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ABSTRACT
In this paper we speak about the modern simulation games, 

tennis in particular. We give reasons for using complex 

mathematical models for providing more realistic physics. The 

majority of forces influencing the ball flight are described, thus 

forming a system of motion equations, which possible solution 

with numeric methods we illustrate. A respective optimization 

problem is stated and solved with gradient projection. In 

conclusion  areas of further study are suggested. 
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1. INTRODUCTION
Videogame industry is one of the leading consumers of modern 

computer technologies. In fact, virtually every game uses 

complex mathematical apparatus. In contemporary simulator 

games an average player demands high degree of realism. To 

achieve this, one has to take into account real world laws of 

physics when developing the mathematical model. In tennis, for 

instance, initial ball spinning effects its motion severely so 

respective laws of motion should be considered. Applying 

angular velocity to the ball allows the player perform a variety 

of different hits, e. g. using topspin with maximum force one 

can send the ball to the court, whereas just a flat hit would have 

caused an out. To implement such opportunities one have to 

consider Magnus force and some others, which will be 

described below.  

In our model we try consider all forces that have a great 

influence on the ball movement so that the best user experience 

can be provided. In this paper we also introduce methods for 

calculating initial ball hit conditions, which correspond with the 

motion model. 

2. TENNIS BALL MOTION
Equations of motion can be obtained from Newton’s laws of 

motion. For tennis ball we have three main forces [1][2]: 

gravity, air resistance and Magnus force. 

While ball moves in the air, it has air resistance. This drag force 

can be as large as gravitation force and cannot be neglected. 

In tennis and other ball sports angular velocity of ball is very 

important. If symmetrical object (such as a tennis ball) 

translates in air or liquid it experiences only drag force. But 

when it has angular velocity it receives force perpendicular to 

its travelling direction. This fact is called Magnus effect. 

From articles [1][2], we take following information about 

forces. 

For flat hits (with zero angular velocity) the force of air 

resistance is proportional to the square of tennis ball speed: 
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where 2A r is the cross-sectional area of the tennis ball, r
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 is air density,  is ball speed and 

0.55dC  is drag coefficient. 

For Magnus force Rod Cross gives following formula: 
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where  is angular velocity of the ball. 

Ball spin change the drag coefficient. A good fit to the 

experimental data is given by 
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which indicates that 
dC can rise by about 50%. 

In this work, we consider two-dimensional ball movement that 

is projected to three-dimensional space. In such case, we can 

describe angular velocity as scalar ( 0  when Magnus force 

is directed down and 0  in other case). Using Newton’s lows 

of motion and equations (1)-(4), we have the following system 

of ordinary differential equations: 
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given by (4) if 0  or 0.55dC  otherwise. 

Assuming that initial conditions for this system are given, we 

can treat it as a Cauchy problem. For solving this problem we 

can use any numeric method.  

Modern game engines provide us with opportunity to perform 

computations between frames with great ease. That is the main 

reason we considered using one-step methods with fixed time 

step. Another important criteria of a proper numeric method is 

its simplicity, conventionality and computational ease. Thus the 

best fitting methods are Euler’s method[4] and the family of 

second-order Runge-Kutta methods with two stages[5]. These 

methods obviously calculate only the approximation of a real 

process. We decided to state that the absolute value of the error 

must not exceed 0.1 meter per each coordinate during the 

motion process.  

Euler’s method fails to meet the precision criteria (for 

comparisonwe used Runge-Kutta methods with 4 stages and 

1/15 or 1/30 time step). From Runge-Kutta family we tested 

midpoint method[5] and Heun's method[3]. Both succeeded to 

meet the criteria, varying in precision depending on the initial 

conditions. Heun’s method appeared to fit out purposes the 

best. 

For videogames, 30 frames per second is the sufficient 

frequency. Our Heun’s method implementation in Unity3D 

computes the solution much faster than 1/30 of a second, thus 

making it affordable. Further evaluations that are described in 

par. 3 take time of 2-3 frames, taking in consideration other 

important computations running simultaneously. 

3. INITIAL CONDITION CALCULATION
In tennis player chooses target at court and tries to perform a hit 

that will accelerate the ball towards the target. An ideal method 

should evaluate initial conditions (velocity vector 

0 0 0 )( ;x y     and angular velocity value  ) that satisfy the

following requirements: 

 trajectory of ball goes through target point arg 0)( ;t etX ; 

 ball doesn’t hit net, which is segment ;0) (( ; )net net netX HX  ; 

 time of flight is as minimum as possible;

 
min min min, , ,max max max              where

0 0 0, /)tg( y x    . The minimum and maximum values 

represent the player’s skill, equipment, game situation, etc. 

As far as there are restrictions for angle of the starting velocity, 

we search initial conditions as three values: absolute value of 

ball velocity  , its angle relative to the ground   and angular 

velocity  . 

We introduce implicit function )( ,,x     that evaluates the 

x coordinate of ball bounce point. This function can be find as 

a numeric solution of the system (5). 

This system cannot be solved analytically thus an explicit 

equation for trajectory ( )y f x or ( )x g y  cannot be found. 

Despite this fact we can assume that function x has following 

properties: 

 is monotone function;

 is strictly increasing function of  for any fixed and  ;

 is concave function of for 
min max     with other 

arguments fixed; 

 is concave function of  for 
min max    with other 

arguments fixed. 

3.1 Nested searches 
In this method, we assume that for minimizing fly time 

maximizing initial velocity is enough. This is not strictly right, 

though provides us with a decent approximation. 

Working with this idea, we can search for a solution by 

performing nested searches of each argument. The outer one is 

a binary search of velocity, while the nested ones are ternary 

searches of angular velocity and angle. 

This solution can find initial conditions for trajectory that goes 

through target point, however this does not guaranty that the 

ball will not hit the net. This problem can be solved by iterating 

through a set of such solutions. Since the real range of angles is 

relatively small, we can find solution for different fixed angles 

and then choose the best one. 

3.2 Optimization problem 
The method suggested above can give us a solution that is very 

performance costly and does not fulfill conditions stated before. 

So we consider the following optimization problem: 
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where )( ,,     is implicit function evaluating flight time, 

arg ( , , )t etp    and ,( ),netp    are penalties for missing the 

target and hitting the net. 

We defined arg ( , , )t etp    and ,( ),netp     with the following 

formulas: 
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where ,( ),nety    is implicit function that evaluates the y

coordinate of ball trajectory at 
netX (see Figure 1), argt etR  and 

netR are penalty coefficients. 

We use gradient projection method to solve the optimization 

problem (6). This solution is very sensitive for the starting 

point. For choosing it we can use brute force or method 

described in subsection 3.1. 

4. RESULTS
We implemented model and methods described above in C# for 

Unity3D engine. The ball flight of this implementation is more 

realistic than built-in Unity physics engine solution as it 

considers Magnus effect and its influence on air resistance. 

The initial conditions calculating algorithm is accurate in terms 

of hitting target.  

5. CONCLUSION
We have presented model of realistic tennis ball motion. This 

model can be used not only for tennis, but also for another ball 

game with only backspin and topspin rotation type. 

Our algorithm for calculating initial conditions of this model is 

nearly optimal in terms of precision and evaluation 

performance. 

In future work, we plan to optimize initial conditions 

calculation method to make possible calculation of different hits 

during one frame. 
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