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ABSTRACT
In this paper, we present a hierarchical clustering algorithm of 

the large text datasets using Locality-Sensitive Hashing (LSH). 

The main idea of the LSH is to “hash” items several times, in 

such a way that similar items are more likely to be hashed to the 

same bucket than dissimilar are. The main drawback of the 

conventional hierarchical algorithms is a large time complexity 

(e.g. Single Linkage method has time complexity of  (  )) 
Proposed algorithm reduces the time complexity to  (  ). 
Here,   represents the maximum number of items going to the 

single bucket.   is a small constant as compared to n for the 

large number of buckets.  

Clustering results of the hierarchical clustering algorithm, that 

uses LSH, are similar to the clustering results of the classical 

single linkage method. The main advantage of the hierarchical 

clustering algorithm, that uses LSH, is a significant increase in 

speed for large datasets clustering in comparison with classical 

algorithms. 

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; H.3.3 

[Information Search and Retrieval]: Clustering. 

General Terms
Algorithms, Performance, Experimentation, Languages. 

Keywords
Hierarchical clustering, Locality-Sensitive Hashing, 

Minhashing, Shingling. 

1. INTRODUCTION
For today clustering of the large text datasets (e.g. clustering of 

the web pages) is one of the urgent data mining issues. 

Conventional clustering algorithms allow creating clusters with 

some accuracy, F-measure and etc. but when it comes to the 

clustering of the larger datasets (high-resolution pictures, 

fingerprints or web pages) the vast majority of algorithms have 

poor speed performance [1]. For example, despite the fact that 

Single Linkage algorithm allows detecting clusters in arbitrary 

shapes, it has a large time complexity of  (  ) where n is 

number of objects. Such time complexity is inappropriate for 

big data clustering. To avoid the dimensional issue new 

clustering algorithm that uses LSH method was proposed. LSH 

reduces the dimensionality of high-dimensional data. It hashes 

input items so that similar items map to the same “buckets” 

with high probability (the number of buckets being much 

smaller than the universe of possible input items) [2]. 

2. DIMENSIONAL REDUCTION FOR

MINING MASSIVE DATASETS 
There are many ways to represent documents as sets for the 

purpose of identifying lexically similar documents. The most 

effective way is to construct from the document the set of short 

strings that appear within it (shingles). Further, for document 

comparison Minhashing method is used that allows comparing 

multidimensional sets. These conversions must be performed 

before applying fast hierarchical algorithm with LSH using. 

Below are descriptions of Shingling, Minhashing, LSH methods 

and new proposed algorithm. Figure 1 presents the process of 

finding similar items in large documents collection for every 

document. 

Figure 1. Dimension reduction of documents datasets 

2.1 Shingling 
A document represents a string of characters. Shingling is a 

process that creates sets of k-shingles. Define a k-shingle for a 

document to be any substring of length k found within the 

document [3]. 

For example, k=2, doc=”a b c a b”. Then after shingling next 

sets can be obtained: {a, b}, {b, c}, {c, a}. 

Similar documents to each other will have a lot of equal 

shingles. 
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2.2 Jaccard Similarity 
In this paper to determine the similarity of two sets Jaccard 

similarity is used. The Jaccard similarity of sets S and T is the 

ratio of the size of the intersection of S and T to the size of their 

union [4]. 

   (     )  
       

       
. 

Figure 2 depicts two sets    and   . There are 3 elements in 

their intersection and a total of eight elements that appear in S 

or T or both. 

.

Figure 2. Two sets with Jaccard similarity 3/8 

Jaccard similarity of two sets equals: 

   (     )  
 

 
. 

Every document can be represented as set of k-shingles. 

Therefore the sets of documents can be represented as quite 

sparse boolean matrix. Rows are elements of the universal set 

(e.g. the set of all k-shingles). Columns correspond to the 

documents. 1 in row e and column S if and only if e is a 

member of S. Column similarity is the Jaccard similarity of the 

sets of their rows with 1. Figure 3 depicts the boolean matrix 

that represents two documents. 

Figure 3. Boolean matrix representing two documents 

   (     )  
 

 
– similarity of two documents.

2.3 Minhashing 
Typical for the large number of documents boolean matrix is 

quite sparse. Therefore its further processing will be very time 

consuming. To solve this problem boolean matrix can be 

compressed to the signature matrix M in such a way that we can 

still deduce the similarity of the underlying sets from their 

compressed versions. This technique is called “Minhashing”. 

To minhash a set represented by a column of the characteristic 

matrix, a permutation of the rows should be picked. The 

minhash function  ( ) of any column is the number of the first 

row, in the permuted order, in which the column has a 1 [5]. 

Therefore the number of random permutations determines the 

number of the minhash functions. For example we can use 100 

random permutations to create 100 signatures for every column 

of the boolean matrix. 

Signatures can be stores in the special signature matrix M. The 

rows of the signature matrix are minhash values and columns 

correspond to the documents. Figure 4 presents the example of 

the signature matrix M creation by using 3 minhash functions (3 

random permutations). 

Figure 4. Minhashing 

The probability (over all permutations of the rows) that 

 (  )   (  )  is the same as    (     ). The similarity of 

signatures is the fraction of the minhash functions in which they 

agree. Thus, the expected similarity of two signatures equals the 

Jaccard similarity of the columns or sets that the signatures 

represent. And the longer the signatures, the smaller will be the 

expected error [5].  

This important feature allows compressing large sparse boolean 

matrixes to the signature matrixes with short defined number of 

rows with preserving similarity between rows. Thus, every 

document can be represented as a vector and its number of 

elements equals the number of minhash functions.  

In spite of boolean matrix is compressed it still may be 

impossible to find the pairs with greatest similarity efficiently. 

The reason is that the number of pairs of documents may be too 

large, even if there are not too many documents. 

2.4 Locality-Sensitive Hashing 
General idea: Generate from the collection of all elements 

(signatures in our example) a small list of candidate pairs: pairs 

of elements whose similarity must be evaluated. For example, 

for signature matrix every column should be hashed several 

times and columns with equal hash values should be placed to 

the same bucket. Candidate pairs are those that hash at least 

once to the same bucket. To compare similarity of two sets 

threshold t should be picked (t < 1). A pair of documents is 

considered to be similar only if their signatures agree in at least 

fraction t of the rows [6]. 

Figure 5. Hash functions for one band 
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An effective way to choose the hashings is to divide the 

signature matrix M into b bands consisting of r rows each 

(Figure 5). For each band, hash function takes vectors of r 

integers (the portion of one column within that band) and 

hashes them to some large number of buckets. Same hash 

function can be used for all the bands, but for each band there 

should be a separate bucket array, so columns with the same 

vector in different bands will not hash to the same bucket. 

Those columns that at least once were hashed to the same 

bucket are considered as candidate pairs. To catch most similar 

pairs, but few non similar pairs, b and r should be tuned 

attentively. 

3. HIERARCHICAL CLUSTERING 

USING LSH 
Proposed algorithm that exploits the hash tables generated by 

LSH. This algorithm outputs clustering results that approximate 

those obtained by the single linkage method [7]. The following 

is a detailed description of the algorithm. 

Preconditions: 

1.    < 1 – threshold that determines the Jaccard similarity of

2 documents. 

2.   – the initial value of the rows in each band. It should 

depend on number of signatures in signature matrix. 

3.      – the minimum value of the rows of signatures in 

each band. 

4.   - parameter is used for   reduction.

5. Each document is view as single cluster.

Steps: 

Step 1: For each band, hash vectors of r integers to the buckets.

In the i-th hash table, column d (document) is stored in the 

bucket with index   ( ). However, if another column belonging 

to the same cluster as d has already been saved in the very 

bucket, d is not stored in it. 

Step 2: For each column d, from the set of columns that enter 

the same bucket as d in at least one hash table, find columns 

whose distances from d are less than t. 

Step 3: The pairs of clusters, each of which corresponds to a 

pair of columns obtained in Step 2, are connected (Figure 6). 

Step 4: If       , algorithm terminates. Otherwise, advance 

to Step 5. 

Step 5:      . Advance to Step 1. 

Figure 6. Merging of clusters 

4. CLUSTERING EVALUATION
Reuters 21578, test collection of documents, was used to 

evaluate quality and performance of hierarchical clustering 

algorithm with LSH. New algorithm was compared with 

classical Single Linkage method. Table 1 presents that quality 

of clustering (accuracy and F-measure) for 1000 and 10000 

number of documents.  

Table 1. Comparison of the clustering quality 

Algorithm Documents 

count 

Accuracy F-measure 

Single-Link 1000 75% 68% 

10000 79% 71% 

Single-Link + 

LSH 

1000 72% 73% 

10000 72% 74% 

Clustering results show that accuracy and F-measure of two 

algorithms are similar.  

Figure 7 presents dependence of the execution time of the 

number of input documents. 

Figure 7. Comparison of the execution time 

Analyzing the graphs, one can conclude that the clustering 

algorithm using LSH is much faster than the algorithm without 

LSH. Execution time of the algorithm with LSH increases 

linearly with an increasing number of documents. 

5. CONCLUSIONS
In this paper we have proposed fast hierarchical clustering 

algorithm that uses LSH algorithm (LSH used for reducing   the 

dimensionality of high-dimensional data). Developed algorithm 

is optimally suited for the massive text datasets clustering. 

Proposed algorithm was tested on Reuters collection of 

documents and showed reasonable accuracy and F-measure in 

comparison with classical clustering algorithms but in speed 

new algorithm is much superior to them. Fast developed 

clustering algorithm that uses LSH can be modified and used 

for clustering and analysis in such areas as medicine, 

criminalistics, sociology, etc. [2].
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