
Hierarchical clustering of large text datasets using

Locality-Sensitive Hashing
Vasilii Korelin

Saint-Petersburg State University
7-9 Universitetskaya Naberezhnaya,

St. Petersburg, 199034, Russia
+7 911 266 12 99

vn.korelin@gmail.com

Ivan Blekanov
Saint-Petersburg State University

7-9 Universitetskaya Naberezhnaya,
St. Petersburg, 199034, Russia

+7 921 339 53 43

i.blekanov@gmail.com

ABSTRACT
In this paper, we present a hierarchical clustering algorithm of

the large text datasets using Locality-Sensitive Hashing (LSH).

The main idea of the LSH is to “hash” items several times, in

such a way that similar items are more likely to be hashed to the

same bucket than dissimilar are. The main drawback of the

conventional hierarchical algorithms is a large time complexity

(e.g. Single Linkage method has time complexity of ())
Proposed algorithm reduces the time complexity to ().
Here, represents the maximum number of items going to the

single bucket. is a small constant as compared to n for the

large number of buckets.

Clustering results of the hierarchical clustering algorithm, that

uses LSH, are similar to the clustering results of the classical

single linkage method. The main advantage of the hierarchical

clustering algorithm, that uses LSH, is a significant increase in

speed for large datasets clustering in comparison with classical

algorithms.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; H.3.3

[Information Search and Retrieval]: Clustering.

General Terms
Algorithms, Performance, Experimentation, Languages.

Keywords
Hierarchical clustering, Locality-Sensitive Hashing,

Minhashing, Shingling.

1. INTRODUCTION
For today clustering of the large text datasets (e.g. clustering of

the web pages) is one of the urgent data mining issues.

Conventional clustering algorithms allow creating clusters with

some accuracy, F-measure and etc. but when it comes to the

clustering of the larger datasets (high-resolution pictures,

fingerprints or web pages) the vast majority of algorithms have

poor speed performance [1]. For example, despite the fact that

Single Linkage algorithm allows detecting clusters in arbitrary

shapes, it has a large time complexity of () where n is

number of objects. Such time complexity is inappropriate for

big data clustering. To avoid the dimensional issue new

clustering algorithm that uses LSH method was proposed. LSH

reduces the dimensionality of high-dimensional data. It hashes

input items so that similar items map to the same “buckets”

with high probability (the number of buckets being much

smaller than the universe of possible input items) [2].

2. DIMENSIONAL REDUCTION FOR

MINING MASSIVE DATASETS
There are many ways to represent documents as sets for the

purpose of identifying lexically similar documents. The most

effective way is to construct from the document the set of short

strings that appear within it (shingles). Further, for document

comparison Minhashing method is used that allows comparing

multidimensional sets. These conversions must be performed

before applying fast hierarchical algorithm with LSH using.

Below are descriptions of Shingling, Minhashing, LSH methods

and new proposed algorithm. Figure 1 presents the process of

finding similar items in large documents collection for every

document.

Figure 1. Dimension reduction of documents datasets

2.1 Shingling
A document represents a string of characters. Shingling is a

process that creates sets of k-shingles. Define a k-shingle for a

document to be any substring of length k found within the

document [3].

For example, k=2, doc=”a b c a b”. Then after shingling next

sets can be obtained: {a, b}, {b, c}, {c, a}.

Similar documents to each other will have a lot of equal

shingles.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

IWAIT’15, Oct. 8–10, 2015, Aizu-Wakamatsu, Japan.

Copyright 2015 University of Aizu Press.

Proceedings of the International Workshop on Applications in Information Technology

61

2.2 Jaccard Similarity
In this paper to determine the similarity of two sets Jaccard

similarity is used. The Jaccard similarity of sets S and T is the

ratio of the size of the intersection of S and T to the size of their

union [4].

 ()

.

Figure 2 depicts two sets and . There are 3 elements in

their intersection and a total of eight elements that appear in S

or T or both.

.

Figure 2. Two sets with Jaccard similarity 3/8

Jaccard similarity of two sets equals:

 ()

.

Every document can be represented as set of k-shingles.

Therefore the sets of documents can be represented as quite

sparse boolean matrix. Rows are elements of the universal set

(e.g. the set of all k-shingles). Columns correspond to the

documents. 1 in row e and column S if and only if e is a

member of S. Column similarity is the Jaccard similarity of the

sets of their rows with 1. Figure 3 depicts the boolean matrix

that represents two documents.

Figure 3. Boolean matrix representing two documents

 ()

– similarity of two documents.

2.3 Minhashing
Typical for the large number of documents boolean matrix is

quite sparse. Therefore its further processing will be very time

consuming. To solve this problem boolean matrix can be

compressed to the signature matrix M in such a way that we can

still deduce the similarity of the underlying sets from their

compressed versions. This technique is called “Minhashing”.

To minhash a set represented by a column of the characteristic

matrix, a permutation of the rows should be picked. The

minhash function () of any column is the number of the first

row, in the permuted order, in which the column has a 1 [5].

Therefore the number of random permutations determines the

number of the minhash functions. For example we can use 100

random permutations to create 100 signatures for every column

of the boolean matrix.

Signatures can be stores in the special signature matrix M. The

rows of the signature matrix are minhash values and columns

correspond to the documents. Figure 4 presents the example of

the signature matrix M creation by using 3 minhash functions (3

random permutations).

Figure 4. Minhashing

The probability (over all permutations of the rows) that

 () () is the same as (). The similarity of

signatures is the fraction of the minhash functions in which they

agree. Thus, the expected similarity of two signatures equals the

Jaccard similarity of the columns or sets that the signatures

represent. And the longer the signatures, the smaller will be the

expected error [5].

This important feature allows compressing large sparse boolean

matrixes to the signature matrixes with short defined number of

rows with preserving similarity between rows. Thus, every

document can be represented as a vector and its number of

elements equals the number of minhash functions.

In spite of boolean matrix is compressed it still may be

impossible to find the pairs with greatest similarity efficiently.

The reason is that the number of pairs of documents may be too

large, even if there are not too many documents.

2.4 Locality-Sensitive Hashing
General idea: Generate from the collection of all elements

(signatures in our example) a small list of candidate pairs: pairs

of elements whose similarity must be evaluated. For example,

for signature matrix every column should be hashed several

times and columns with equal hash values should be placed to

the same bucket. Candidate pairs are those that hash at least

once to the same bucket. To compare similarity of two sets

threshold t should be picked (t < 1). A pair of documents is

considered to be similar only if their signatures agree in at least

fraction t of the rows [6].

Figure 5. Hash functions for one band

Proceedings of the International Workshop on Applications in Information Technology

62

An effective way to choose the hashings is to divide the

signature matrix M into b bands consisting of r rows each

(Figure 5). For each band, hash function takes vectors of r

integers (the portion of one column within that band) and

hashes them to some large number of buckets. Same hash

function can be used for all the bands, but for each band there

should be a separate bucket array, so columns with the same

vector in different bands will not hash to the same bucket.

Those columns that at least once were hashed to the same

bucket are considered as candidate pairs. To catch most similar

pairs, but few non similar pairs, b and r should be tuned

attentively.

3. HIERARCHICAL CLUSTERING

USING LSH
Proposed algorithm that exploits the hash tables generated by

LSH. This algorithm outputs clustering results that approximate

those obtained by the single linkage method [7]. The following

is a detailed description of the algorithm.

Preconditions:

1. < 1 – threshold that determines the Jaccard similarity of

2 documents.

2. – the initial value of the rows in each band. It should

depend on number of signatures in signature matrix.

3. – the minimum value of the rows of signatures in

each band.

4. - parameter is used for reduction.

5. Each document is view as single cluster.

Steps:

Step 1: For each band, hash vectors of r integers to the buckets.

In the i-th hash table, column d (document) is stored in the

bucket with index (). However, if another column belonging

to the same cluster as d has already been saved in the very

bucket, d is not stored in it.

Step 2: For each column d, from the set of columns that enter

the same bucket as d in at least one hash table, find columns

whose distances from d are less than t.

Step 3: The pairs of clusters, each of which corresponds to a

pair of columns obtained in Step 2, are connected (Figure 6).

Step 4: If , algorithm terminates. Otherwise, advance

to Step 5.

Step 5: . Advance to Step 1.

Figure 6. Merging of clusters

4. CLUSTERING EVALUATION
Reuters 21578, test collection of documents, was used to

evaluate quality and performance of hierarchical clustering

algorithm with LSH. New algorithm was compared with

classical Single Linkage method. Table 1 presents that quality

of clustering (accuracy and F-measure) for 1000 and 10000

number of documents.

Table 1. Comparison of the clustering quality

Algorithm Documents

count

Accuracy F-measure

Single-Link 1000 75% 68%

10000 79% 71%

Single-Link +

LSH

1000 72% 73%

10000 72% 74%

Clustering results show that accuracy and F-measure of two

algorithms are similar.

Figure 7 presents dependence of the execution time of the

number of input documents.

Figure 7. Comparison of the execution time

Analyzing the graphs, one can conclude that the clustering

algorithm using LSH is much faster than the algorithm without

LSH. Execution time of the algorithm with LSH increases

linearly with an increasing number of documents.

5. CONCLUSIONS
In this paper we have proposed fast hierarchical clustering

algorithm that uses LSH algorithm (LSH used for reducing the

dimensionality of high-dimensional data). Developed algorithm

is optimally suited for the massive text datasets clustering.

Proposed algorithm was tested on Reuters collection of

documents and showed reasonable accuracy and F-measure in

comparison with classical clustering algorithms but in speed

new algorithm is much superior to them. Fast developed

clustering algorithm that uses LSH can be modified and used

for clustering and analysis in such areas as medicine,

criminalistics, sociology, etc. [2].

6. ACKNOWLEDGMENTS
This work was supported by the Russian Foundation for Basic

Research, grant № 15-01-06105.

Proceedings of the International Workshop on Applications in Information Technology

63

7. REFERENCES
[1] A. Ene, S. Im, and B. Moseley. Fast clustering using

MapReduce. In KDD, pages 681–689, 2011.

[2] J. Buhler. Efficient large-scale sequence comparison by

locality-sensitive hashing. Bioinformatics, 17(5):419–428,

2001

[3] Broder, A.Z. Identifying and Filtering Near-Duplicate

Documents. In proceedings of the 11th Annual

Symposium on Combinatorial Pattern Matching, pp. 1-10,

2000.

[4] Jatsada Singthongchai and Suphakit Niwattanakul, "A

Method for Measuring Keywords Similarity by Applying

Jaccard’s, N-Gram and Vector Space," Lecture Notes on

Information Theory, Vol.1, No.4, pp. 159-164, Dec. 2013.

doi: 10.12720/lnit.1.4.159-164.

[5] CHUM, O., PERDOCH, M., AND MATAS, J. 2009.

Geometric minhashing: Finding a (thick) needle in a

haystack. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 17–24

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In VLDB, 1999.

[7] Koga, Hisashi, Tetsuo Ishibashi, Toshinori Watanabe.

2007. Fast agglomerative hierarchical clustering algorithm

using Locality-Sensitive Hashing. Knowledge and

Information Systems 12.1, 2007.

Proceedings of the International Workshop on Applications in Information Technology

64

