
Is the Modern Theory of Stochastic Processes Complete?
Example of Markovian Random Walks with

Constant Non-Symmetric Diffusion Coefficients

Kosuke Hijikata,1 Ihor Lubashevsky,2 Alexander Vazhenin 3

University of Aizu
Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8560, Japan

1)m5191113@u-aizu.ac.jp, 2)i-lubash@u-aizu.ac.jp, 3)vazhenin@u-aizu.ac.jp

ABSTRACT
A new type non-symmetric diffusion problem is considered
and the corresponding Brownian motion implementing such
diffusion processes is constructed. As a particular example,
random walks with internal causality on a square lattice are
studied in detail. By construction, one elementary step of a
random walker on the lattice may consist of its two succeed-
ing jumps to the nearest neighboring nodes along the x- and
then y-axis or the y- and then x-axis ordered, e.g., clock-
wise. It is essential that the second fragment of elementary
step is caused by the first one, meaning that the second frag-
ment can arise only if the first one has been implemented,
but not vice versa. In particular, if for some reasons the sec-
ond fragment is blocked, the first one may be not affected,
whereas if the first fragment is blocked, the second one can-
not be implemented in any case. As demonstrated, on time
scales much larger then the duration of one elementary step
these random walks are characterized by a diffusion matrix
with non-zero anti-symmetric component. The existence of
this anti-symmetric component is also justified by numerical
simulation.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: stochastic processes
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1. INTRODUCTION
The present paper poses a fundamental question about the

completeness of the modern formalism of describing stochas-
tic processes and, by way of example, the formalism of the
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Fokker-Planck equations, or speaking more strictly, the for-
ward Fokker-Planck equations is analyzed.

The Fokker-Planck equation (see, e.g., [1])

∂tG =

N∑
i=1

∂i

{
N∑
j=1

∂j [Dij(x, t)G]− Vi(x, t)G

}
(1)

subject to the initial condition

G(x, t|x0, t0)
∣∣
t=t0

= δ(x− x0) , (2)

where x = {xi}i=Ni=1 ∈ Q ⊂ RN and t > t0, describes a wide
class of Markovian random walks continuous in space and
time for which the first and second moments of walker dis-
placement are some finite space-continuous quantities. The
matrix D = ‖Dij‖ of diffusion coefficients and the velocity
drift V = {Vi} in the “phase” space RN are introduced as

Dij(x, t) = lim
τ→0

1

2τ

〈
(x′i − xi)(x′j − xj)

〉
x′:(t+τ |x,t) , , (3)

Vi(x, t) = lim
τ→0

1

τ

〈
(x′i − xi)

〉
x′:(t+τ |x,t) . (4)

Due to the form of the Fokker-Planck equation the diffusion
coefficient matrix ‖Dij‖ must be symmetric, Dij = Dji,
which follows from definition (3) as well.

Discrete random walks on lattices also admit this descrip-
tion on scales t� τ , where τ is the characteristic time of the
walker hopping to the neighboring lattice nodes. An exam-
ple of symmetric (i.e. without regular drift, V = 0) random
walks on a square lattice is illustrated in Fig. 1: “diagram
of transitions.” Within one elementary time step τ a walker
hops to one of the nearest lattice nodes with the probability
p = 1

4
(1− ε) or to one of the next shell of nearest neighbors

with the probability q = 1
4
ε, here 0 < ε < 1 is a given pa-

rameter. For these random walks the diffusion matrix is of
the diagonal form and can be characterized by one diffusion
coefficient D = (1 + ε)a2/(4τ), i.e., Dxx = Dyy = D and
Dxy = Dyx = 0.

Appealing to the form of the Fokker-Planck equation (1)
usually one draws a conclusion that the diffusion flux J =
{Ji} is related to the distribution function G via the expres-
sion

Ji = −
N∑
j=1

∂j [Dij(x, t)G] + Vi(x, t)G . (5)

Then ascribing various physical properties to the medium
boundary ∂Q the Fokker-Planck equation is subjected to
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Figure 1: The analyzed random walks on the square lattice, from left to right, the diagram showing possible
transitions of the walker within one elementary step and their probabilistic weights, spatial structure of
these transitions, diagram and probabilistic weights of the walker near a impermeable boundary, the diagram
illustrating the relationship between the diffusion flux and possible walker transitions.

impermeable boundary

Figure 2: Distribution function normalized to its
maximum. In numerical simulation the asymme-
try parameter ε = 0.2, the trajectory origin {x0 =
150, y0 = 50}, and the number of steps in one trajec-
tory N = 3y20 were used.

the corresponding boundary conditions (see, e.g., [1]). The
latter completes the description of such stochastic processes
in the framework of the Fokker-Planck equation. If it were so
for the random walks illustrated in Fig. 1, at a impermeable
boundary (third fragment counting from left in Fig. 1) the
distribution function G would meet the boundary condition
∂xG = 0 in the continuous approximation.

As far as the relationship between the Fokker-Planck equa-
tion (1) and the diffusion flux (5) is concerned, we note
that the replacement Dij =⇒ Dij + Da

ij , where Da
ij is an

asymmetric component, Da
ij = −Da

ji, does not change the
form of the Fokker-Planck equation (1) but modifies sub-
stantially expression (5). The latter, in turn, changes the
boundary condition, so, finally, contributes essentially to the
description of stochastic process. Therefore the statement
on the diffusion coefficient symmetry does not follow from
the derivation of the Fokker-Planck equation but is an ad-
dition assumption that can be accepted for some physical
reasons.

2. MODEL AND DISCUSSION
The example of random walks shown in Fig. 1 illustrates

the stated above proposition, in particular, the diffusion co-
efficient matrix Dij entering relationship (5) is of the form

containing antisymmetric component, namely,

Dxx = Dyy =
(1 + ε)a2

4τ
, Dxy = −Dyx = − εa

2

2τ
. (6)

This fact must be reflected in the boundary conditions and,
finally, cause the asymmetry of the distribution function for
the diffusion problem in the region with the impermeable
boundary with respect to the boundary point nearest to the
origin of random walks. Numerical simulation justifies this
statement (Fig. 2).

Concluding the obtained results, we pose a question about
the completeness of describing stochastic processes in terms
of the Fokker-Planck equation or stochastic differential equa-
tions. Indeed, this formalism ignores the internal struc-
ture of elementary steps, whereas the given example demon-
strates the fact that particular spatial details of the walker
motion within one elementary step can affect the macro-
scopic behavior of diffusion processes. Diffusion in magnetic
field is also discussed as a characteristic example of physical
systems where such phenomena can be pronounced. Be-
sides it should be noted that the considered problem of non-
symmetric diffusion coefficient matrix is partly related to the
problem called non-symmetric diffusion dealing with a dif-
fusion type stochastic processes governed by equations like

∂tG =

N∑
i,j=1

∂i [Dij(x)∂jG] ,

where the diffusion coefficient Dij(x) depends on the spatial
coordinates x and, so, its possible non-symmetry can be re-
sponsible for macroscopic effects (see, e.g., [2] and references
therein).
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