent values of correlation coe�cient and N = M = 2, C2

n = 10�14,
L = 8000 m.

the channel capacity should be carefully considered.

7.2 Correlated Fading

The previous section shows that the use of spatial diversity
is e�ective in the case of independent fading. Nevertheless,
fading independence is not always available in practice. In
this section, given the correlated fading condition, we inves-
tigate the limits of employing spatial diversity in the context
of multihop systems. For the sake of conciseness, only DF
relaying systems are presented.

Figure 11 shows the impact of channel correlation on the
outage probability of the (M = 2, N = 2) system. The outage
probability is plotted as a function of the normalized SNR for
di�erent levels of channel correlation. The M-C simulation
is also shown, and a good accuracy is observed. The negative
e�ect of channel correlation on the system performance is
clearly seen. For instance, when the correlation coe�cient
⇢ = 0.25 and ⇢ = 0.5, the power penalty is around 5 dB and
11 dB at the outage probability of 10�6, respectively. As the
correlation increases, the outage performance comes closer
to that of a single aperture system.

By comparing Fig. 11 and Fig. 7, the impact of cor-
related fading on the system performance can be evalu-
ated. Specifically, when we compare (M = 2, N = 2) and
(M = 1, N = 3) systems in the case of independent fading,
the spatial diversity gain is about 5 dB (Fig. 7). Nevertheless,
when channel correlation is considered, the gain is reduced.
In particular, when the correlation coe�cient ⇢ = 0.25, the
penalty caused by correlation is 3 dB (as can be seen in
Fig. 11 with a note that (M = 1, N = 3) system does not
su�er from the impact of correlation). In this case, spatial
diversity is still preferable as the combined gain is 2 dB.
However, when the correlation coe�cient is relatively high
(e.g. ⇢ = 0.5), the penalty is 7.5 dB (Fig. 11) which results in
a combined loss of 2.5 dB when comparing (M = 2, N = 2)
with (M = 1, N = 3) system. Therefore, to guarantee the
outage performance, one may consider to add more aperture,



TRINH et al.: FSO SYSTEMS OVER CORRELATED ATMOSPHERIC FADING CHANNELS: SPATIAL DIVERSITY OR MULTIHOP RELAYING?
2043

Fig. 12 DF relaying: Average channel capacity versus total SNR for
correlated fading ⇢ = 0.5 with di�erent numbers of hops and receive
apertures, C2

n = 10�14, L = 8000 m.

e.g. to use (M = 3, N = 2) system, or to add a new relay.
In Fig. 12, the impact of channel correlation on the er-

godic capacity is presented. Obviously, the correlation does
have a negative impact, and in the case of strong correlation,
there is no more advantage to use spatial diversity. Never-
theless, the capacity reduction caused by the increase in the
number of relays still dominates. As we can see, the capac-
ity of the (M = 2, N = 1) system is far higher than that of
(M = 1, N = 3) one.

Important Remarks:

• When the correlation coe�cient is small (less than 0.5),
the performance gain benefited from spatial diversity
in Section VII.A will remain. The spatial diversity is
preferable and system design could be based on the
numerical results of independent fading case.

• When the correlation coe�cient is higher than 0.5, it is
necessary to carefully examine the correlation penalty
to determine the necessary number of apertures and
relays.

8. Conclusions

This paper studied the performance limits of spatial diversity
in multihop AF and DF relaying FSO systems in the pres-
ence of correlated G-G fading channels. The system perfor-
mance in terms of outage probability and ergodic capacity
was analytically derived in closed-form expressions. M-C
simulations were used to validate the analytical results and
excellent agreement between the analytical and simulation
results was confirmed. Our numerical results show that the
spatial diversity along with multihop transmission provides
a significant performance improvement when there is no cor-
relation or the correlation coe�cient is smaller than 0.5 in
fading channels. However, if the correlation coe�cient is
larger than 0.5 due to long link ranges and strong turbulence
conditions, the advantage of spatial diversity is substantially
diminished. In this case, it is necessary to carefully exam-

ine the correlation penalty to determine the combination of
spatial diversity and multihop technique.
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Appendix A: Proof of Proposition 1

Firstly, ⌦s can be obtained directly by matching the first

moments between Y and
MP
i=1

Xi as ⌦s =
MP
i=1
⌦i = M⌦. The

AF for the approximating RV Y is given by

AF =
1
↵s
+

1
�s
+

1
↵s �s

. (A· 1)

Matching the AF of Y with that of the sum given in the
Eq. (11), i.e.,

1
↵s
+

1
�s
+

1
↵s �s

= AFs . (A· 2)

Since we only have the above equation, to derive ↵s and
�s , it is necessary to match a higher moment (e.g., the third
moment) to get one more equation. It, however, leads to
complicated expressions. To avoid matching higher moment,
one possible way is to assume that ↵s = t �s for some value
of t which depends on the parameters of each summand of
the sum. With this assumption, the Eq. (A· 2) reduces to

(t + 1) �s + 1
t �2

s

= AFs . (A· 3)

Now, the parameters ↵s and �s can be easily derived by
solving a quadratic equation. An important question is how
to select an appropriate value of t. For the case of i.c.i.d
G-G RVs, using the same argument in [31] that is t = ↵

� , the
parameters ↵s , �s are given as in the Proposition 1.

Appendix B: Derivation of Eq. (28)

Substituting Eq. (21) in Eq. (28), then expressing the log-
arithm and the Bessel functions in terms of the Meijer-G
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function [45, Eq. (8.4.6.5)], [45, Eq. (8.4.23.1)], Eq. (28) can
be rewritten as

Ci =
B

N ln(2)

⇣
N↵i�i
ai�0

⌘ (↵i+�i )/2

�(↵i)�(�i)

Z 1

0
� (↵i+�i )/2�1
i

⇥ G1,2
2,2

"
�i
�����
1, 1
1, 0

#
G2,0

0,2

"
N↵i �i�i

ai�0

����� ↵i��i
2 ,

�i�↵i

2

#
d�i .

(A· 4)

Using [45, Eq. (2.24.1.1)], the integral in Eq. (A· 4) can be
solved, yielding Eq. (28).

Appendix C: Derivation of Eq. (30)

Following the footsteps of [40], we first have

E

  
1 +

1
�i

!�q!
=

Z 1

0
y�2(y + 1)�q f�i (1/y)dy.

(A· 5)

Substituting Eq. (21) in Eq. (30), then expressing the
Bessel functions in terms of the Meijer’s G-function [45,
Eq. (8.4.6.5)], the integral in Eq. (A· 5) can be solved with
the help of [45, Eq. (2.24.2.4)], yielding Eq. (30).

Appendix D: Derivation of Eq. (35)

From the PDF of Xi and by expressing the exponential and
Bessel functions in terms of the Meijer-G functions [45,
Eq. (8.4.3.1)], [45, Eq. (8.4.6.5)], we then have

M1/Xi
(s) =

Z 1

0
exp(�s/x) fXi

(x)dx

=
(↵i �i/M)(↵i+�i )/2
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Z 1
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0,2

"
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M
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2

#
dx. (A· 6)

Using [45, Eq. (8.2.2.14) and Eq. (2.24.1.1)], the integral in
Eq. (A· 6) can be solved, resulting in Eq. (35).

Appendix E: Derivation of Eq. (37)

Theorem 1 1: The moment generating function (MGF) of
the random variable �b in Eq. (36) can be given as

M�b (s)=

p
NGN,2N

2N,N

"
1

N3N
Q

N

i=1
ai

↵i�i
(�0s)N

�����
⌅N
�(N, 0)

#

(2⇡)
N�1

2
Q

N

i=1 � (↵i) � (�i)
,

(A· 7)

where ⌅N and �(N, 0) are defined in Eq. (37).

Proof: The MGF of �b is defined as the Laplace transform
of �b, which can be expressed as

M�b (s) =
Z 1

0
exp (�s�b) f�b (�) d�. (A· 8)

From Eq. (36), the MGF can be expressed by means of the
following N-fold integral

M�b (s)=
Z 1

0
· · ·

Z 1

0
exp *,�

s
N

NY

i=1
�

1
N

i
+
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NY

i=1
f�i (�i )d�1· · ·d�N . (A· 9)

With the help of [45, Eq. (8.4.3.1), Eq. (8.4.23.1)] and
Eq. (21), the first integral in Eq. (A· 9), denoted as J1, i.e.,
the one on �1, can be written as

J1 =

⇣
N↵1�1
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where Wi = �
1/N
i
�1/N
i+1 · · · �

1/N
N

. Using [45, Eq. (2.24.1.1)]
to solve J1, Eq. (A· 10) can be rewritten as
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where ⌅1 = {1 � �1, 1 � ↵1}. By applying the similar ap-
proach, the integration on �2 can be written as

J2 =
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where ⌅2 = {1 � �1, 1 � ↵1, 1 � �2, 1 � ↵2}. Following
the same procedure, the N-fold integral in Eq. (A· 9) can be
expressed in a closed-form expression as in Theorem 1.

Corollary 1 1: Using Theorem 1, the cumulative distribu-
tion function (CDF) of �b in Eq. (36) can be given as

F�b (�) =
GN,2N

3N,N
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1

N2N
Q2N
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ai
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(A· 13)

Proof: The CDF of �b in Eq. (36) is defined as F�b (�) =
L�1

f
1
s
M�Ti(s)

g
, where L�1 denotes the inverse Laplace

transform operator. With the help of Theorem 1 and using
the identity [46, Eq. (3.38.1)], a closed-form expression of
F�b (�) is obtained as in Corollary 1.
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