
FPGA based Design of a Low Power Asynchronous MIPS
Processor

Jukiya Furushima
University of Aizu

Aizu-Wakamatsu 965-8580, Japan
m5201118@u-aizu.ac.jp

Hiroshi Saito
University of Aizu

Aizu-Wakamatsu 965-8580, Japan
hiroshis@u-aizu.ac.jp

ABSTRACT
In this paper, we design a low power asynchronous MIPS
processor on a Field Programmable Gate Array (FPGA).
We synthesize the MIPS processor by assigning the maxi-
mum delay constraints for control paths and data paths. In
the experiment, we evaluate the area, execution time, power
consumption, and energy consumption of the designed MIPS
processor comparing with the synchronous MIPS processor.
We achieved 35% power reduction by the designed MIPS
processor.

Categories and Subject Descriptors
B.6.0 [Hardware]: LOGIC DESIGN�General

General Terms
Design

Keywords
Asynchronous circuits, FPGA, processor design

1. INTRODUCTION
Most of currently used processors are synchronous cir-

cuits. Circuit components in synchronous circuits are con-
trolled by global clock signals. In synchronous circuits, clock
skew, power consumption, and electromagnetic radiation
will be signi�cant problems when semiconductor submicron
technology is advanced more and more.
In asynchronous circuits, circuit components are controlled

by local handshake signals. Asynchronous circuits are po-
tentially low power consumption and low electromagnetic
radiation due to the absence of global clock signals. How-
ever, the design of asynchronous circuits is more di�cult
than the design of synchronous circuits.
Several asynchronous processors have been proposed. Hand-

shake Solutions designed a clockless ARM996HS using TiDE
design �ow [1]. Zhang and Theodoropoulos designed SAMIPS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIT ’16, Oct. 6 – 8, 2016, Aizu-Wakamatsu, Japan.
Copyright 2016 University of Aizu Press.

[2] using Balsa [3]. SAMIPS is an asynchronous MIPS pro-
cessor similar to this paper. Amde et.al, designed an asyn-
chronous DLX processor using Pipe�tter [4]. Chang-Jiu
et.al, designed an asynchronous 8051 microcontroller using
Balsa [5]. Iwasaki designed an asynchronous AVR proces-
sor considering a cycle time constraint [6]. The targets of
these researches were not FPGA but Application Speci�c
Integrated Circuits (ASICs).
In this paper, we design a low power asynchronous MIPS

processor on an FPGA. We synthesize the MIPS processor
assigning the maximum delay constraints for data-paths and
control paths. In addition, we evaluate the area, execute
time, power consumption and energy consumption of the
designed MIPS processor.
The organization of this paper is as follows. In section 2,

we describe background used in this paper. In section 3, we
describe the design of an asynchronous MIPS processor. In
section 4, we describe the experimental result. In section 5,
we conclude this work.

2. BACKGROUND

2.1 Asynchronous Circuits with Bundled-data
Implementation

Figure 1 represents an asynchronous processor model with
bundled-data implementation. The left side is the control
circuit and the right side is the data-path circuit. The data-
path circuit consists of Program Counter (PC), Memories
(IMEM and DMEM), Instruction Register (IR), Decoder,
Register File (RF), ALU, and delay elements hdk. PC stores
the address of the instruction memory. IMEM is a memory
to store instructions. DMEM is a memory to store data.
IR is a register to store an instruction fetched from IMEM.
RF is a collection of registers. Data from DMEM and ALU
are written into RF. hdk are delay elements for registers or
memories to guarantee hold constraints of registers. The
control circuit consists of control modules ctrli (0 ≦ i ≦
m − 1). A control module ctrli consists of a Q-module qi,
delay elements sdi, bdi, cdi, and glue logics. sdi is used
to guarantee setup constraints. bdi is used to guarantee
the timing of a control branch. cdi is used to guarantee
the timing of resetting of control signals. Glue logics are
branch decision logics and C-elements [8]. C-elements are
synchronization components. The output of C-elements is 0
when all inputs are 0. The output is 1 when all inputs are
1. Otherwise, the output does not change. In the case of
pipeline execution, two control modules ctrli_1 and ctrli_2

are used to control one pipeline stage.

Proceedings of the 2nd International Conference on Applications in Information Technology

98



Figure 1: An asynchronous processor model with bundled-
data implementation.

We describe behaviors of this processor model. Q-module
qi in ctrli starts the control of operations in the data-path
circuit when a rising edge ini comes from the previous Q-
module qi−1. After the rising edge ini signal arrives, qi rises
the request signal reqi, the signal passes sdi, and rises the
acknowledge signal acki, and go back to qi. Then, qi falls
reqi signal and wait a falling edge of acki signal. Data are
written into registers with the falling edge of acki. After
acki returns qi, qi rises outi and control signal moves to the
next control module ctrli+1. In addition, outi is returned to
C-element to reset ini and outi.
The model needs to satisfy 5 types of timing constraints

[6]. If some of them are violated, we need to adjust delay
elements sdi, hdk, bdi, cdi to satisfy timing constraints.

2.2 The MIPS Processor
The MIPS processor used in this work consists of instruc-

tion fetch stage (IF), instruction decode stage (ID), exe-
cute stage (EX), memory access (MEM), and write back
stage (WB) [9]. The block diagram of the MIPS processor
is shown in Figure 2.
IF stage includes an instruction memory (IMEM), pro-

gram counter (PC), an adder, and two multiplexers to de-
cide the address of IMEM. ID stage includes a decoder, a
register �le (RF), a sign extension, a shifter, an adder, and
a comparator. The decoder generates control signals from a
fetched instruction. The register �le saves data from a data
memory (DMEM) or an arithmetic and logic unit (ALU).
EX stage includes an ALU to execute arithmetic or logical
operations. MEM stage includes a DMEM. In WB stage,
data from ALU or DMEM are written into RF.
The MIPS processor supports 9 instructions. R type in-

structions (add, sub, or, and, slt) use register values. J
instruction is a jump instruction. Beq instruction is a con-

Figure 2: The block diagram of pipelined MIPS processor
[9].

ditional branching instruction. Lw instruction reads data
from DMEM and stores to a register. Sw instruction writes
data in a register to DMEM.

2.3 Field Programmable Gate Array
Field Programmable Gate Array (FPGA) is one of recon-

�gurable devices. FPGA has been used in many embedded
systems because of the advantage such as lower design cost
and �exibility to change circuit structure. Figure 3 shows
the Altera Cyclone IV FPGA. The FPGA consists of Logic
Arrays, Embedded Multipliers, Random Access Memories
(RAMs), Input/output Elements (IOEs), and Phase Locked
Loops (PLLs).

3. DESIGN OF AN ASYNCHRONOUS MIPS
PROCESSOR

3.1 Design of an Asynchronous MIPS Proces-
sor Model

We design an asynchronous MIPS processor as follows.
The data-path circuit is the same as the one used in [9]. The
control circuit is modeled by a �nite stage machine (FSM).
Figure 4 shows an FSM of the MIPS processor. Nodes of
the FSM represent pipeline stages. After IF stage, FSM
is branched by a fetched instruction. Edges of the FSM
represent dependencies between stages.
Figure 5 shows the generation of an asynchronous con-

trol circuit. We use the method in [6]. First, each node of
FSM is divided into two. This is to hidden the initialization
phase of control modules (i.e., reset of ini and outi). After
division, a control module ctrli is allocated to each node. If
registers and memories are controlled by some control mod-
ules, write signals for them are generated by acki signals of
the control modules. Finally, C-elements and feedback loops
are inserted to control modules. Figure 6 shows the control
circuit of the asynchronous MIPS processor.
Figure 7 shows the structure of ctrli for Altera Cyclone

IV FPGA. Primitives DLATCH and LCELL of Altera FP-
GAs are used. There are two DLATCHes in two C-elements.
If there is no DLATCH in C-elements, timing analysis tool
cannot analyze path delays due to the existence of a combi-
national loop. In addition, to perform timing analysis cor-
rectly, we set "synthesis_keep" attribute to the output of
sdi. Moreover, we insert two DUMMY modules to indicate
a wire as a through point for path delay analysis. Delay

Proceedings of the 2nd International Conference on Applications in Information Technology

99



Figure 3: Structure of Altera
Cyclone IV FPGA [10].

Figure 4: The FSM to repre-
sent pipeline stages of instruc-
tions.

Figure 5: Generation of an asynchronous control circuit [6].

elements sdi, hdk, cdi consists of LCELLs. They work as
bu�ers. To avoid optimization for control modules, we set
"Design Partition" for control modules.
Finally, we model the asynchronous MIPS processor using

Verilog HDL.

3.2 Generation of the Maximum Delay Con-
straints and Setting of Margins

3.2.1 Generation of the Maximum Delay Constraints
To satisfy a given cycle time constraint CT , we assign the

maximum delay constraints to paths related to setup con-
straints. Figure 8 represents a data-path sdpi,p and a control
path scpi,p for a setup constraint. The data-path sdpi,p is di-
vided into 2 sub-paths. The former is from sdi−1_2 to source
register regsrc (PC in Fig. 8) and the latter is from regsrc
to destination register regdst (IF/ID pipeline register in Fig.
8). The control path scpi,p is divided into 9 sub-paths: from
sdi−1_2 to C-element in ctrli_1, from C-element in ctrli_1

to sdi_1, from sdi_1 to C-element in qi_1, from C-element
in qi_1 to sdi_1, from sdi_1 to C-element in ctrli_2, from
C-element in ctrli_2 to sdi_2, from sdi_2 to C-element in
qi_2, from C-element in qi_2 to sdi_2, and from sdi_2 to
regdst. The reason why we divide paths is to analyze path
delays using general static timing analyzers correctly.

Figure 6: The control circuit of the asynchronous MIPS
processor.

Figure 7: Structure of ctrli. Figure 8: Paths to assign the
maximum delay constraints.

We use the calculation method described in [11] to de-
cide the values of the maximum delay constraints. In ad-
dition, we use set_max_delay command to represent the
maximum delay constraint. set_max_delay command is
provided in Synopsys Design Constraint (SDC) �le format.

3.2.2 Setting of Margins
We setup margins for data-path delays and control path

delays. For the former case, after FPGA implementation,
there may be uncertain e�ects to data-path delays. We de-
cide the margin based on a given cycle time constraint CT
and actual path delays on an FPGA. We start from a small
value. If there are timing violations during simulation, we
increase the margin to solve timing violations.
In bundled-data implementation, from setup constraints,

the minimum delay of scpi,p must be larger than the max-
imum delay of sdpi,p to write data into registers correctly.
However, if the minimum delay of scpi,p is large enough for

Proceedings of the 2nd International Conference on Applications in Information Technology

100



Figure 9: Design �ow.

the maximum delay of sdpi,p, it may results in performance
degradation. Therefore, for the latter case, we decide the
margin for control path delays from the delay of LCELLs
and the number of delay adjustments to satisfy all timing
constraints. We also start from a small value. If the number
of delay adjustments for timing violations reported by static
timing analysis overs a threshold value (e.g., 10 times), we
increase the margin to satisfy timing constraints.

3.3 Design Flow
In this paper, we design an asynchronous MIPS proces-

sor based on a design �ow shown in Figure 9. The inputs
of the �ow are a Verilog HDL model of the asynchronous
MIPS processor explained in section 3.1, a cycle time con-
straint CT , and margins for data-path delays and control
path delays.
The design �ow is classi�ed into the initial synthesis and

the incremental synthesis. In the initial synthesis, we gen-
erate static timing analysis (STA) commands to analyze
path delays related to timing constraints. Then, the ini-
tial synthesis and STA are carried out using Altera Quartus
II and TimeQuest. From the STA results and cycle time
constraint CT , we generate the maximum delay constraints
using "set_max_delay" commands as described in section
3.2.
In the incremental synthesis, we repeatedly carry out syn-

thesis and STA using the generated maximum delay con-
straints. If all of timing constraints are satis�ed, we �nish
design. Otherwise, we carry out delay adjustment to satisfy
timing constraints. If the number of delay adjustment overs
a threshold value, we increase the margin for the control
path delay to meet timing closure.

4. EXPERIMENT
In the experiment, we evaluate the designed asynchronous

MIPS processor in terms of area, execution time, dynamic
power consumption, and energy consumption comparing with
a synchronous counterpart. The used synthesis tool and sim-
ulation tool are Altera Quartus II ver.14.1 and ModelSim-
Altera ver.10.3.c. TimeQuest timing analyzer in Quartus II
is also used to analyze path delays. The target device is
Altera Cyclone IV (EP4CE115F29C7).
Initially, we synthesize the synchronous MIPS processor.

We explore the best one in terms of clock frequency by

Figure 10: Experimental result: (a) area, (b) execution time,
(c) dynamic power consumption, and (d) energy consump-
tion.

changing clock constraint. The cycle time of the best one is
12 ns. We set 12 ns to CT and synthesize the asynchronous
MIPS processor. The margin for data-path delays is set to
1.2 ns (10% of CT ) and the margin for control path delays
is set to 3.6 ns (30% of CT ).
Figure 10.(a) shows the area in terms of the number of

logic elements reported by Quartus II. The asynchronous
MIPS processor requires 19% overhead. This mainly comes
from the area of control modules and delay elements. Fig-
ure 10.(b) shows the execution time when a multiplication
is given as a test input and simulated by using ModelSim-
Altera. The asynchronous MIPS processor requires dou-
ble of the synchronous counterpart. The increase of the
execution time in the asynchronous MIPS processor comes
from the margin for the control path delay. In fact, we set
the margin to 4.8ns. The performance of the asynchronous
MIPS processor will be the same as that of the synchronous
MIPS processor if we synthesize the asynchronous MIPS
processor with the margin of 2.4ns. This is our future work.
Figure 10.(c) shows the dynamic power consumption ob-
tained by PowerPlay Power Analyzer inside Quartus II. As
we expect, 35% of power is reduced from the synchronous
MIPS processor. This is mainly comes from the reduction of
power consumption for the clock network and register. Fi-
nally, �gure 10.(d) shows the energy consumption obtained
by the product of execution time and dynamic power con-
sumption. The energy is increased 27% due to the increase
of the execution time.

Proceedings of the 2nd International Conference on Applications in Information Technology

101



5. CONCLUSIONS
In this paper, we designed a low power asynchronous MIPS

processor on an FPGA. The asynchronous MIPS processor
was synthesized with the maximum delay constraints for
paths related to setup constraints. In the experiment, 35%
dynamic power was reduced compared to the synchronous
counterpart. However, the execution time and energy con-
sumption were increased due to the insertion of many LCELLs
to delay elements.
As future work, we improve the execution time of the de-

signed MIPS processor by restricting the margin for the con-
trol path delay. In addition, we are going to reduce power
consumption of the forwarding unit by removing unneces-
sary behaviors.

6. REFERENCES
[1] A. Bink and R. York,”ARM996HS: The First

Licensable, Clockless 32-Bit Processor Core”, Proc.
Micro, pp. 58-68, Mar-Apr. 2007.

[2] Q. Zhang and G. Theodoropoulos,”MODELLING
SAMIPS: A Synthesisable Asynchronous MIPS
Processor”, Proc. 37th Annual Simulation
Symposium, pp. 205-212, 2004.

[3] D.Edwards and A. Bardsley,”Balsa ： An
asynchronous hardware synthesis language”, The
Computer Journal, 45(1): pp. 12.-18, 2002.

[4] M. Amde, I. Blunno and P. Sotiriou,”Automating the
Design of an Asynchronous DLX Microprocessor”,
Proc. Design Automation Conference, pp. 502-507,
2003.

2014.

[5] Chang-Jiu Chen, Wei-Min Cheng, Ruei-Fu Tsai,
Hung-Yue Tsai, and Tuan-Chieh Wang,”A Pipelined
Asynchronous 8051 Soft-core Implemented with
Balsa”, Proc. APCCAS, pp. 976-979, 2008.

[6] S. Iwasaki, ”Design and Evaluation of a Low Power
Asynchronous AVR Processor considering a Cycle
Time Constraint”, Master Thesis, the University of
Aizu, 2014.

[7] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and
T. P. Fang, ”Q-Modules:Internally Clocked Delay
Insensitive Modules”, IEEE Transaction of
Computer, vol. C-37, no.9, pp. 1005-1018, 1988．

[8] D. E. Muller, and W. S. Bartky, ”A theory of
asynchronous circuits”, Proc. International
Symposium on the Theory of Switching, pp. 204-243,
Apr 1959.

[9] D. A. Patterson and J. L. Hennessy,“ Computer
Organization and Design, Fifth Edition: The
Hardware/Software Interface”, Morgan Kaufmann,
2006.

[10] Altera Cyclone IV FPGA,
"https://www.altera.com/products/fpga/cyclone-
series/cyclone-iv/features.html"

[11] K. Takizawa, et al., "A Design Support Tool Set for
Asynchronous Circuits with Bundled-data
Implementation on FPGAs", Proc. IEEE 24th
International Conference on Field Programmable
Logic and Applications (FPL), pp.1-4, September

Proceedings of the 2nd International Conference on Applications in Information Technology

102


	1. INTRODUCTION
	2. SPBSU OPPORTUNITIES and TRADITIONS in the DEVELOPMENT of its OWN EDUCATIONAL STANDARDS
	3. The DEVELOPMENT of the IT EDUCATIONAL DIRECTION at SPBSU
	4. INTERNATIONAL COOPERATION in SE DOCTORAL EDUCATION
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	1. INTRODUCTION
	2. PREPARING INPUT DATA
	3. MODEL
	4. NEWS FACTOR
	5. PROSPECTS
	6. REFERENCES

