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ABSTRACT

Numerical Integration

Equations of dynamics have often the first integrals. In par-
ticular, the canonical equations with stationary Hamiltonian
have the energy integral. This fact is sometimes used to
monitor the accuracy of numerical integration or to con-
struct special methods of numerical integration, focused on
the use of such equations.
In this paper we propose a method for correcting the nu-

merical integration at each step based on the known first
integrals of these equations.
For the numerical experiments we use three programs:

DOP853 (the Dorman-Prince method), ODEX (the Gregg-
Bulirsch-Stoer method) and TSMR (explicit method of Tay-
lor series). Programs have been modified so that at each
step of numerical integration the corrections ensure the con-
stancy of the first integrals. Numerical experiments show
that the proposed method sometimes allows to improve the
accuracy of the results on long time intervals. Experiments
were carried out on the Two-body problem and the N-body
problem (Sun and five outer planets).

Categories and Subject Descriptors
G.1.0 [Numerical analysis]: General

General Terms
Theory

Keywords
First integrals, conservative methods, differential equations

1. INTRODUCTION
This study is a logical continuation and propagation of the

ideas described in article [8], where the property of conser-
vation of first integrals has been investigated in numerical
integration by various methods. The study also proposed
a method that facilitates correction of coordinates in each
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step of integration to improve the integration accuracy. Nu-
merical experiments were conducted on the two-body prob-
lem, while four first integrals (one energy integral and three
area integrals) were used to correct the coordinates. It was
observed that the area integrals are conserved much better
than the energy integral. Therefore, we felt it logical to as-
sume that the residual error in energy integral contributes
essentially to correction of coordinates.

Besides, investigating only the energy integral allows to
make the method more universal and to apply it to a broader
class of problems. For example, stationary Hamilton’s canon-
ical equations have energy integral.

Based on the aforesaid, we tried to apply the described
method using only the energy integral. For numerical exper-
iments, we considered two options for the N-body problem.
The first is when N = 2 (Sun and Neptune) and the second
is when N = 6 (Sun and five outer planets). The last one is
chosen as the most interesting for researchers [9].

2. PROBLEM STATEMENT
We consider a system of differential equations describing

the motion of the Solar system planets in heliocentric coor-
dinates [5].

g̈ij = −γ(m0+mi)
gij
r30i

+γ
∑

k∈[1:5]
k ̸=i

ms

[
gkj − gij

r3ki
− gij

r30k

]
, (1)

where r2ij =
∑

j∈[1:3](gij − gkj)
2, rsi > 0, i ∈ [1 : 5],

k ∈ [0 : 5], k ̸= i, j = 1, 2, 3, γ — universal gravitational
constant.

For the two-body problem, these equations take a simpler
form [5]:

g̈j = −γ(m0 +m1)
gj
r3

, (2)

where r =
√

g21 + g22 + g23 .
Let us write the same equations in polynomial form. To do

this, we use the additional variable method outlined in [3].
This conversion is done with the aim that the TSMR pro-
gram [5] implementing the Taylor series method [4] is fo-
cused on solution of differential equations with polynomial
right-hand sides.

Proceedings of the 2nd International Conference on Applications in Information Technology

86




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0i+

+ γ
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k∈[1:5]
k ̸=i

mk
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(gkj − gij)z

3
ki − gijz

3
0k

]
,

żsi = −z3si
∑

j∈[1:3] (gij − gsj)(pij − psj),

(3)

where i ∈ [1 : 5], s ∈ [0 : 5], s < i, zsi = 1/rsi [5].
ġi = pi,

ṗi = −µgiz
3, i = 1, 3,

ż = −z3(g1p1 + g2p2 + g3p3),

(4)

where µ = γ(m0 +m1), z = 1/r and γ – universal gravita-
tional constant [5].
Apart from the TSMR program mentioned above, we also

used the DOP853 [1] and ODEX [1] programs in our nu-
merical experiments. These two programs implement the
Dormand–Prince [7] and Gragg–Bulirsch–Stoer [7] algorithms
respectively.
The initial data used in the problems are presented in

Table 1. The coordinates are presented in astronomical units

Table 1: Coordinates, velocities and masses of outer
Solar System planets

Planet gi1, gi2, gi3 pi1, pi2, pi3

Jupiter
1047.3486

0.36484424231671 × 101 0.51458739160244 × 10−2

−0.31885628561843 × 101 0.53770578567746 × 10−2

−0.14570594138551 × 101 0.21809890337032 × 10−2

Saturn
3497.898

0.860812008268 × 10−1 −0.58771844012993 × 10−2

0.83323915033502 × 101 −0.48077953809 × 10−4

0.34416852468077 × 101 0.02344003625752 × 10−2

Uranus
22902.98

−0.16894580321104 × 102 0.15371000247255 × 10−2

−0.6802790274465 × 101 −0.3460060959201 × 10−2

−0.2742015202544 × 10−1 −0.15378414591329 × 10−2

Neptune
19412.24

−0.1196586398024 × 102 0.28675086989466 × 10−2

−0.25873934395511 × 102 −0.10995281783636 × 10−2

−0.10297822028119 × 102 −0.5224555223166 × 10−3

Pluto
1.35×108

−0.29628255336199 × 102 0.747289767668 × 10−3

−0.5542237950558 × 101 −0.30948199515322 × 10−2

0.7229040993881 × 101 −0.12025228562757 × 10−2

(AU), while the speed is presented in astronomical units
per day (AUd−1) (mean solar day). To make computations
easier the masses of the planets relative to the Sun are used
in the programs instead of the true masses.
It is assumed that the initial data recorded in Table 1 are

defined absolutely accurate.
We write the analytical formulas of energy integrals. En-

ergy integral in the two-body problem [6]:

H(g, p) =
1

2

(
p21 + p22 + p23

)
− µ√

g21 + g22 + g23
. (5)

Energy integral in the N-body problem [6]:

H(g, p) =
1

2

n−1∑
i=1

mi

(
p2i1 + p2i2 + p2i3

)
− 1

2m

[(n−1∑
i=1

mipi1

)2

+

+

(
n−1∑
i=1

mipi2

)2

+

(
n−1∑
i=1

mipi3

)2]
− γ

∑
i<j,j∈[1:n−1]

mimj

rij
,

(6)

where m =
∑n

l=0 ml, rij =
√∑

j∈[1:3](gij − gkj)2.

3. INTEGRAL CONSERVATION METHOD
Below is a description of the method used to conserve the

values of the first integrals over an entire integration interval.
This method is based on the method described in [8] view
of the fact that we try to conserve only the energy integral.

Let x0 = (g0, p0) be the initial data of the Cauchy prob-
lem for the system (1) or (2). Let x = (g, p), dim (g, p) = n
be the value on the k-th step of integration. The function
H(x(t)) = C0 = const is the integral energy of the corre-
sponding system.

Let us denote by C1 = H(x1) the energy integral values in
the k-th step. We decompose the integral in a Taylor series
by discarding all the higher order terms

H(x+ δ) = Ci0 = H(x) +

n∑
k=1

∂H(x)

∂xk
δk.

Introducing the denotation d = C0 − C1, we get:

n∑
k=1

∂H(x)

∂xk
δk = d.

Let’s seek δ1, . . . , δn such that
∑n

k=1 δ
2
k → min. To find

them, we will use the method of Lagrange multipliers:

L(δ, λ) =

n∑
i=1

δ2i + λ

(
n∑

k=i

∂H(x)

∂xi
δi − d

)
, (7)

∂L(δ, λ)

∂δi
= 2δi +

∂H(x)

∂xi
λ = 0, i = 1, n, (8)

∂L(δ, λ)

∂λ
=

∂L(δ, λ)

∂λ
=

n∑
k=i

∂H(x)

∂xi
δi − d = 0. (9)

From (8), δi becomes:

δi = −1

2

∂H(x)

∂xi
λ = 0, i = 1, n. (10)

Substituting (10) in (9) we obtain:

λ = − 2d∑n
i=1

(
∂H(x)
∂xi

)2 = 0. (11)

The final formula for computing the numerical value of
corrections is as follows:

δi =
d · ∂H(x)

∂xi
n∑

k=1

(
∂H(x)
∂xk

)2 . (12)
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4. NUMERICAL EXPERIMENTS
Taking into account the method described above, we mod-

ified all the programs in such a way as to correct the solution
values using this method at the end of each period. These
modifications are presented in Fig. 1

Figure 1: Block diagram of re-engineered program

4.1 Two-body problem
The numerical experiment results are presented in Fig. 2.

Figure 2: Results of integration using the TSMR
program

The figure shows the results of integration carried out us-
ing the TSMR program and its modifications. TSMR-HC is

the modification of TSMR and it conserves the energy inte-
gral and the area integral, while TSMR-H is the modification
that conserves only the energy integral.

It can be seen in the graph that among all the modifi-
cations, the TSMR-H program yields the best results (1-2
orders of magnitude). One can note that this result is re-
markable also by the fact that integration accuracy improved
despite reducing the amount of integrals conserved. Besides,
as has been noted above, this simplifies the program itself
and makes it more versatile.

The DOP853 and ODEX programs give similar results.
Detailed graphs and tables for a variety of programs can be
found in [2].

4.2 Problem of movement of outer Solar Sys-
tem planets

Given the results in the preceding paragraph, we have at-
tempted to test our program on the six-body problem. Here,
we decided to use the TSMR-H modification that conserves
only the energy integral. The results obtained were unpleas-
antly surprising.

Since the N-body problem has no periodic solution for
N > 2, round-trip integration was therefore used to assess
the relative solution errors: the equations are first integrated
from point 0 to point T , and then, taking the data obtained
as initial data, the equations are integrated from point T to
point 0.

As shown by experiments on all the tested intervals, the
integration accuracy worsens by several orders of magnitude.
After obtaining these results, we decided to check how the
modified program behaves in one step for round-trip inte-
gration.

The results are shown in Table 2.

Table 2: Result of integration in one step
TSMR TSMR-H TSMR-H-NEW

1.597274 × 10−12 6.743340015638 × 10−3 6.743340015644 × 10−3

The Table 2 contains errors for integration using TSMR
and its two modifications. The TSMR-H modification differs
from TSMR-H-NEW with the fact that in the TSMR-H pro-
gram, the initial value of energy integral that we conserve
further is calculated once at the starting point of integra-
tion and is used in the entire round-trip integration area. In
the TSMR-H-NEW program, the initial value is calculated
twice – the first time is at the starting point of integra-
tion when integrating forward and the second time is at the
starting point of integration when integrating back.

As it follows from the table, although the values of the first
integrals are conserved in both cases, integration accuracy
does not improve but worsens.

5. CONCLUSIONS
The paper describes an integration method that allows to

conserve the energy integral value in the entire integration
interval. This method was used to modify some existing
programs and conduct numerical experiments.

In the two-body problem, using the proposed method can
improve integration accuracy by 1− 2 orders of magnitude.

In the problem of five outer Solar System planets, applying
the method reduces the integration accuracy. Character of
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result degradation is not clear yet. We can note the following
reasons:

• instability of the 6-body problem. In other words, a
small change of initial data influences on further mo-
tion significantly.

• unintentional mistake in the programmodification. Al-
though there is not any explicit or indirect confirma-
tion of this fact (energy integrals are saved with high
accuracy, modification does not influence on main in-
tegration functions Fig.1), we do not eliminate this
possibility.
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