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ABSTRACT
In this paper we consider the variational audio compression
algorithm based on signal modeling with solutions of linear
difference equations from a certain parametric family in the
time domain using the STLS cost function. The identifica-
tion of a modeling difference equation parameters for each
frame of an audio file signal allows one to perform compres-
sion of the file representing the signal frames in the adaptive
Laplace basis of exponentially damped sinusoids. Such an
approach better reflects the physics of audio signals gener-
ated by real musical instruments than the traditional Fourier
representation of the signals with harmonics that is used in
some popular audio codecs such as OGG Vorbis and MP3.

Categories and Subject Descriptors
G.1.2 [Numerical Analysis]: Approximation—structured
total least squares approximation; G.1.6 [Numerical Anal-
ysis]: Optimization—least squares methods; H.5.5 [Infor-
mation interfaces and presentation]: Sound and Music
Computing—modeling

Keywords
audio signals modeling, audio codec, exponential sinusoidal
model, parametric identification, difference equations, vari-
ational identification method, structured total least squares

1. INTRODUCTION
Lossy audio codecs such as MPEG-1 codecs (MP1, MP2

and MP3) and OGG Vorbis tend to decompose an audio
signal into harmonics. However, the method often does not
correspond to the physical nature of sounds produced by
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Figure 1: Transient [1].

conventional musical instruments, for which the presence of
a considerable quantity of transients (high-amplitude, short-
duration sound segments followed by an exponential decay)
is common. If a piece of a signal contains transients it can
not be considered as a quasi-stationary episode. That is
why MP3 audio codec, for instance, has to use the Modified
Discrete Cosine Transform (MDCT) with windows of varied
length while processing a signal. Using a short-window mode
of the encoding scheme allows to avoid what is commonly
referred to as a pre-echo artifact [1].

In Figure 1 a transient can be seen. Though it is more
natural to decompose such signals into a sum of exponen-
tially damped sinusoids, rather than to represent them as
a Fourier series, such an approach requires a considerable
amount of CPU resources. This is the reason why the cre-
ation and the usage of codecs based on the principle have
only recently become justified.

In formula (1) below, audio signal s(n) is represented as a
superposition of slowly time-varying exponentially weighted
sinusoids and quasi-stationary noise η(n). The signal model
is called the Exponential Sinusoidal Model (ESM). The fre-
quencies ωi, phases φi, amplitudes ai and damping param-
eters γi can be obtained without switching to the frequency
domain.

s(n) ≈
K∑
i=1

ai(n)e−γi(n)n sin(ωi(n)n+ φi(n)) + η(n). (1)

In [2] a Total Least Squares (TLS) problem of order 2K is
solved to estimate ωi and γi, where K is a number of avail-
able exponentially damped sinusoids predefined by a user.
On the basis of the TLS-ESM scheme an experimental audio
codec was created and tested [2]. An essential disadvantage
of the method, however, is that TLS tries to make the origi-
nal and the modeled signals as close to each other as possible
in the time domain not on the whole frame of the signal but
on separate sets of 2K samples along the frame, considering
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the sets independent.
The goal of the work is to research an audio compres-

sion algorithm which decomposes a signal into exponentially
damped sinusoids in the time domain without switching to
the frequency domain. We use an approximation of an au-
dio signal on the whole audio frame using the variational
identification method [5, 6, 7], close to the Structured To-
tal Least Squares (STLS) [8] and the Global Total Least
Squares (GTLS) [9] methods.

In [3] a vocoder based on ESM-STLS scheme was pro-
posed. The testing of the vocoder was performed in compar-
ison to Code-excited linear prediction (CELP), a standard
speech coding algorithm. The results of the testing showed
that, providing a similar compression ratio, the new vocoder
has a substantially higher signal-to-noise ratio (SNR). How-
ever, speech spectrum is rather simple that makes speech
signals easily compressible. Our experiments showed that
Newton’s iterative algorithms, to which STLS1 and STLS2
used in [3] belong, have bad convergence when solving the
STLS problem for music audio files with wider spectra.

2. THEORETICAL ASPECTS

2.1 Coding of an audio frame
Our algorithm divides the whole signal of an audio file

into frames of N samples each, processing the frames one by
one. In section 3 we will consider how N value and other
parameters are chosen. Conventionally N equals 100. By
s[k], k = 1, N denote a frame of samples.

We will treat the vector s
.
= (s[1]; . . . ; s[N ]) as a per-

turbed observation of a solution process z
.
= (z[1]; . . . ; z[N ])

of a certain homogeneous linear difference equation with real
coefficients. We will solve the inverse problem of identifying
the unknown coefficients of the equation. Let us take as an
example a difference equation of order p = 3:

z[k + 3] + α2z[k + 2] + α1z[k + 1] + α0z[k] = 0, (2)

k = 1, N − 3.

Denote the characteristic roots of the system (2) by ξi. The
characteristic polynomial of the system is real, hence all the
roots that are complex should occur in complex-conjugate
pairs. For the present example, suppose that the single real
root of the characteristic polynomial is ξ2. We are interested
only in real solutions of the difference equation, as audio
samples of observation s are real. Therefore, we can trans-
form the general solution of (2) to the real form as follows:

z[k] = C1ξ
k
1 + C̄1ξ̄1

k
+ C2ξ

k
2 = (3)

= A1ρ
k
1 cos(kω1) +A2ρ

k
1 sin(kω1) +A3ρ

k
2 , ∀i Ai ∈ <.

We introduce the following notation for the vector of the
coefficients of the difference equation:

γ
.
=
(
α0 α1 α2 1

)>
.

Let us define the objective function for the identification of
vector γ:

J(γ) = ‖s− z(γ)‖2, z(γ)
.
= arg min

z: (2)
‖s− z‖2. (4)

This variational problem was first formulated and solved by
A. O. Egorshin [5, 6]. For its numerical solution we apply
the iterative algorithm with an updating inverse matrix pro-
posed by A. O. Egorshin and, independently, by M. R. Osborne

[10]. As the initial γ for the iterative algorithm we use the
least-squares estimate γLS [11].

To describe the minimization iterative algorithm, first, let
us notice that the difference equation (2) can be transformed
to the matrix form:

α0 α1 α2 1 0
0 α0 α1 α2 1
...

. . .
. . .

. . .
. . .

0 α0 α1 α2 1


︸ ︷︷ ︸

G


z[1]
z[2]

...
z[N ]


︸ ︷︷ ︸

z

= 0. (5)

Then we use the identity Gγs ≡ V (s)γ, where V is a Hankel
matrix:

α0 α1 α2 1 0
0 α0 α1 α2 1
...

. . .
. . .

. . .
. . .

0 α0 α1 α2 1


︸ ︷︷ ︸

Gγ


s[1]
s[2]

...
s[N ]


︸ ︷︷ ︸

s

≡ (6)

≡

V︷ ︸︸ ︷
s[1] s[2] s[3] s[4]
s[2] s[3] s[4] s[5]

...
...

...
...

︸ ︷︷ ︸
V1

s[N − 3] s[N − 2] s[N − 1] ︸︷︷︸
V2

s[N ]



α0

α1

α2

1


︸ ︷︷ ︸

γ

.

Now, the iterations with an updating inverse matrix which
solve the variational identification task (4) are:

1. The initial value: γ = γ(0) = γLS.
2. For k > 0τ =

(
V (s)>

(
Gγ(k)G

>
γ(k)

)−1
V (s)

)−1

· γ(k) ,

γ(k + 1) = 1
(0...01)τ

τ .
(7)

The last row means the division of the whole auxiliary
vector τ by its last element in order to make the last element
of vector γ(k + 1) equal to unity. The main difference of
the Egorshin—Osborne iterations from the computational
TLS algorithm consists in the presence of the inverse matrix(
Gγ(k)G

>
γ(k)

)−1
which is updated on each iteration.

Using the calculated estimate for γ, we find the model-
ing process z(γ) nearest to the observation s as the linear
projection [5, 6]:

z(γ) =
(
I −G>γ (GγG

>
γ )
−1
Gγ
)
· s , (8)

where I is an identity matrix.

The obtained coefficient vector γ and the corresponding
process z(γ) that fit the observation s are used in the further
course as we will show in subsection 2.2.

Note also that in the section the order p of the difference
equation is considered known. A way of choosing p and
problems encountered when using the iterations (7) at the
implementation stage will be conveyed in the next section.

2.2 Decoding of an audio frame
From (3) we can see that, in order to restore process z, for

each complex-conjugate pair of the roots of the characteristic
polynomial of the difference equation we need to know the
real argument and the real modulus of the polar form of
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Figure 2: General scheme of work of the codec.
A. Original frames. B. Decompressed frames.

that root of the pair that lies above the real axis and we
also need to know the set of real coefficients Ai. Thus, we
should keep 2p float numbers to restore one audio frame.
Besides, we should also keep one byte (or two/three for the
last frame of an audio file) of service information for each
audio frame such as an order of a difference equation and
the frame size type. At the paper we will not describe in
detail the structure of the frame service information byte.

The only thing left for us to understand is how to get
coefficients Ai, i = 1, p . Let us transform the expression (3)
to the matrix form: z[1]

...
z[N ]

 =


ρ1 cos(ω1) ρ1 sin(ω1) ρ2
ρ21 cos(2ω1) ρ21 sin(2ω1) ρ22

...
...

...
ρN1 cos(Nω1) ρ

N
1 sin(Nω1) ρ

N
2


︸ ︷︷ ︸

H

·

A1

A2

A3


︸ ︷︷ ︸

d

= Hd.

(9)

Using the iterations (7) we have found the model G and the
process z, corresponding to the original observation s, such
that Gz = 0. Knowing G (the coefficients of the difference
equation), we can find the characteristic roots of the equa-
tion and, thus, the matrix H. Note that the next expression
is true:

Gz = GHd = 0, d 6= 0⇒ G ⊥ H.

The needed vector d containing coefficients Ai can be
found with the least squares method:

d = (H̄>H̄)
−1
H̄>z, (10)

where H̄ is a submatrix composed of >p rows of matrix H.

3. CODEC IMPLEMENTATION
We have realized an audio codec (consisted of two mod-

ules: a coder and a decoder) based on the theory described
above in Scilab environment (http://www.scilab.org), sim-
ilar to MATLAB. The codec realization and testing were
performed on the Debian GNU/Linux operating system. As
input the codec accepts a mono WAV audio file with sample
rate 44.1 KHz and bit depth 16 bits. As output the codec
produces a compressed file, whose structure was defined by
us, with a new extension .cod. In Figure 2 you can see the
general scheme of work of the codec.

An original audio signal to be compressed is divided into
frames of N samples with a shift of (N −M) samples. That
is, each pair of consequent frames overlap by M samples
to be glued smoothly after their decompression. After the

Figure 3: Gluing of frames after decompression.

decoding procedure two neighboring frames are summed on
the gluing area preliminarily weighted. The weighting coef-
ficients vary from 0 to 1. The weighting functions we use
are sin2(ck) and 1− sin2(ck) where time index k runs from
0 to M − 1 and c(M − 1) = π/2. In Figure 3 you can see
the gluing scheme.

The values of N and M can be predefined by a user. It
was discovered that for frames longer than 150 samples the
coding procedure often fails because the iterations (7) do not
converge, and if we take M value < 5 an audible noise ap-
pears on joints of neighboring frames. We chose the average
values: N = 100 and M = 10.

When coding a frame we increment a model order p in a
cycle from pmin = 2 to pmax = 13. For each p the identifica-
tion of coefficients of the equation (2) is performed and the
model process (8) is found. After this, the relative modeling
error is counted as follows:

‖z − s‖
‖s‖ 6 5 %, (11)

where the value 5 % is the relative error threshold. If the
relative error counted does not exceed the threshold then
we break the p cycle and write the found 2p float numbers
and a service information byte to the output .cod file. Ob-
viously, the least suitable model order is preferable to make
the compressed file as small as possible. If the coder fails
for any order p with the chosen relative precision 5 % then it
divides the frame in half and tries to model each of the two
smaller frames again. If the modeling process for a smaller
frame is not successful anyway, then the frame is written
to .cod file directly without compression. The relative error
threshold is predefined by a user and, in general, can be set
to an arbitrarily small number but it would lead to a low
compression ratio.

4. TESTING
The testing was performed over 20 piano audio files and

20 electric guitar audio files of 44100 samples each (one sec-
ond duration) for our audio codec and also for LAME MP3
[version 3.99.5] [x86] codec with constant bit rates (CBR)
128 Kbps and 256 Kbps in order for us to be able to assess
the effectiveness of our codec comparing to it. You can see
the results of the testing in Table 1.

We compressed each original WAV audio file with a coder
to .cod or MP3 file and then decoded the compressed file to
a WAV file again. After that, we counted the relative error
between the audio signal of the original WAV file and the
signal of the decompressed WAV file as shown in (11). The
relative error values presented in the Table 1 are average for
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files
type

files
number

Our codec LAME MP3 128 kbps LAME MP3 256 kbps

compression
ratio

relative
error

compression
ratio

relative
error

compression
ratio

relative
error

piano 20 3.334 0.028 5.15 0.052 2.575 0.001

electric guitar 20 1.451 0.028 5.15 0.056 2.575 0.003

Table 1: Testing results.

the both sets of 20 audio files. The relative error threshold
in our codec is 5 %, thus, the average relative error values
relating to our codec are less than 0.05.

Using a bit rate of 128 Kbps usually results in a sound
quality equivalent to what we would hear on the radio. As
you can see the relative error for our codec is less than the
one for LAME MP3 codec with CBR 128 Kbps. However,
the relative error is only an objective sound quality measure-
ment. When we were assessing the subjective perceptual
quality of the sound produced by our codec by listening to
it in headphones, the sound happened to be distinctly worse
than the sound of the audio files produced by LAME MP3
codec with CBR 128 Kbps.

The compression ratio values relating to our codec are
average for the both sets of 20 audio files in the Table 1. The
compression ratio reached by LAME MP3 was identical for
all the audio files (5.15 times for 128 Kbps and 2.575 times
for 256 Kbps) as we used it in the constant bit rate mode.

Considering the work of our codec, one can also notice
that the average compression ratio reached by the codec for
”simple” piano files is two times bigger than the ratio for
”complicated” electric guitar files. The reason of it is that
the iterations (7) converge worse for the latter. Therefore,
more frames of an electric guitar file are written fully to an
output compressed file .cod increasing its size.

5. CONCLUSIONS
We consider the codec as an interesting application of

parametric identification methods in the time domain. The
key point of its work is the variational (STLS) objective
function (4) that is minimized in our modeling algorithm.
The iterations (7) minimize the function over a difference
equation coefficients effectively for simple piano music files
and the algorithms STLS1 and STLS2 used in [3] also solve
the STLS problem well for speech signals. However, the
STLS approach does not work properly for more compli-
cated music files. We are going to handle the problem by
dividing an audio signal into frequency subbands and cod-
ing each of them independently. Besides, we search for more
efficient ways of minimization of the variational objective
function. For instance, we try to do it over the roots of the
characteristic polynomial of the difference equation.
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