
Adopting Tree Overlapping Algorithm for MathML Equation
Structural Similarity Evaluation

Mikhail Ponomarev
Peter the Great St. Petersburg Polytechnic

University
29 Polytechnicheskaya st.

195251 St. Petersburg Russia
ponmike92@gmail.com

Evgeny Pyshkin
University of Aizu

Software Engineering Lab
Tsuruga, Ikki-machi, Aizu-Wakamatsu

Fukushima, Japan 965-8580
pyshe@u-aizu.ac.jp

ABSTRACT
The paper is focused on an approach to computing structural
syntactic similarity of mathematical equations presented in
MathML. We examine a modification of a tree overlapping
algorithm adopted to a purpose of describing mathematical
equation similarity patterns.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; I.5.1 [Pattern Recognition]: Mo-
dels—structural

General Terms
Algorithms, Human Factors

Keywords
Syntactic similarity, Mathematical equations, MathML, Tree
overlapping

1. INTRODUCTION
Nowadays there is a few models of adopting natural lan-

guage processing (NLP) algorithms related to syntax simi-
larity to the specific notations used in mathematics. Mathe-
matical equations (with their unique structural syntax with
a big variety of semantically equivalent constructions) pro-
vide a non-trivial case for information retrieval [6]. Many
reported implementations are focused on exact matching
of mathematical constructions rather than on their similar-
ity [5, 4]. Indeed, for a case of mathematical equations, syn-
tactical similarity is defined rather fuzzy by using several
structural syntactical similarity patterns. However, such a
model would be very useful while developing searching and
classification tools, especially used in education by math
learners and tutors that would allow selecting suitable tasks
to nail down a topic presented during a classroom session.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIT ’16, Oct. 6 – 8, 2016, Aizu-Wakamatsu, Japan.
Copyright 2016 University of Aizu Press.

For example, there is an obvious use case which is access-
ing a set of relevant mathematical equations to be used for
learner’s training while doing preparation works for an ex-
amination. One more option is using such tools for search-
ing an equation by its syntactical structure, the latter being
often easier to recall comparing to exact mathematical for-
mulas.

For the reason that most structural notations used for
mathematical expression representation are in fact based on
directed graphs, syntactic similarity can be defined by us-
ing tree structural similarity. Specifically, in this work we
use the expressions uniformly presented in MathML1 which
is one of widely used structural XML based mathematical
notations. In turn, if we use better structural forms to rep-
resent a math equation, we can expect more efficient and
accurate retrieval in contrast to the not rare case of using
image based equation representation on many web sites. At
the same time we accept a possible criticism that not an
every mathematical expression retrieval difficulty could be
addressed under limitations of MathML representability.

2. STRUCTURAL SIMILARITY OF
MATHEMATICAL EQUATIONS

In [1] similarity of two trees is defined on the base of re-
cursive examination of their subtrees. In [3] the following
mathematical expressions similarity patterns are defined:

Mathematical equivalence: Equations E1 and E2 are
mathematically equivalent if they are semantically the same
(but not obligatorily syntactically the same, for example
d(sin(x))

dx
and (sin(x))′, sin2(x) + cos2(x) and 1.

Identity: E1 and E2 are identical if they are exactly the
same.

Syntactical identity: E1 and E2 are syntactically iden-
tical if they are identical after normalization (dealing with
variable names and numeric values). For example sin(a)
and sin(b), 1

sin(x)
and 5

sin(x)
.

Expression n–similarity: Normalized equations E1 and
E2 are n-similar if similarity (in a certain sense) sim(E1, E2) >
n, n being a parametric value determining the threshold.
There are two specific cases of n–similarity which are par-
ticularly important for our work:

1. Subexpression n–similarity: There is a subexpres-
sion n–similarity for E1 and E2, if they are n–similar
and the corresponding trees both contain the common

1MathML – Mathematical Markup Language

Proceedings of the 2nd International Conference on Applications in Information Technology

17

subtree which in turn contains all the terminal nodes
of both trees. Figure 1 shows an example for the case

of sin(x)2 and sin(x)
2

.

2. Structural n–similarity: E1 and E2 are structurally
n–similar if they are n–similar (in a common sense)
and there is a common part in both trees rooted at root
nodes of the compared trees with the production rules
being the same for all the nodes in this part. Figure 2
illustrates this case for the equations x+

√
sin(a) and

x +
√

2b.

T (sin(x)
2
)

mrow

msup

mn

2

mrow

mo

)

mi

x

mo

(

mo

sin

T (sin(x)2)
mrow

mfrac

mn

2

mrow

mo

)

mi

x

mo

(

mo

sin

Figure 1: Equations sin(x)2 and sin(x)
2

are struc-

turally n–similar for any value of n > 18
26

T (x+
√

sin(a))

mrow

msqrt

mo

)

mi

a

mo

(

mo

sin

mo

+

mi

x

T (x+
√
2b)

mrow

msqrt

mi

b

mn

2

mo

+

mi

x

Figure 2: x +
√

sin(a) and x +
√

2b are structurally
n–similar for any value of n > 12

24

Note that in Figures 1 and 2 for n-values we use nodes ra-
tio where a fraction’s numerator corresponds to the number
of the common nodes in both trees while its denominator
corresponds to the number of all nodes in both trees.

2.1 Tree Overlapping Algorithm
A basic tree overlapping algorithm is described in [2] for a

case of sentence similarity which is defined as follows. When
putting an arbitrary node n1 of a tree T1 on a node n2 of a
tree T2, there might be the same production rule overlapping
in T1 and T2. Tree similarity is defined as a number of such
overlapping production rules.

2.2 Modifying Tree Overlapping Algorithm for
Math Equation Structural Similarity

In contrast to the base algorithm from [2] where tree ter-
minals are naturally excluded, for a case of mathematical
equations we propose to include terminal nodes as if they
had the same production rules (Relaxation 1). Also we re-
lax the strictness of the base algorithm and include the pairs
of corresponding nodes which are in the same order among

their siblings but do not have the same production rules for
their child nodes (Relaxation 2). Below there is a formal
definition of our modification.

Suppose L(n1, n2) represents a set of overlapping node
pairs when putting n1 on n2. It means that if ch(n, i) is
i-th child of node n then L(n1, n2) is being generated by the
following rules:

1. (n1, n2) ∈ L(n1, n2)

2. If (m1,m2) ∈ L(n1, n2), then (ch(m1, i), ch(m2, i)) ∈
L(n1, n2)

3. L(n1, n2) includes all the pairs generated recursively
by the rule No. 2.

A number NTO(n1, n2) of production rules in question
(according to the Relaxation 1) is defined as follows:

NTO(n1, n2) =

(m1,m2)

m1 ∈ nodes(T1)
∧ m2 ∈ nodes(T2)
∧ (m1,m2) ∈ L(n1, n2)
∧ PR(m1) = PR(m2)

 (1)

In equation 1 nodes(T) is a set of nodes (including termi-
nals) in a tree T , while PR(n) is a production rule rooted
at the node n.

Figure 3 shows an example of overlapping tree modifica-
tion algorithm for NTO(d1, d2) = {(d1, d2), (f1, f2), (g1, g2)}.

According to the Relaxation 2, suppose PWPR(n1, n2) is
a set of nodes which is represented as a path from (n1, n2)
to the top last pair of nodes being in the same order among
their siblings. Suppose ni and mi are nodes of a tree Ti,
ch(n, i) is i-th child of node n. PWPR is defined as follows:

1. (n1, n2) /∈ PWPR

2. If PR(parent(n1)) 6= PR(parent(n2))
∧ ch(parent(n1), i) = ch(parent(n2), i)
∧ ch(parent(n1), i) = n1

∧ h(parent(n2), i) = n2,
(parent(n1), parent(n2)) ∈ PWPR

3. PWPR(n1, n2) includes only pairs generated by apply-
ing rule No. 2.

Then the second component for an integral similarity mea-
sure can be defined bu using the above introduced PWPR as
follows:

PTO(n1, n2) =(m1,m2)
(p1, p2) ∈ NTO(n1, n2)
(m1,m2) ∈ PWPR(p1, p2),

if top(m1,m2) = (n1, n2)

 (2)

In equation 2 top(n1, n2) is the last pair in set PWPR(n1, n2):

top(n1, n2) = plast(n1, n2), plast ∈ PWPR (3)

Thus, for two nodes the resulting combined similarity mea-
sure is defined as follows:

CTO(n1, n2) = |NTO(n1, n2)|+ |PTO(n1, n2)|
For the whole trees, we get:

STO(T1, T2) = max
n1∈nodes(T1),n2∈nodes(T2)

CTO(n1, n2) (4)

Proceedings of the 2nd International Conference on Applications in Information Technology

18

|NTO(d1, d2)| = 3

T1

a1

c1

e11d1

g1f1

b1

+

T2

a2

c2

j2d2

g2f2

h2

k2

|PWPR(d1, d2)| = |PWPR(f1, f2)| =
= |PWPR(g1, g2)| = 2

T1

a1

c1

e11d1

g1f1

b1

=

T2

a2

c2

j2d2

g2f2

h2

k2

CTO(d1, d2) = 5

T1

a1

c1

e11d1

g1f1

b1

T2

a2

c2

j2d2

g2f2

h2

k2

Figure 3: Modified Tree-Overlapping Algorithm: Example

2.3 Software Implementation
We developed a software prototype in order to arrange a

series of experiments for our modification of the tree overlap-
ping algorithm for a case of mathematical equations. Fig-
ure 4 gives a hint of how the application user interface is
organized.

Figure 4: Structural similarity component: GUI

For displaying mathematical equations defined in MathML
the library net.sourceforge.jeuclid is used.

3. EXPERIMENTS
There is a significant problem we faced while attempting

to evaluate our modification algorithm. We discovered that,
unlike to the NLP domain, there is no substantial corpus
of mathematical equation syntactical similarity classes. So,
for our rather preliminary analysis we selected a number of
typical trigonometry problems from the set of tasks used in
Russian National Exam on Mathematics. Then we involved
several experts experienced in teaching mathematics. With
their help we classified a selection of expressions in order to
proceed with preliminary analysis of our approach.

3.1 Test Corpora
For our initial experiments we created a set of equations

classified according their structural similarity (being limited

by the paper size we skip here our tests for subexpression
similarity). Table 1 lists the equations we used in our ex-
periments.

Table 1: Expression Classification on Structural
Similarity

No. Expression Class

1
√

2 sin(3π
2
− x) sinx = cosx

1
2 2 cos(x− 11π

2
) cosx = sinx

3 2 sin(7π
2
− x) sinx = cosx

4 −
√

2 sin(− 5π
2

+ x) sinx = cosx
5 cos 2x− 3 cosx + 2 = 0

2
6 cos 2x + 3 sinx− 2 = 0
7 3 cos 2x− 5 sinx + 1 = 0

8 cos 2x− 5
√

2 cosx− 5 = 0

9 cos(π
2

+ 2x) =
√

2 sinx

310 cos 2x = sin(x + π
2

)

11 2 cos(π
2

+ x) =
√

3 tanx

12 2 sin4 x + 3 cos 2x + 1 = 0

413 4 sin4 2x + 3 cos 4x− 1 = 0
14 4 cos4 x− 4 cos2 x + 1 = 0

15 (2 cosx + 1)(
√
− sinx− 1) = 0

516 (2 sinx− 1)(
√
− cosx + 1) = 0

17
√

cos2 x− sin2 x(tan 2x− 1) = 0

18 cos2 x− 1
2

sin 2x + cosx = sinx
6

19 1
2

sin 2x + sin2x− sinx = cosx
20 tanx + cos(3π

2
− 2x) = 0

721 cosx + cos(π
2

+ 2x) = 0

22 2 sin2 x−sin x

2 cos x−
√
3

= 0
8

23 2 sin2 x−sin x

2 cos x+
√

3
= 0

3.2 Tests
Though a corpus presented in Table 1 isn’t representative

enough, it allows us to have some preliminary similarity pre-
cision estimation. Let us note that the preliminary experi-
ments described in this work serves us as a prove-of-concept
example for investigating further necessary improvements
of the developed algorithm. In the future tests a standard
cross-fold validation procedure will be required in order to
get trustworthy precision evaluation results.

Proceedings of the 2nd International Conference on Applications in Information Technology

19

⇒

T1(
√
2 sin(3π2 − x) sinx = cosx)

math

mi

x

mi

cos

mo

=

mi

x

mi

sin

mrow

. . .

mi

sin

mrow

msqrt

mn

2

T2(−
√
2 sin(− 5π

2 + x) sinx = cosx)

math

mi

x

mi

cos

mo

=

mi

x

mi

sin

mrow

. . .

mi

sin

mrow

msqrt

mn

2

mo

−

STO(T1, T2) =
0+0

34+38
= 0

72
= 0

T
′
1(
√
2 sin(3π2 − x) sinx = cosx)

math

mrow

mi

x

mi

cos

mo

=

mrow

mi

x

mi

sin

mrow

mrow

. . .

mi

sin

mrow

msqrt

mn

2

T
′
2(−
√
2 sin(− 5π

2 + x) sinx = cosx)

math

mrow

mi

x

mi

cos

mo

=

mrow

mi

x

mi

sin

mrow

mrow

. . .

mi

sin

mrow

msqrt

mn

2

mo

−

STO(T
′
1, T

′
2) =

17+17
37+41

= 34
78

= 0.44

Figure 5: Tree structure normalization to avoid a false negative case

3.3 Analysis
In Table 2 we listed 5 expressions with the best scores for

the query expression
√

2 sin(3π
2
−x) sinx = cosx (belonging

to the class 1).

Table 2: Query:
√

2 sin(3π
2
− x) sinx = cosx

Compared expressions Nodes ratio Similarity
2 sin(7π

2
− x) sinx = cosx 60/67 0.896

2 cos(x− 11π
2

) cosx = sinx 40/67 0.597

2 cos(π
2

+ x) =
√

3 tanx 24/63 0.381
3 cos 2x− 5 sinx + 1 = 0 12/60 0.200
tanx + cos(3π

2
− 2x) = 0 10/67 0.149

Two best scores are for the equations which also belong
to the class 1, except the equation −

√
2 sin(− 5π

2
+x) sinx =

cosx (No. 4 in Table 1), not recognized as a similar expres-
sion. To explain this phenomenon we have to go back to
MathML equation structure. As you can see from Figure 5
(left side), two compared equations (both belonging to the
class 1 of our corpus) have rather similar structure (at least,
from the human point of view). However, their tree roots
have different number of child nodes, hence their produc-
tion rules are (formally) different. It means that we have
to enhance equation normalization factor (currently limited
by only variable names and numerical values): in the above
mentioned case the issue can be resolved by restructuring a
tree based equation representation as Figure 5 (right side)
shows: both trees in the right side are semantically equiv-
alent to those from the left side. However, similarity score
increases from 0 (in the “left” case) to 0.44 (in the “right”
case).

4. CONCLUSION
In our study of mathematical equation similarity patterns

we adopted a tree overlapping algorithm (used originally
in NLP) for mathematical equation syntactical similarity.

After arranging a set of experiments, we discovered that our
modification fits well a selection of equations from college-
level teaching practice. We examined some drawbacks and
argued that in order to improve precision the further steps
towards equation normalization are required.

5. REFERENCES
[1] R. Bod. Beyond grammar. An Experienced-Based

Theory of Language. CSLI Lecture Notes, 88, 1998.

[2] I. Hiroshi, H. Keita, H. Taiichi, and T. Takenobu.
Efficient sentence retrieval based on syntactic structure.
In Proceedings of the COLING/ACL on Main
conference poster sessions, pages 399–406. Association
for Computational Linguistics, 2006.

[3] S. Kamali and F. W. Tompa. Improving mathematics
retrieval. Towards a Digital Mathematics Library.
Grand Bend, Ontario, Canada, July 8-9th, 2009, pages
37–48, 2009.

[4] K. Sain, A. Dasgupta, and U. Garain. Emers: a tree
matching–based performance evaluation of
mathematical expression recognition systems.
International Journal on Document Analysis and
Recognition (IJDAR), 14(1):75–85, 2011.

[5] K. Yokoi and A. Aizawa. An approach to similarity
search for mathematical expressions using mathml.
Towards a Digital Mathematics Library. Grand Bend,
Ontario, Canada, July 8-9th, 2009, pages 27–35, 2009.

[6] Q. Zhang and A. Youssef. An Approach to
Math-Similarity Search, pages 404–418. Springer
International Publishing, Cham, 2014.

Proceedings of the 2nd International Conference on Applications in Information Technology

20

	1. INTRODUCTION
	2. SPBSU OPPORTUNITIES and TRADITIONS in the DEVELOPMENT of its OWN EDUCATIONAL STANDARDS
	3. The DEVELOPMENT of the IT EDUCATIONAL DIRECTION at SPBSU
	4. INTERNATIONAL COOPERATION in SE DOCTORAL EDUCATION
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	1. INTRODUCTION
	2. PREPARING INPUT DATA
	3. MODEL
	4. NEWS FACTOR
	5. PROSPECTS
	6. REFERENCES

