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ABSTRACT
We study a generalization of the Euclidean minimal tree
problem to the case of the planar weighted networks con-
sisting of four given terminals and two extra facilities. Ex-
plicit analytical formulae are presented for the conditions
of the existence of the network, facility coordinates and for
the total network cost. These formulae are utilized for the
investigation of the network dynamics under variation of pa-
rameters.

Categories and Subject Descriptors
G.2.2 [Discrete mathematics]: Graph Theory—Network
problems; G.1.6 [Numerical analysis]: Optimization—Glo-
bal optimization; I.1.2 [Symbolic and algebraic manip-
ulation]: Algorithms—Algebraic Algorithms

General Terms
Theory, Algorithms

Keywords
Euclidean multifacility location problem, Weber problem,
nonlinear optimization, analytical solution

1. INTRODUCTION
The classical Weber or generalized Fermat-Torricelli prob-

lem is stated as that of finding the point (facility, junc-
tion) S = (x∗, y∗) that minimizes the sum of weighted dis-
tances from itself to n ≥ 3 fixed points (terminals) {Pj =
(xj , yj)}nj=1 in the Euclidean plane:

min
S∈R2

n∑
j=1

mj |SPj | . (1)

Hereinafter | · | stands for the Euclidean distance and the
weights {mj}nj=1 are assumed to be positive real numbers.
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This nonlinear optimization problem was stated by Alfred
Weber [6] with regard to the optimal facility location prob-
lem like the one of finding the optimal, i.e., minimizing the
transportation costs, position for the plant manufacturing
one ton of the final product from {mj}nj=1 tons of distinct
raw materials located at {Pj}nj=1. He also treated the multi-
facility problem consisting in finding the set of ` ≥ 2 facility
points {Si}`i=1 in R2 connected to the terminals {Pj}nj=1

that solves the optimization problem

min
{S1,...,S`}⊂R2

{
n∑

j=1

∑̀
i=1

mij |SiPj |+
∑̀
k=1

`−1∑
i=k+1

m̃ik|SiSk|

}
.

This problem can be considered as a natural generalization
of the celebrated Steiner minimal tree problem aimed at con-
struction of the network of the minimal length linking the
given terminals.

Dozens of papers are devoted to the Weber problem, its
ramifications and applications; we refer to [2] and [3] for the
reviews. They are focused onto the application of the vari-
ety of numerical procedures for the nonlinear optimization
problem. The main difficulty consists in the fact that the
objective (or cost) function of the Weber problem is non-
differentiable, and the extensions of the standard nonlinear
programming versions of iterative procedures for finding its
minimum, like the gradient descent ones, should be modi-
fied. One of these modifications is based on the Weiszfeld
algorithm.

The present paper is devoted to an alternative approach
for the problem, namely an analytical one. We are look-
ing for the explicit expressions for the facility coordinates as
functions of the problem parameters (terminal coordinates
and weights). This approach has been originated in the re-
cent papers [4] and [5] where the unifacility Weber prob-
lem for three terminals and Steiner minimal tree problem
for four terminals have been solved by radicals. Within the
framework of this approach, we will be focused here on so-
lution of the Weber problem for the case of n = 4 terminals
and ` = 2 facilities, namely we are looking for the facilities
S1 = (x∗, y∗) and S2 = (x∗∗, y∗∗) minimizing the following
objective function

F (x∗, y∗, x∗∗, y∗∗) = m1|S1P1|+m2|S1P2|
+m3|S2P3|+m4|S2P4|+m|S1S2| . (2)

We prove that this problem can also be solved by radicals
with the main result of paper formulated in the next section.
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2. ANALYTICS
We will treat the case where the terminals {Pj}4j=1 , while

counted counterclockwise, compose a convex quadrilateral
P1P2P3P4.

Theorem 1. The necessary condition for the existence
of solution to the Weber problem is that of positivity of the
values

k12 = (m+m1 +m2)(m−m1 +m2)

× (m+m1 −m2)(−m+m1 +m2),

k34 = (m+m3 +m4)(m−m3 +m4)

× (m+m3 −m4)(−m+m3 +m4).

Set

τ1 =
√
k12[
√
k34(x4 − x3)− (m2 +m2

3 −m2
4)y3

− (m2 −m2
3 +m2

4)y4] + 2m2
√
k12y2 + k12(x1 − x2)

+ (m2 +m2
1 −m2

2)[
√
k34(y3 − y4) + (m2 +m2

1 −m2
2)x1

+(m2−m2
1+m2

2)x2−(m2+m2
3−m2

4)x3−(m2−m2
3+m2

4)x4],

τ2 = −
√
k12[
√
k34(x4 − x3)− (m2 +m2

3 −m2
4)y3

− (m2 −m2
3 +m2

4)y4]− 2m2
√
k12y1 − k12(x1 − x2)

+ (m2 −m2
1 +m2

2)[
√
k34(y3 − y4) + (m2 +m2

1 −m2
2)x1

+(m2−m2
1+m2

2)x2−(m2+m2
3−m2

4)x3−(m2−m2
3+m2

4)x4],

η1 =
√
k12[
√
k34(y4 − y3) + (m2 +m2

3 −m2
4)x3

+ (m2 −m2
3 +m2

4)x4]− 2m2
√
k12x2 + k12(y1 − y2)

+ (m2 +m2
1 −m2

2)[
√
k34(x4 − x3) + (m2 +m2

1 −m2
2)y1

+(m2−m2
1+m2

2)y2−(m2+m2
3−m2

4)y3−(m2−m2
3+m2

4)y4],

η2 = −
√
k12[
√
k34(y4 − y3) + (m2 +m2

3 −m2
4)x3

+ (m2 −m2
3 +m2

4)x4] + 2m2
√
k12x1 − k12(y1 − y2)

+ (m2 −m2
1 +m2

2)[
√
k34(x4 − x3) + (m2 +m2

1 −m2
2)y1

+(m2−m2
1+m2

2)y2−(m2+m2
3−m2

4)y3−(m2−m2
3+m2

4)y4],

and set the values for τ3, τ4, η3, η4 via the formulae obtained
by cyclic substitution for subscripts(

1 2 3 4
3 4 1 2

)
in the above expressions for τ1, τ2, η1, η2 correspondingly.

If all the values

δ1 = η2(x1 − x2) + τ2(y2 − y1),

δ2 = η1(x1 − x2) + τ1(y2 − y1),

δ3 = η4(x3 − x4) + τ4(y4 − y3),

δ4 = η3(x3 − x4) + τ3(y4 − y3),

δ = −
δ1
(
m2 +m2

1 −m2
2

)
√
k12

−
δ3
(
m2 +m2

3 −m2
4

)
√
k34

+ (η1 + η2) (y1 − y3) + (τ1 + τ2) (x1 − x3)

are positive then there exists a pair of points S1 and S2 lying
inside P1P2P3P4 that furnishes the minimal value for (2).

The coordinates of point S1 are as follows:

x∗ = x1 −
2δ1m

2τ1√
k34 [(η1 + η2) 2 + (τ1 + τ2) 2]

, (3)

y∗ = y1 −
2δ1m

2η1√
k34 [(η1 + η2) 2 + (τ1 + τ2) 2]

(4)

while those of point S2:

x∗∗ = x3 −
2δ3m

2τ3√
k12 [(η1 + η2) 2 + (τ1 + τ2) 2]

, (5)

y∗∗ = y3 −
2δ3m

2η3√
k12 [(η1 + η2) 2 + (τ1 + τ2) 2]

. (6)

The minimal value for (2) (cost of the network) then equals

C =

√
(η1 + η2) 2 + (τ1 + τ2) 2

4m3
. (7)

Theorem 1 claims that, for the case of two facilities, the
Weber problem can be solved by radicals. The proof is sim-
ilar to its counterpart for the equal weighted case [5]. It can
be proved that the {4 terminals, 2 facilities}-Weber problem
can be reduced to a twain of {3 terminals, 1 facility}-Weber
problems. For instance, the configuration of weights

{P1,m1}, {P2,m2}, {Q,m}

with

Q = 1/(2m2)

×
(
m2(x3 + x4) + (m2

3 −m2
4)(x3 − x4)−

√
k34(y3 − y4),

m2(y3 + y4) + (m2
3 −m2

4)(y3 − y4) +
√
k34(x3 − x4)

)
possesses a solution to the unifacility problem coinciding
with the position of the facility S1. For this type of problems,
an analytical solution is already constructed [4].

Corollary 1. Under the conditions of Theorem 1, the
point S1 = (x∗, y∗) lies inside the triangle P1P2S2 and pro-
vides a solution to the unifacility Weber problem

min
S∈R2

(m1|SP1|+m2|SP2|+m|SS2|) .

Similar statement is also valid for the point S2 = (x∗∗, y∗∗)
and the terminals P3, P4 and S1.

We outline briefly the meaning of the conditions from The-
orem 1. First, due to Heron’s formula, the values 1

4

√
k12 and

1
4

√
k34 equal the squares of the so-called weight triangles,

i. e. the triangles composed with the sets of edges coincid-
ing with {m1,m2,m} and {m3,m4,m} respectively. The
positivity of k12 and k34 guarantees the existence of both
weight triangles. The condition for the positivity of all the
delta values from the statement of Theorem 1 is essential
for the problem solubility. Conditions {δj > 0}4j=1 ensure
the location of the facilities S1 and S2 inside the quadri-
lateral P1P2P3P4, while the condition δ > 0 guarantees the
facilities against their collision since

|S1S2| =
δ√

(η1 + η2)2 + (τ1 + τ2)2
. (8)
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Corollary 2. For the equal weighted case {mj = 1}4j=1,
m = 1, the expression for δ can be represented in the form

δ =
8√
3

[x3 − x1, y3 − y1] ·
[ √

3/2 1/2

−1/2
√

3/2

]
·
[
x4 − x2
y4 − y2

]
.

This value is positive iff the angle between the diagonal
−−−→
P1P3

of the quadrilateral and the other diagonal
−−−→
P2P4 turned

through by π/6 clockwise is acute. Equivalently, if we denote

by ψ the angle between diagonal vectors
−−−→
P1P3 and

−−−→
P2P4 then

δ is positive iff ψ < π/2 + π/6 = 2π/3. This confirms the
known condition for the existence of a full Steiner tree of the
following topology:

P1

P2
S1S2

P4

P3
.

Formulae (3)-(6) yield then the coordinates of Steiner points
while the length of the corresponding Steiner tree equals

C =
1

2

√
A2 +B2

where

A =
√

3(x1 − x2 − x3 + x4) + (y1 + y2 − y3 − y4),

B = (x1 + x2 − x3 − x4) +
√

3(−y1 + y2 + y3 − y4) .

3. EXAMPLES
In comparison with numerical (iterative) procedures for

solving the Weber problem, representation of its solution in
analytical form given in the previous section looks cumber-
some. However, we give the following reasons for its utility:

• Though the numerical procedures are generically faster
if dealing with particular specialization of the problem
parameters, their approximation properties might be
invalid when at least one of facilities being searched
happens to lie close to a terminal position. On the
contrary, analytical formulae are universal in the sense
that they yield the exact result (i.e., free of truncation
errors) regardless on the position of facilities.

• In case of the problem dealing with some variable pa-
rameters, analytics provide one with a unique oppor-
tunity to evaluate their influence on its solution. In
particular, this means that the bifurcation values for
the parameters can be determined responsible for the
degeneracy of the network topology.

In the present section we will exemplify the latter point.

Example 1. Find the coordinates of facilities S1, S2 for
the following configuration of weights

P1 = (1, 5) P2 = (2, 1) P3 = (7, 2) P4 = (6, 7)
m1 = 3 m2 = 2 m3 = 3 m4 = 4

m = 4 .

Solution. The conditions of Theorem 1 are fulfilled: the
values δ1 ≈ 14124, δ2 ≈ 29388, δ3 ≈ 34784, δ4 ≈ 18831 and
δ ≈ 11721 are positive. Formulae (3)-(7) then give the co-
ordinates for facilities

x∗ =
2266800 + 772027

√
15 + 453552

√
33 + 246177

√
55

48
(
22049 + 2085

√
15 + 945

√
33 + 2559

√
55
)

≈ 3.701271,

Figure 1: Network for the configuration of weights
from Example 1
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Figure 2: Dynamics of points S1, S2 under variation
of terminal P3.

y∗ =
1379951 + 201984

√
15 + 97279

√
33 + 154368

√
55

16
(
22049 + 2085

√
15 + 945

√
33 + 2559

√
55
)

≈ 4.430843,

x∗∗ ≈ 4.761622, y∗∗ ≈ 4.756175,

and the cost of the network (Fig. 1):

C =
1

8

√
44098 + 4170

√
15 + 5118

√
55 + 1890

√
33

≈ 41.280608.

Example 2. For the terminals P1, P2, P4 from Example
1 and for P3 moving towards P2 from the starting position
at (9, 2) find the loci of facilities S1, S2.

Solution. It turns out that when P3 wanders, the facility
Sj moves along the arc of the circle

Cj =
{

(x, y) ∈ R2
∣∣∣ (x−Xj)

2 + (y − Yj)
2 = r2j

}
.
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Figure 3: Dynamics of points S1, S2 under variation
of weight m.

Here

X1 =
1

30
(45 + 4

√
15), Y1 =

1

30
(90 +

√
15), r1 =

2

15

√
255 ;

while the exact expressions for the parameters of C2 are
rather complicated and we present here just only their ap-
proximations:

X2 ≈ 1.013521, Y2 ≈ 8.288416, r2 ≈ 5.150241 .

We emphasize that the trajectory of P3 does not influence
the trajectories of S1 and S2, i.e. both facilities do not leave
the corresponding arcs for any drive of P3 until the latter
reaches the line

L ≈
{

(x, y) ∈ R2
∣∣∣ y = −1.538431x+ 10.104975

}
.

At this moment, S1 coincides with S2 in the point

I ≈ (3.936925, 4.048287)

which yields a solution for the unifacility Weber problem
(1) for the terminals {Pj}4j=1. Point I is invariant for any
position of P3 in L (Fig. 2).

The scenario for the facilities behaviour in the present
example looks similar to the equal weighted case [5], while
the problem statement of the next example is of a completely
new nature.

Example 3. For the terminals {Pj}4j=1 from Example 1
find the loci of facilities S1, S2 under the variation of the
weight m within [2, 4.8].

Solution. When the weight m increases, the facilities S1

and S2 approach each other along the algebraic curves given
in parametric form as (x∗(m), y∗(m)) and (x∗∗(m), y∗∗(m))
correspondingly. Due to (8), these points collide when m
coincides with a zero of the equation δ(m) = 0. The latter
can be reduced to an algebraic one

24505m20 − 3675750m18 + · · ·+ 25596924755077 = 0

with a zero m0 ≈ 4.326092. The collision point

I ≈ (4.537574, 4.565962)

yields a solution for the unifacility Weber problem (1) for
the terminals {Pj}4j=1.

When m decreases, the facility S1 moves towards P1 while
S2 moves towards P4. The first drive is faster than the
second one: S1 approaches P1 when m coincides with a zero
of the equation δ1(m) = 0. The latter can be reduced to an
algebraic one

377145m12 − 15186678m10 + · · ·+ 8631109474 = 0

with a zero m1 ≈ 2.405703 (Fig. 3).

4. CONCLUSIONS
The multifacility Weber problem for the case of four ter-

minals and two facilities in the plane has been tackled in its
general statement including establishment the conditions for
its solubility and deduction the explicit formulae for its so-
lution. The obtained result permits one to analyze the effect
of the problem parameter variations to the shape of the net-
work. It also inspires a hope in extensibility of the analytical
approach to the problem in its general statement. Indeed,
on recalling the idea underlying the proof of Theorem 1,
one might expect that the general n-terminal Weber prob-
lem can be somehow reduced to a couple of (n−1)-terminal
problems. Right at the moment, this statement is a mere
conjecture, however it is also justified by the known in the
literature treatment of the particular case of the problem,
namely the Steiner minimal tree problem.

The result can also be useful for the data clusterization
problems and for the phylogenetic tree reconstruction [1].
For the latter problem, the extension of the results of present
paper to Rd, d ≥ 3 is a question for further investigation.

The authors thank the referees for valuable suggestions
that helped to improve the quality of the paper.
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