
Realistic Ball Motion Model for a Tennis Videogame
Lopukhov Andrey

National University of Science and Technology MISiS
Moscow, Ul. Dmitiya Ulyanova 13\1, 52

+79261204135

andrew_lopukhov@mail.ru

Serikov Alexander
National University of Science and Technology MISiS

Moscow, Ul. Profsoyuznaya 83\2
+79258554854

ivanmitrafanych@gmail.com

ABSTRACT
In this paper we speak about the modern simulation games,

tennis in particular. We give reasons for using complex

mathematical models for providing more realistic physics. The

majority of forces influencing the ball flight are described, thus

forming a system of motion equations, which possible solution

with numeric methods we illustrate. A respective optimization

problem is stated and solved with gradient projection. In

conclusion areas of further study are suggested.

General Terms

Modeling

Keywords
Videogame, mathematical model, physical model

1. INTRODUCTION
Videogame industry is one of the leading consumers of modern

computer technologies. In fact, virtually every game uses

complex mathematical apparatus. In contemporary simulator

games an average player demands high degree of realism. To

achieve this, one has to take into account real world laws of

physics when developing the mathematical model. In tennis, for

instance, initial ball spinning effects its motion severely so

respective laws of motion should be considered. Applying

angular velocity to the ball allows the player perform a variety

of different hits, e. g. using topspin with maximum force one

can send the ball to the court, whereas just a flat hit would have

caused an out. To implement such opportunities one have to

consider Magnus force and some others, which will be

described below.

In our model we try consider all forces that have a great

influence on the ball movement so that the best user experience

can be provided. In this paper we also introduce methods for

calculating initial ball hit conditions, which correspond with the

motion model.

2. TENNIS BALL MOTION
Equations of motion can be obtained from Newton’s laws of

motion. For tennis ball we have three main forces [1][2]:

gravity, air resistance and Magnus force.

While ball moves in the air, it has air resistance. This drag force

can be as large as gravitation force and cannot be neglected.

In tennis and other ball sports angular velocity of ball is very

important. If symmetrical object (such as a tennis ball)

translates in air or liquid it experiences only drag force. But

when it has angular velocity it receives force perpendicular to

its travelling direction. This fact is called Magnus effect.

From articles [1][2], we take following information about

forces.

For flat hits (with zero angular velocity) the force of air

resistance is proportional to the square of tennis ball speed:

2

2
d dC AdF


 , (1)

where 2A r is the cross-sectional area of the tennis ball, r

is ball radius,
3

1.21
kg

d
m

 is air density,  is ball speed and

0.55dC  is drag coefficient.

For Magnus force Rod Cross gives following formula:

2

2
m C AdF


 , (2)

where

1

2
l

r

C








 , (3)

where  is angular velocity of the ball.

Ball spin change the drag coefficient. A good fit to the

experimental data is given by

0.4

2.5

1
0.55

22.5 4.2

dC

r









 


  


, (4)

which indicates that
dC can rise by about 50%.

In this work, we consider two-dimensional ball movement that

is projected to three-dimensional space. In such case, we can

describe angular velocity as scalar (0  when Magnus force

is directed down and 0  in other case). Using Newton’s lows

of motion and equations (1)-(4), we have the following system

of ordinary differential equations:

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IWAIT’15, Oct. 8–10, 2015, Aizu-Wakamatsu, Japan.

Copyright 2015 University of Aizu Press.

Proceedings of the International Workshop on Applications in Information Technology

81

 

 

2 2

2 2

2 2

2 2

2 2

2 2

sign
2

sign
2

x y

x y

y

x y

y

y x y

x

y

x
d x

m

d

m

x y

x

x y

k
dt

k
dt

dx

dt

dy

dt

d

r
k

r

d
g

r
k

r






  

  
 

  


  

  
 

  











  

 




 





 




 







 





, (5)

where
2

2
m

d
k

m

r
 ,

2

2
dm

d
k

m

r
C


 , m is mass of ball and

dC is

given by (4) if 0  or 0.55dC  otherwise.

Assuming that initial conditions for this system are given, we

can treat it as a Cauchy problem. For solving this problem we

can use any numeric method.

Modern game engines provide us with opportunity to perform

computations between frames with great ease. That is the main

reason we considered using one-step methods with fixed time

step. Another important criteria of a proper numeric method is

its simplicity, conventionality and computational ease. Thus the

best fitting methods are Euler’s method[4] and the family of

second-order Runge-Kutta methods with two stages[5]. These

methods obviously calculate only the approximation of a real

process. We decided to state that the absolute value of the error

must not exceed 0.1 meter per each coordinate during the

motion process.

Euler’s method fails to meet the precision criteria (for

comparisonwe used Runge-Kutta methods with 4 stages and

1/15 or 1/30 time step). From Runge-Kutta family we tested

midpoint method[5] and Heun's method[3]. Both succeeded to

meet the criteria, varying in precision depending on the initial

conditions. Heun’s method appeared to fit out purposes the

best.

For videogames, 30 frames per second is the sufficient

frequency. Our Heun’s method implementation in Unity3D

computes the solution much faster than 1/30 of a second, thus

making it affordable. Further evaluations that are described in

par. 3 take time of 2-3 frames, taking in consideration other

important computations running simultaneously.

3. INITIAL CONDITION CALCULATION
In tennis player chooses target at court and tries to perform a hit

that will accelerate the ball towards the target. An ideal method

should evaluate initial conditions (velocity vector

0 0 0)(;x y   and angular velocity value ) that satisfy the

following requirements:

 trajectory of ball goes through target point arg 0)(;t etX ;

 ball doesn’t hit net, which is segment ;0) ((;)net net netX HX  ;

 time of flight is as minimum as possible;


min min min, , ,max max max              where

0 0 0, /)tg(y x    . The minimum and maximum values

represent the player’s skill, equipment, game situation, etc.

As far as there are restrictions for angle of the starting velocity,

we search initial conditions as three values: absolute value of

ball velocity  , its angle relative to the ground  and angular

velocity  .

We introduce implicit function)(,,x    that evaluates the

x coordinate of ball bounce point. This function can be find as

a numeric solution of the system (5).

This system cannot be solved analytically thus an explicit

equation for trajectory ()y f x or ()x g y cannot be found.

Despite this fact we can assume that function x has following

properties:

 is monotone function;

 is strictly increasing function of  for any fixed and  ;

 is concave function of for
min max    with other

arguments fixed;

 is concave function of  for
min max    with other

arguments fixed.

3.1 Nested searches
In this method, we assume that for minimizing fly time

maximizing initial velocity is enough. This is not strictly right,

though provides us with a decent approximation.

Working with this idea, we can search for a solution by

performing nested searches of each argument. The outer one is

a binary search of velocity, while the nested ones are ternary

searches of angular velocity and angle.

This solution can find initial conditions for trajectory that goes

through target point, however this does not guaranty that the

ball will not hit the net. This problem can be solved by iterating

through a set of such solutions. Since the real range of angles is

relatively small, we can find solution for different fixed angles

and then choose the best one.

3.2 Optimization problem
The method suggested above can give us a solution that is very

performance costly and does not fulfill conditions stated before.

So we consider the following optimization problem:

arg(, (,,) ,) ,) , m, n((,) inet

m

t et

in max

min max

min max

pF p        

  

   

 





 

  


 


 
  

 (6)

Proceedings of the International Workshop on Applications in Information Technology

82

where)(,,    is implicit function evaluating flight time,

arg (, ,)t etp    and ,(),netp    are penalties for missing the

target and hitting the net.

We defined arg (, ,)t etp    and ,(),netp    with the following

formulas:

 
arg

arg

2

0, ,)
,)

,) ,

0, ,)

,) ,)

(,
(,

(,

(,

(

,))

, 2 , (

(1 ,

,

(,

target

target

net net

n

t et

t

et net net

net net

t

ne

e

t

x

x otherwise

y

R x

R y oth

X
p

R

er

X

H

p X

wiseH

  
 

 

 

 








  

 





  


 

















where ,(),nety    is implicit function that evaluates the y

coordinate of ball trajectory at
netX (see Figure 1), argt etR and

netR are penalty coefficients.

We use gradient projection method to solve the optimization

problem (6). This solution is very sensitive for the starting

point. For choosing it we can use brute force or method

described in subsection 3.1.

4. RESULTS
We implemented model and methods described above in C# for

Unity3D engine. The ball flight of this implementation is more

realistic than built-in Unity physics engine solution as it

considers Magnus effect and its influence on air resistance.

The initial conditions calculating algorithm is accurate in terms

of hitting target.

5. CONCLUSION
We have presented model of realistic tennis ball motion. This

model can be used not only for tennis, but also for another ball

game with only backspin and topspin rotation type.

Our algorithm for calculating initial conditions of this model is

nearly optimal in terms of precision and evaluation

performance.

In future work, we plan to optimize initial conditions

calculation method to make possible calculation of different hits

during one frame.

6. REFERENCES
[1] R. Cross and C. Lindsey, Technical Tennis, Racquet Tech

Publishing, Vista, CA, USA (2005).

[2] R. Cross, Aerodynamics in the classroom and at the ball

park, Am. J. Phys. 80, 289-297 (2012)

[3] E. Süli, D. Mayers, An Introduction to Numerical

Analysis, Cambridge University Press, ISBN 0-521-

00794-1 (2003)

[4] Lakoba, Taras I., Simple Euler method and its

modifications (2012)

[5] Cellier. F, Kofman. E., Continuous System Simulation,

Springer Verlag ISBN 0-387-26102-8 (2006)
Figure 1

Proceedings of the International Workshop on Applications in Information Technology

83

