
Constraining Operation Delay for Dynamic Power
Optimization of Asynchronous Circuits

Shunya Hosaka
University of Aizu

Aizuwakamatsu 965-8580, Japan
m5191127@u-aizu.ac.jp

Hiroshi Saito
University of Aizu

Aizuwakamatsu 965-8580, Japan
hiroshis@u-aizu.ac.jp

ABSTRACT
In this paper, we propose a dynamic power optimization
method for asynchronous circuits with bundled-data imple-
mentation constraining operation delay. In asynchronous
circuits, we can change the execution time of each operation
freely under a given latency constraint. Therefore, the pro-
posed method relaxes the execution time of operations which
consume more power while it tightens the execution time of
operations which consume less power. In the experiments,
we evaluate the effects of the proposed method by compar-
ing area, execution time, power consumption, and energy
consumption among synchronous circuits, asynchronous cir-
cuits without the proposed method, and asynchronous cir-
cuits with the proposed method. As a result, we can reduce
dynamic power and energy consumption about 11% and 14%
on average.

Categories and Subject Descriptors
VLSI [RTL Design]: Asynchronous Circuits

General Terms
Theory

Keywords
Dynamic Power Optimization, Mobility

1. INTRODUCTION
Current VLSIs are mostly based on synchronous circuits

where circuit components are controlled by global clock sig-
nals. However, synchronization failures caused by clock
skews and power consumption on the clock network are get-
ting to be the critical problems when the integration tech-
nology of VLSIs is more and more advanced. There are
no problems related to clock signals in asynchronous cir-
cuits since they do not use global clock signals. Instead,
circuit components in asynchronous circuits are controlled

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWAIT ’15, Oct. 8 – 10, 2015, Aizu-Wakamatsu, Japan.
Copyright 2015 University of Aizu Press.

by local handshake signals. As circuit components are exe-
cuted when required, asynchronous circuits are potentially
low power consumption and low electro-magnetic interfer-
ence.

However, it is well known that designing asynchronous cir-
cuits is more difficult than designing synchronous circuits.
We have to consider delay model and data encoding when
we design asynchronous circuits. If the delay model and
data encoding are not appropriate, power reduction by asyn-
chronous circuits may be small. To reduce power consump-
tion, it is necessary for asynchronous circuits to optimize
power.

In this paper, we propose a dynamic power optimization
method for asynchronous circuits with bundled-data imple-
mentation constraining operation delay. In asynchronous
circuits, we can change the execution time of operations
freely under a given latency constraint. Therefore, the pro-
posed method relaxes the execution time of operations which
consume more power while it tightens the execution time of
operations which consume less power.

Several low power design methods for asynchronous cir-
cuits have been proposed. Huang et al. [2] proposed a power
optimization method which isolates the operands of func-
tional units if operations are not required. Hansen et al.
[1] proposed an optimization method to optimize latency,
area, and energy considering many-to-many functional units
mappings using the branch-and-bound algorithm. Jeong et
al. [3] proposed an optimization method to reduce the over-
head of dual-rail asynchronous circuits based on eager evalu-
ation using multiple outputs block level relaxation. Plana et
al. [4] proposed a throughput optimization method for non-
pipelined asynchronous circuits avoiding data hazards and
glitches using a concurrent sequencer. The improvement of
the throughput results in energy optimization. Compared
to these methods, out proposed method reduces dynamic
power constraining operation delays.

The rest of this paper is as follows. In section II, we de-
scribe asynchronous circuits with bundled-data implemen-
tation, data flow graph, and the calculation of mobility. In
section III, we describe the proposed dynamic power opti-
mization method. In section IV, we evaluate the proposed
method in terms of area, performance, dynamic power, and
energy, comparing with synchronous circuits and asynchronous
circuits without the proposed method. Finally, in section V,
we describe conclusions and future work.

Proceedings of the International Workshop on Applications in Information Technology

16



Figure 1: Bundled-data implementation

2. BACKGROUND

2.1 Bundled-data Implementation
Bundled-data implementation represents N-bit data using

N+2 signals called ”bundle”’. Additional two signals repre-
sent local handshake signals, request and acknowledge. In
bundled-data implementation, delay elements whose delays
are longer than data-path delays are put on request signals
to guarantee the completion of operations and the timing
of register writing. Therefore, the performance of bundled-
data implementation depends on the delay of the control
circuit including delay elements. The detail of bundled-data
implementation is described in [5].

2.2 Data Flow Graph
Data Flow Graph (DFG) represents data flow of an ap-

plication. DFG is defined by the following expression.

DFG =< N,E > (1)

N is the set of nodes. A node nm shows an operation in the
application. Node nm has a label of allocated resource with
the operation delay. E is the set of edges. An edge represents
data dependence, resource sharing, or control dependence.
A data dependence represents dependence of data between
operations. A resource dependence represents resource shar-
ing of operations. A control dependence represents which
state an operation is executed. Fig.2(a) shows an example
of DFG. In Fig.2(a), source and sink shows start and end
nodes. There are no operations.

2.3 Mobility
Mobility of operations used for dynamic power optimiza-

tion in the proposed method is defined using As Soon As
Possible (ASAP) scheduling and As Late As Possible (ALAP)
scheduling. ASAP scheduling schedules each operation as
soon as possible when they can be scheduled. Fig.2(b) shows
ASAP scheduling for the DFG in Fig.2(a). ALAP schedul-
ing schedules each operation as late as possible under a given

Figure 2: (a) DFG，(b) ASAP scheduling，(c) ALAP
scheduling，(d) Mobility

Figure 3: Design flow

latency constraint. Fig.2(c) shows ALAP scheduling for the
DFG in Fig.2(a). The mobility of node nm is defined by the
following expression.

mobilitynm = talapnm
− tasapnm

(2)

talapnm
shows ALAP start time of node nm. tasapnm

shows
ASAP start time of node nm. Fig.2(d) shows calculated
mobility for nodes in the DFG of Fig.2(a).

3. PROPOSED METHOD

3.1 Design Flow
The proposed method generates max delay constraints

to relax the execution time of operations which consume
more power while tightening the execution time of opera-

Proceedings of the International Workshop on Applications in Information Technology

17



tions which consume less power. Fig.3 shows a design flow
with the proposed method. The proposed method is used
in the process of generating an asynchronous RTL model
from a synchronous RTL model. As inputs of the proposed
method, we need to prepare a DFG corresponding to the
synchronous RTL model’s data-path circuit, data-path de-
lays from Static Timing Analysis (STA), resource informa-
tion file, and latency constraint. First, we allocate data-path
delays from STA to each node in DFG. Next, we compute
the mobility of operations from ASAP scheduling and ALAP
scheduling. Then, we re-allocate operation delays to utilize
mobility well. Finally, we generate max delay constraints
for each data-path.
We consider two cases for re-allocation of operation de-

lays.

• Case 1. Keep the state that operations are executed.

• Case 2. To maximize the use of mobility, we change the
state of operations in non-critical paths to be executed.

Case1 reduces dynamic power by changing each state’s ex-
ecution time. In addition to Case1, Case2 reduces dynamic
power by changing the state of operations in non-critical
paths to be executed.

3.2 Inputs
We need to prepare a DFG corresponding to the syn-

chronous RTL model’s data-path circuit, data-path delays
from STA, a resource information file, and latency con-
straint. To correspond to the synchronous RTL model’s
data-path circuit, in DFG, node nm is categorized into each
state, and node nm is re-allocated a label that used opera-
tion. Between nodes are connected by edges that represent
data dependence, resource sharing, and control dependence.
Fig.2(a) shows an example of DFGs. We use STA to analyze
data-path delays. The resource information file represents
the range of each operation’s delay. The proposed method
gives high priority to operations that have long execution
delay. Operation that takes long execution time can use
mobility as much as possible. Latency constraint that rep-
resents the constraint from arrival of input signals to gener-
ation of output signals is computed by the product of clock
cycle time and clock cycles.

3.3 Operation Delay Re-allocation
In the Case2, we eliminate control edges from a given

DFG since it allows to change the execution timing of oper-
ations in non-critical paths. However, in the case that one
operation’s source register is shared as other operation’s des-
tination register in the same state, it may change the source
register if the other operation completes early. In such a
case, we need to keep control edges. Fig.4(a) shows the DFG
that is eliminated control edges from the DFG in Fig.2(a).
In this figure, source register of add0 is shared as destina-
tion register of mul1 at state2. Because of this, the control
edge that exists between add0 to sub0 that comes executed
after mul1 is kept. Next, we apply ASAP scheduling and
ALAP scheduling and compute mobility in both Case1 and
Case2. Fig.2(d) and Fig.4(b) represent Case1’s mobility and
Case2’s mobility.
We execute operation delay re-allocation according to the

flows in Fig.5. Fig.5(a) represents the Case1. First, we
identify the critical path. We explore the number of resource

Figure 4: (a) DFG reduced control edges from Fig.2 (a), (b)
Case2’s mobility

Figure 5: Re-allocation of execution delay (a) Case1，(b)
Case2

usages in the critical path. Next, we select the operation in
the critical path which has the highest priority based on the
resource information file. Then, we divide the mobility by
the number of resource usages of the corresponding resource.
Next, we add this value to the execution delays of operation
in the critical path that uses the same resource. Re-allocated
execution delay corresponds to the delay of the state that
belonging selected operation. Next, we update the mobility
of all operations and select the operation that has the next
highest priority and compute the execution delay. We repeat
this processes until all mobility in the critical path become
0. When operation delay re-allocation for the critical path
is finished, we set the execution delay of operating in non-
critical paths based on the operation delay in the critical
path. Fig.6 shows the operation delay re-allocation result
for Case1.

Fig.5(b) represents the Case2. As same as Case1, first
we re-allocate execution delay to operations in the critical
path. However, there is a difference for the re-allocation of
execution delay to operating in non-critical paths. In the
Case2, there are less control edges than Case1. So we can
use mobility more effectively. We may allocate more delay
to operation in non-critical paths while keeping data de-
pendences and resource sharing. Fig.7 shows the operation
delay re-allocation result for Case2.

3.4 Outputs
Finally, we generate max delay constraints for all data-

path based on re-allocated operation delays. They are clas-
sified paths, between registers, paths from primary inputs

Proceedings of the International Workshop on Applications in Information Technology

18



Figure 6: Operation delay re-allocation result for Case1

Figure 7: Operation delay re-allocation result for Case2

to registers, paths from registers to primary outputs, and
paths from control module’s latch to registers. Max delay
constraints were generated using set max delay command
as follows.

set max delay -from START -to END

-through THROUGH DELAY

START and END represents path’s start and end point.
THROUGH represents multiplexer or functional unit’s in-
put or output port. DELAY represents the re-allocated ex-
ecution delay. It may be required to change register write
signals and multiplexer control signals in Case2. So, the
proposed method generates a txt file which represents the
change of control timing. Fig.8 shows the txt file. Designers
are required to chamge asynchronous RTL model.

4. EXPERIMENTS
In the experiments, we synthesize differential equation

solver (Diffeq) and ellipse wave filter (EWF) using the pro-
posed design flow in Fig.3. We evaluate area, execution time,
dynamic power consumption, and energy consumption of
synchronous circuits (Sync), asynchronous circuits that the

Figure 8: txt output following Case2

Figure 9: # of Logic Elements

Figure 10: Execution time [ns]

proposed method is not applied (No), and asynchronous cir-
cuits using the proposed method (Case1 and Case2) to con-
firm the effect of the proposed method for reducing dynamic
power consumption. For the experiments, we implemented
the proposed method using Java and Eclipse.

We used Altera FPGA Cyclone IV (EPCE115F29C7). We
used Quartus II 13.1 for synthesis. First we explore the
fastest synchronous circuits satisfying timing constraints.
Clock cycle time of Diffeq was 11ns and clock cycle time
of EWF was 14ns. We generated asynchronous RTL mod-
els from synchronous RTL models. These models are mod-
eled by Verilog HDL. The execution delay of operating used
in the proposed method is defined by STA results for all
data-paths of synchronous circuits. After that, we gener-
ated maximum delay constraints based on Case1 and Case2
under a given latency constraint that was computed by the
product of clock cycle time and clock cycles. Finally, we syn-
thesized asynchronous circuits using maximum delay con-
straints and adjusted delay elements repeatedly until all
timing constraints for bundled-data implementation [5] were
satisfied.

Fig.9 shows area. Area was evaluated from the report of
Quartus II. In Diffeq, Case1 was increased about 6% and
Case2 was reduced about 4%, compared with No. In EWF,
Case1 was increased about 1% and Case2 was reduced about
1%, compared with No. In comparison with Sync, area was
increased about 4% to 19%. This is because the overhead of
the control circuits.

Fig.10 shows execution time that can be evaluated by sim-
ulating an arbitrary test pattern using ModelSim-Altera. In
Diffeq, Case1 and Case2 were reduced about 14% and 11%,
compared with No. In EWF, Case1 and Case2 were in-

Proceedings of the International Workshop on Applications in Information Technology

19



Figure 11: Dynamic power [mW]

Figure 12: Energy [pJ]

creased about 6% and 1%, compared with No. Execution
time was increased about 17% to 36% in Diffeq. In Dif-
feq, operations are repeatedly executed in a loop until a
condition is satisfied. The idle phase of the control circuit
between loop bodies could not be hidden. This is the reason
why execution time is increased.
Fig.11 shows dynamic power that can be evaluated by

PowerPlay Power Analyzer with a value change dump file
obtained by simulation. In Diffeq, Case1 and Case2 were
reduced about 12% and 20%, compared with No. In EWF,
Case1 and Case2 were reduced about 7% and 4%, compared
with No. Dynamic power is especially reduced in combi-
national logics due to the effect of the proposed method.
In some cases where total area is increased, dynamic power
could be reduced. This is considered as the reduction of
dynamic power at rooting resources.
Fig.12 shows energy consumption that was calculated by

the product of execution time and dynamic power. In Diffeq,
Case1 and Case2 were reduced about 24% and 28%, com-
pared with No. In EWF, Case1 and Case2 were reduced
about 2% and 3%, compared with No.
In the experiments, we could reduce dynamic power con-

sumption more than asynchronous Diffeq (No) and EWF
(No) using the proposed method. Especially, Case2 reduced
more compared to Case1 due to the use of mobility more.

5. CONCLUSIONS
In this paper, we proposed a dynamic power optimization

method for asynchronous circuits constraining operation de-
lay using the mobility of operations. The proposed method
generates maximum delay constraints to relax the execu-
tion time of operations that consume more power, while
it tightens the execution time of operations that consume
less power. We proposed two types of operation delay re-
allocation methods. In the experiments, we have confirmed

that the proposed method reduced dynamic power consump-
tion and energy consumption about 11% and 14% on aver-
age.

6. REFERENCES
[1] J. Hansen and M. Singh. A fast branch-and-bound

approach to high-level synthesis of asynchronous
systems. Asynchronous Circuits and Systems
(ASYNC), IEEE International Symposium on,
10:107–116, May 2010.

[2] Y. Huang and W. Shi. An optimized
de-synchronization flow for power and performance
optimization. Systems and Informatics (ICSAI),
International Conference on, 5:71–75, May 2012.

[3] C. Jeong and S. Nowick. Block-level relaxation for
timing-robust asynchronous circuits based on eager
evaluation. Asynchronous Circuits and Systems
(ASYNC), IEEE International Symposium on,
10:107–116, May 2008.

[4] L. Plana and S. Nowick. Architectural optimization for
low-power nonpipelined asynchronous systems. Very
Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 10:56–65, August 2002.

[5] K. Takizawa, S. Hosaka, and H. Saito. A design
support tool set for asynchronous circuits with
bundled-data implementation on fpgas. Field
Programmable Logic and Applications (FPL),
International Conference on, 4:1–4, September 2014.

Proceedings of the International Workshop on Applications in Information Technology

20


