
Int. J. Signal and Imaging Systems Engineering, Vol. 0, No. 00, 2004 1

Organic Databases

H. V. Jagadish
Department of Computer Science and Engineering,
University of Michigan,
Ann Arbor, MI, USA
E-mail: jag@umich.edu

Li Qian
Department of Computer Science and Engineering,
University of Michigan,
Ann Arbor, MI, USA
E-mail: eql@umich.edu

Arnab Nandi
Department of Computer Science and Engineering,
Ohio State University,
Columbus, OH, USA
E-mail: arnab@cse.ohio-state.edu

Abstract: Databases today are carefully engineered: there is an expensive and
deliberate design process, after which a database schema is defined; during
this design process, various possible instance examples and use cases are
hypothesized and carefully analyzed; finally, the schema is ready and then can
be populated with data. All of this effort is a major barrier to database adoption.

In this paper, we explore the possibility of organic database creation instead
of the traditional engineered approach. The idea is to let the user start storing
data in a database with a schema that is just enough to cove the instances at
hand. We then support efficient schema evolution as new data instances arrive.
By designing the database to evolve, we can sidestep the expensive front-end
cost of carefully engineering the design of the database.

Indeed, the deliberate design model complicates not only database creation,
but also database transformation (i.e., schema mapping). Because traditional
schema mapping tasks are carefully engineered with declarative specification
hidden beneath complex user interface. In this paper, we also study the
issue of organic database transformation, which automatically induces schema
mappings from sample target database instances.

1 Motivation

Database technology has made great strides in
the past decades. Today, we are able to process
efficiently ever larger numbers of ever more
complex queries on ever more humongous data
sets. We can be justifiably proud of what we have
accomplished.

However, when we see how information is
created, accessed, and shared today, database
technology remains only a bit player: much of
the data in the world today remains outside
database systems. Even worse, in the places where
database systems are used extensively, we find an
army of database administrators, consultants, and
other technical experts all busily helping users get

Copyright c© 2009 Inderscience Enterprises Ltd.

2 author

data into and out of a database. For almost all
organizations, the indirect cost of maintaining a
technical support team far exceeds the direct cost
of hardware infrastructure and database product
licenses. Not only are support staff expensive,
they also interpose themselves between the users
and the databases. Users cannot interact with the
database directly and are therefore less likely to
try less straightforward operations. This hidden
opportunity cost may be greater than the visible
costs of hardware/software and technical staff.
Most of us remember the day not too long ago
when booking a flight meant calling a travel agent
who used magic incantations at an arcane system
to pull up information regarding flights and to
make bookings. Today, most of us book our own
flights on the web through interfaces that are
simple enough for anyone to use. Many enjoy
the power of being able to explore options for
themselves that would have been too much trouble
to explain to an agent, such as willingness to trade
off price against convenience of a flight connection.

Search engines have done a remarkable job at
directly connecting users with the web. Users can
publish documents of any form on the Web. For
a keyword query, the user is pointed to a set of
documents that are most likely to be relevant to
the user. This best-effort nature can lead to possibly
inaccurate results, but it allows the users the ability
to easily and efficiently get information into and
out of the ever-changing Web.

In contrast, the database world has had the
heritage of constructing rigid, precisely defined,
carefully planned, explicitly engineered, silos of
information based on predictions regarding data
and queries. It was assumed that information
would be clean, rigid and well structured. This has
led to databases today being hard to design, hard
to modify, and hard to query.

When we look at characteristics of search,
we find that there is very low prediction and
planning burden placed on users – neither to
query nor to publish data. Furthermore, precision,
while desirable, is not required. In contrast, users
interacting with databases find themselves fighting
an uphill battle with the constant flux of the data
they deal with in today’s highly connected world.

The emergence of “big data” in enterprise
settings has also presented a unique set of critical
data management challenges. Due to the sheer
size, data is typically stored in large, unindexed

data warehouses running on large clusters. Data
is curated in a highly collaborative manner using
data pipelines built by hundreds, if not thousands
of engineers. Data manipulations are not restricted
to simple database querying. They involve tasks
such as information extraction and building of
statistical models. Datasets range from completely
unstructured to fully structured, and represent
a wide variety of data models. While existing
database systems pay a lot of attention to aspects
such as query execution for simple database
queries, the ability to deal with this new kind
of data paradigm is still extremely primitive.
For example, practical tasks such as “Which I.P.-
address to zip-code table is most accurate to use
while building a classifier for my user location
data?” are encountered regularly and are currently
solved by trial and error along with by duplication
of engineer effort and cluster usage. Clearly, there
are a host of data management issues, ranging from
schema, workflow and provenance management
to efficient indexing of heterogeneous structured
data. These issues are permeate across all types of
enterprise-class data, be it scientific or web-centric
data management. With massive changes in the
scale, size and complexity of both data and its use,
a wide variety of research problems emerge.

Our goal in this paper is to render database
interaction lenient in its demands for prediction,
planning, and precision. We call this organic,
to distinguish from the carefully designed and
engineered “synthetic” database and query system
used today. The result of an organic query may not
be as perfect as the result of an engineered query,
but it has the benefit of not requiring precision
and planning, and hence being more “natural” for
most users. To be able to develop such an organic
system, let us first study the precision and planning
challenges that users face as they interact with
databases.

2 Challenges

2.1 Structure Specification Challenge

Precise specification is challenging for users
interacting with a database. Consider an airline
database with a basic schema shown in Figure
1, for tracing planes and flights. The data
encapsulated is starting location, destination, plane

short title 3

information, and times — essentially what every
passenger thinks of as a flight. Yet, in our
normalized relational representation, this single
concept is recorded across four different tables.
Such splattering of data decreases the usability of
the database in terms of schema comprehension,
join computation, and query expression.

First, given the large number of tables in a
database, often with poorly named entities, it is
usually not easy to understand how to locate a
particular piece of data. Even in a toy schema
such as Figure 1, there is the possibility of trouble.
Obviously, the airports table has information about
the starting location and the destination. To find
what is used by a particular flight, we have
to bring up the schema and follow the foreign
key constraint, or trace the database creation
statements. Neither solution is user-friendly, and
thus the current solution is often to leave the task
to DBAs.

The next problem users face is computing
the joins. We break apart information during the
database design phase such that everything is
normalized — space efficient and amenable to
updates. However, the users will have to stitch
the information back together to answer most real
queries. The fundamental issue is that joins destroy
the connections between information pertaining to
the same real world entities. Query specification is
non-intuitive to most normal users in consequence.
But even the design is brittle. What if a single
flight has multiple flight numbers on account of
code sharing? What about special flights not on
a weekly schedule? There are any number of
such unanticipated possibilities that could render a
carefully designed structure inadequate instantly.

2.2 Remote Specification Challenge

Querying in its current form requires prediction
on the part of the user. In our airline database
example, consider the specification of a three letter
airport code. Some interfaces provide a drop down
list of all the cities that the airline flies into. For
an airline of any size, this list can have hundreds
of entries, most of which are not relevant to the
user. The fact that it is alphabetized may not help
— there may be multiple airports for some major
cities, the airport may be named for a neighboring
city, and so on.

A better interface allows a user to enter the
name of the place they want to get to, and then

looks for close matches. This cannot be a simple
string comparison — we need Narita airport to
be suggested no matter whether the user entered
Narita or Tokyo or even Tokyu. This does not
seem too hard, and some airline web sites will
do this. But now consider a user who wants to
visit Aizu. No airline search interface today, to our
knowledge, can suggest flying into Narita airport
in response to a search for Aizu airport even though
that is likely to be the preferred solution for most
travelers.

On account of difficulty in prediction, it is often
the case that the user does not initially specify the
query correctly. The user then has to revise her
query and resubmit if it did not return desired
results. However, essentially all query languages,
including visual query builders, separate query
specification from output.

Our goal is to enable users to query a database
in a WYSIWYG (What You See Is What You
Get) fashion. Consider the display of a world
map. The user could zoom into the area of
interest and select airports geographically from
the choices presented. Most map databases today
provide excellent direct manipulation capabilities,
including pan, zoom, and so on. Imagine a map
database without these facilities that requires users
to specify, through a text selection of zip code or
latitude/longitude, the portion of the map that is
of interest each time. We would find it terribly
frustrating. Unfortunately, most database query
interfaces today are not WYSIWYG and can be
compared to this hypothetical frustrating map
query interface.

What does WYSIWYG mean for databases?
After all, the point of specifying a query is to get
information that the user does not possess. Even
search engines are not WYSIWYG. A WYSIWYG
interface for selection specification and data results
involves a constant predictive capability on the
part of the system. For example, instantaneous-
response interfaces [58] allow users to gain insights
into the schema and the data during query time,
which allows the user to continuously refine the
query as they are typing the initial query. By the time
the user has typed out the entire query, the query
has been correctly formulated and the results have
returned. Furthermore, if the user then wishes to
modify the query, this should be possible by direct
manipulation of the result set rather than an ab
initio restatement of the query.

4 author

airplane

id

type

serial_number

schedule

id

day_of_week

departure_time

arrival_time

flight_info

id

flight_number

airplane_id

tid

fid

schedule_id

date

airports

id

city_name

airport_name

Figure 1 The base tables needed to store a “flight”. A flight contains from location, destination, airplane info and
schedule, yet consists of at least four tables. Note that an actual schema for such data is likely to involve
many more attributes and tables.

2.3 Schema Evolution Challenge

While database systems have fully established
themselves in the corporate market, they have
not made a large impact on how users organize
their everyday information. Many users would like
to put into their databases [8] information such
as shopping lists, expense reports, etc. The main
reason for this is that creating a database is not easy.

Database systems require that the schema be
specified in advance, and then populated with
data. This burdens the user with developing an
abstract design of the schema – without any
concrete data – a task that we computer scientists
are trained to do, but most others find very
difficult. Furthermore, careful planning is required
as users are expected to predict what data they will
need to store in the future, and what queries they
may ask, and use these predictions to develop a
suitable schema.

Example 2.1 Consider a user, Jane, who started to keep
track of her shopping lists. The first list she created
simply contained a list of items and quantities of each
to be purchased. After the first shopping trip, Jane
realized that she needed to add price information to
the list to monitor her expenses and she also started
marking items that were not in stock at the store. A week
before Thanksgiving, Jane created another shopping list.
However, this time, the items were gifts to her friends,

and information about the friends therefore needed to be
added to create this “gift list.” A week after Christmas,
Jane started to create another “gift list” to track gifts
she received from her friends. However, the friends
information were now about friends giving her gifts.
In the end, what started as a simple list of items for
Jane had become a repository of items, stores, and more
importantly, friends — an important part of Jane’s life.

The above example, although simple, illustrates
how an everyday database evolves and the many
usability challenges facing a database system. First,
users do not have a clear knowledge of what
the final structure of the database will be and
therefore a comprehensive design of the database
is impossible at the beginning. For example, Jane
did not know that she needed to keep track of
information about her friends until the time had
come to buy gifts for them. Second, the structure
of the database grows as more information become
available. For example, the information about price
and out of stock only became available after the
shopping trip. Finally, information structures may
be heterogeneous. For example, the two “gift lists”
that Jane created had different semantics in their
friends information and the database needs to
gracefully handle this heterogeneity.

In summary, for everyday data, the structure
grows incrementally and a database system must
provide interfaces for users to easily create both

short title 5

unstructured and structured information and to
fluidly manipulate the structure when necessary.

2.4 Schema Mapping Challenge

Schema mapping has long been one of the most
important problems in industry. Moreover, as
the amount of structured Web-based information
explodes, users are directly exposed to the
task of combining, structuring and re-purposing
information [15]. Unfortunately, schema mapping
is extremely sophisticated with the state-of-the-art
approaches.

Nowadays, schema mapping requires a
substantial amount of careful planning in advance.
These planning are usually based on complicated
data transformation specification languages such
as datalog and source-to-target tgds [28], which
are difficult for normal users to understand.
Furthermore, planning the mappings with modern
tools requires declarative precision, which the
users may not possess before they fully interpret
the semantics of the mappings they are trying to
construct.

Example 2.2 When exploring the Yahoo Movies
database, a user wishes to store the movie title as
Name and the director name as Director in a target
MyMovieInfo relation, as shown1 in Figure 2. Given
the fact that most users are unable/unwilling to specify
the mappings in complex mapping languages, modern
mapping tools usually offer a mapping interface as
shown in Figure 3. However, users still have to precisely
plan for two essential mapping components.

First, similar to data location challenge described
before, it can be potentially difficult to search for the
source schema and locate the specific attribute that is
being mapped to the corresponding target attribute. In
a movie database, there are typically dozens of relations
with hundreds of attributes. Worse, end-users usually
have no access to foreign key constraints and/or database
creation statements. In such a case, picking the right
corresponding attribute can be a large pain.

Even if the set of correspondences are all correctly
and precisely established, the user must face the
structural specification challenge. In other words, how
are these source attributes joined and projected to the
target? Again, join prevents the user from linking
desired concrete target concept to normalized stored
information, and thus needs to be specified precisely.
What if there are hidden intermediate join relations?

What are the join attributes? All these planning
questions are left to users who do not need to know these
answers.

3 Proposed Solution

3.1 Presentation Data Model

We propose the use of a presentation data
model [37], as a full-fledged layer above the
physical and logical layers in the database. Just
as the logical layer provides data abstraction and
saves the user from having to worry about physical
data aspects such as data structures, indices, access
methods, etc., the presentation layer saves the user
from having to worry about logical data aspects
such as relational structure, keys, joins, constraints,
etc. To do this, the presentation layer should be able
to represent data in a form most suited for the user
to easily comprehend, manipulate and query.

3.2 Addressing Structure Specification
Challenge

We address the structure specification challenge
through the qunit search paradigm [59], where
the database is translated into a collection
of independent qunits, which can be treated
as documents for standard IR-like document
retrieval. A qunit is the basic, independent
semantic unit of information in a database. It
represents a quantified unit of information in
response to a user’s query. The database search
problem then becomes one of choosing the most
appropriate qunit(s) to return, in ranked order.
Users only have to input keywords, which is
much simpler than navigating complex database
schema and specifying a structured query. In
other words, the precision burden is lifted from
the user. Consider the flight example in Figure 1.
A qunit “flight” can be defined to represent
the complete information of what a passenger
thinks of as a flight. The qunit includes starting
location, destination, plane, and time of travel. This
completely relieves users from having to manually
performing joins among all the tables. As a user
inputs a search criterion, for example “from DTW
to LAX, Jan. 2010”, qunits are ranked based on the
input and the best matches are presented to the
user.

6 author

Movie
PK mid
 title

Person
PK pid
 name

Director
FK2 pid
FK1 mid

Writer
FK2 pid
FK1 mid

MyMovieInfo
 Name
 Director

M
ap to

Source Schema
Target Schema

Correspondence

Correspondence

Figure 2 An Example Schema Mapping with The Question Mark Indicating a Join Path Ambiguity.

Figure 3 A Screenshot of IBM InfoSphere Data Architect

short title 7

person

cast

movie
genre

name
birthdate

gender

title

releasedate
rating

info

level

role

info movie cast
…

star wars cast

search

(star wars)!"#$%&'(%()&*+!"#$%

quotes movie cast

query

typed query

qunit-query

qunit instances

qunit definitions

database

(a) An Simplified database schema (b) Qunit Search on IMDb
Figure 4 Qunit Example

We now explain the definition of qunits over a
database, and how to search based on qunits. We
use a slightly more complex IMDb movie database
in order to explain more effectively. Figure 4 (a)
shows a simplified example schema of a movie
database, which contains entities such as movie,
cast, person, etc. Qunits are defined over this
database corresponding to various information
needs. For example, we can define a qunit “cast”,
as the people associated with a movie. Meanwhile,
rather than having the name of the movie repeated
with each tuple, we may prefer to have a nested
presentation with the movie title on top and one
tuple for each cast member. The base data in
IMDb is relational, and against its schema, we
would write the base expression in SQL with
the conversion expression in XSL-like markup as
follows:

SELECT * FROM person, cast, movie

WHERE cast.movie_id = movie.id AND

cast.person_id = person.id AND

movie.title = "$x"

RETURN

<cast movie="$x">

<foreach:tuple>

<person>$person.name</person>

</foreach:tuple>

</cast>

The combination of these two expressions forms
our qunit definition. On applying this definition
to a database, we derive qunit instances, one per
movie.

To search based on qunits, consider the user
query, star wars cast, as shown in Figure 4 (b).
Queries are first processed to identify entities using
standard query segmentation techniques [75].
In our case one high-ranking segmentation is
“[movie.name] [cast]” and this has a very high
overlap with the qunit definition that involves
a join between “movie.name” and “cast”. Now,
standard IR techniques can be used to evaluate
this query against qunit instances of the identified
type; each considered independently even if they
contain elements in common. The qunit instance
describing the cast of the movie Star Wars is chosen
as the appropriate result.

In current models of keyword search in
databases, several heuristics are applied to
leverage the database structure to construct a result
on the fly. These heuristics are often based on the
assumption that the structure within the database
reflects the semantics assumed by the user (though
data / link cardinality is not necessarily an
evidence of importance), and that all structure is
actually relevant towards ranking (though internal
id fields are never really meant for search).

8 author

A significant sub-challenge is the automated
derivation of qunit definitions themselves. In
addition to clustering-based techniques [79] that
leverage the data and structure of the database,
there is also a wealth of useful information that
exists in the form of external evidence. External
evidence can be in the form of existing “reports”
– published results of queries to the database,
or relevant web pages that present parts of the
data. Such evidence is common in settings where
such reports and web pages may be published
and exchanged but the queries to the data are
not published. Information extraction techniques
such as wrapper induction [48] allow us to extract
templates by considering each piece of evidence as
a qunit instance, which an then be assembled into
qunit definitions by mapping them to the database.

3.3 Addressing the Schema Evolution Challenge

In this section we address the schema evolution
challenge (Sec. 2.3) by proposing a technique for
drag-and-drop modification of data schemas in
the spreadsheet-like presentation model, enabling
organic evolution of a schema and lifting the
planning burden from the user. Consider the
example of Jane’s shopping list again. Figure 5
shows how Jane can organically grow the schema
of the shopping list table. Initially, she has only
columns for items to shop (Figure 5 (a)). She later
tries to add information about friends to whom
the gifts will be given, for instance, by adding a
“name” column in “Shopping List”. But now, Peter,
a close friend of Jane, appears twice since both item
Xbox and iPod will be given to him. As a result,
Jane may think it makes more sense to group the
gifts by person. Jane can do this by dragging the
header of the name column and dropping it on the
lower edge of the “Shopping List” (Figure 5 (b)).
This makes the name attribute a level up; the rest
of the columns forms a sub-relation “Gift” (shown
in Figure 5 (c)). Now Jane can feel free to add new
information, such as an attribute “address”, for her
friends without worrying that these information
would be duplicated (Figure 5 (d)). This process
shows how effortless it is for Jane to grow the table
about shopping items to include information about
friends and structure the table as she desires.

Next, we briefly outline the challenges in
building a system such as this, and our plans to
tackle these challenges.

Specification: Specifying a schema update as
in Figure 5 is challenging using existing tools. For
example, using conventional spreadsheet software,
it is impossible to arrive at a hierarchical schema
as shown in Figure 5 (d). To specify the schema
update, one has to split the table manually.
Alternatively, using a relational DBMS, one has to
set up the cross-table relationship, which is not
easy for end-users, even with support from GUI
tools.

We show how to use a presentation layer to
address the specification challenge. We design
the presentation layer based on a next-generation
spreadsheet and it supports easy schema creation
and modification through a simple drag-and-drop
interface. We call such a spreadsheet span table
because it is presented in such a way that both table
headers and data fields can span multiple cells. The
presentation supports four key operations: move
an attribute to be part of a sub-relation (e.g., we
can move the “Name” column back to “Gift” in
Figure 5 (d)), move an attribute out of a sub-
relation (the converse of the previous one), create
a intermediate sub-relation by moving an attribute
up one layer (e.g., Jane moves “Name” out to
create a new sub-relation under “Shopping List”
as in Figure 5 (b)) or down a layer (e.g., moving
“In Stock” down deepens it by inserting a new
immediate level, with only “In Stock” in it; Jane can
later add new columns such as “Date” to indicate
the timestamp of stocking information).

Data Migration: Once a new schema is
specified, there is still a critical task of migrating
existing data to the new schema. Because the
schema structure is changed, one has to introduce
a complex mapping in order to “fit” the old data
into the new schema. Even if spreadsheet software
supporting hierarchical schema is provided, the
user may still have to manually copy data in a cell-
by-cell manner to perform such mapping, which is
extremely time-consuming and error-prone.

We address this challenge with an algebraic
layer. Directly below the presentation layer, the
algebraic layer must translate drag-and-drops into
operations that modify the basic structure of the
span table. For this purpose, we have proposed
a novel span table algebra consisted of three sets
of operations. The first set, schema restructuring
operators, corresponds to the four aforementioned
operations in the presentation layer. We also have
a second set of schema modification operators for

short title 9

(a) Initial Shopping List (b) Moving Name Column

(c) After Moving Name Column (d) Adding Address Column
Figure 5 Organic Schema Evolution

adding/dropping columns in any sub-relations.
Finally, there is a set of data manipulation
operators (insert, delete, and update), which
extends traditional data edit to our hierarchical
presentation. This algebraic layer completely
automates the data migration as soon as the the
schema modification is performed.

Data Integrity: Expressing and understanding
integrity constraints is central to schema design,
and thus also critical for an organic database
where schema is continuously evolved. Functional
dependencies (FD) are often used in database
design to add semantics to schemas and to assert
integrity constraints for data.

Nested functional dependencies have been
studied extensively in the past [33]. However,
CRIUS presents some new challenges due to
its user-centric support for data and schema
modification. When a user updates data, or
modifies the schema, it is important to understand
how the update affects existing dependencies so
that we can communicate this information back to
the user, and optionally take steps to resolve any
resulting inconsistencies.

For this challenge, we consider two specific
operations: data value updates and schema
updates. For the former case, we show how data
value updates and integrity constraints interfere
with each other and how we may take advantage
of such inference to guide user data entry from a
set of appropriately maintained FDs. Specifically,
we feature autocompletion for qualified data entry
and provide a contextual menu to alert the user
each time she issues an update that violates a given
FD, in order to preserve data integrity. For schema

updates, our hypothesis is that for each schema
update operation there is a way to “rewrite”
involved FDs to preserve their validity. Precisely
how to rewrite the schema is described in detail
in [64].

Performance: Schema evolution is usually a
heavy-weight operation in traditional database
systems. It is not unusual for a commercial
database to take days to complete the maintenance
required after schema evolution. IT organizations
carefully plan schema changes, and make them
only infrequently. In contrast, everyday users are
unlikely to plan carefully. We would like to develop
techniques that support quick schema evolution
without giving up on any of the other desirable
features.

We address performance challenge with a
storage layer to implement a practical means of
actually storing the data. Conventionally, database
systems have been designed with the goal of
optimizing query processing. However, schema
modifications (e.g., ALTER TABLE) are often time-
consuming, heavy-weight operations in current
systems. We utilize a vertically partitioned format
for the storage layer. Our goal is to significantly
reduce the performance penalty incurred due to
schema modifications at a very modest cost of
overhead in query processing.

Understanding Schema Evolution: When a
schema has evolved over an extended period
of time, it is difficult for a user to keep track
of the changes. A natural need is to concisely
convey to the user how a database has been
evolving. For example, the user may query the
relationship between columns in the initial schema

10 author

and the final schema and how the transformation
from old columns to new ones took place over
time. We want to show users the gradual organic
changes rather than a sudden transformation.
We could keep track of all the changes step by
step, which requires all changes to be maintained.
If such information is not available, which is
frequently the case when the user looks at external
data sources, we seek to automatically discover
such evolution from the data. Challenges involve
mining conceptual changes from large amounts of
changes to the database (e.g. Inferring the splitting
of every “Name” column in each table to two “First
Name” and “Last Name” columns, followed by
a normalization of the names into a single table).
Mining such inferences can be done using either
just the data, or a combination of the data and
provenance information.

3.4 Addressing the Schema Mapping Challenge

In this section, we address the schema mapping
challenge (Sec. 2.4) by proposing a sample-driven
mapping approach, as opposed to the traditional
match-driven mapping approach adopted by most
of the state-of-the-art schema mapping tools. The
sample-driven mapping approach allows the user
to freely provide sample target instances for the
system to automatically infer the desired schema
mapping, enabling organic data transformation by
reducing user-side planning burden.

Let us examine a natural extension of
Example 2.2, in which the user wishes to establish
the mapping from the whole source to the toy
target consists of the movie title, the director’s
name and the production company. Even with
such a simple target, the traditional mapping
approach could imply a great planning pain. First,
for a given target attribute, there may be several
possible candidate source attributes that can
match. Moreover, even if the source attributes have
a one-to-one matching with the target attributes,
there may be various ways these source attributes
can be joined. To resolve either ambiguity with
a match-driven interface may be potentially
overwhelming for the user, as shown in the top
part of Figure 6.

With the sample-driven approach, the user
can bypass the source-to-target-correspondence
establishment and join path construction. All she
needs to do is to type in sample instances in a
restful WYSIWYG target relation, as shown in the

bottom part in Figure 6. For instance, the user
begins by entering “Avatar”, and the system may
find the value in both source attributes Movie.title
and Company.name. As the user enters more
movie names, such as “Harry Potter”, the set of
attributes eventually converges to a single attribute
Movie.title. The same concept applies to join path
specification. After the user inputs “Avatar” and
“James Cameron” in the first row, the relation
between these two entries are not clear enough.
It may stand for a movie-director relationship or
a movie-writer relationship. However, after the
user enters “Harry Potter” and “David Yates”, the
system knows the desired relationship must be
movie-director, since the writer of “Harry Potter”
is “J.K. Rowling”. By this means, the user easily
specifies the mapping without planning for the
underlying complicated details.

In the remainder of this section, we briefly
highlight the challenges in supporting such organic
schema mapping system and our solutions.

Mapping Deduction: The key challenge behind
the scene is to automatically deduce the desired
mapping using just the user-provided sample
target instances. This is essentially difficult because
of two reasons. First, the user input is small
and incomplete compared with the whole desired
target relation which the user eventually wishes
to generate. Second, there is no prior-knowledge
of what this “desired target” would be. In other
words, there may be a large number of candidate
mappings that are consistent with the current user
input, yet no one knows which one is the ground
truth. Therefore, we have to keep track of all
possible mappings.

Indeed, the deduction problem is a reverse-
engineering problem which uses only incomplete
information to search for the most suitable process
that would generate such information, while the
number of possible processes may be many. The
reason for such ambiguity, to be viewed from the
schema mapping context, is obvious. For each user-
input data, there may be multiple source attributes
which contain that piece of data. Moreover, for
each pair of source attributes that are being
matched to the target, there may be multiple ways
to join them. Consequently, the critical question
to the sample-driven mapping approach becomes
how to effectively compute the set of candidate
mappings that would yield the current user-input
target sample instances.

short title 11

Director MyMovieInfo

role name

director Movie

title producer

User manually refines correspondences.

Movie join Writer on … join Person on…

Movie join Director on … join Person on…

User manually refines mapping structure.

name director producer

Avatar James Cameron Lightstorm Co.

Harry Potter David Yates

Tim Burton

MyMovieInfo

User types sample instances in the target table.

Requires precise
knowledge of both
the source and the
target schema and

comprehensive
interpretation of the

schema mapping.

Requires only
knowledge of the
target schema and

a few sample
instances.

M
atch-D

riven
Sam

ple-D
riven

Figure 6 Traditional Schema Mapping v.s. Organic Schema Mapping with Sample-Driven Approach

In traditional schema mapping design, database
engineers may spend sufficient time on discussing
and choosing the optimal mapping. In the organic
mapping scenario, however, these mappings have
to be generated quickly enough so that the user
can obtain “interactive-speed” feedback, allowing
her to review the current system status before
continuing to provide more samples or stopping
if the system has generated the desired mapping.
As a result, the system has to generate the set of
candidate mappings with satisfying performance.

We address this mapping deduction challenge
by abstracting schema mappings into mapping
paths, and developing algorithms that efficiently
derive bigger mapping paths from smaller ones,
where the smallest mapping paths are generated
by depth-limited breadth-first-searching user-
input connections in the source database instances.
The highlight of the algorithm is, every piece of
required information is captured in those smallest
mapping paths, and the process of constructing
them into the final mapping candidates follows a
natural bottom-up procedure with a “weaving”
operation that can be completely done in memory.
It is proved that the algorithm is sound and
complete. And because all database accesses only
occur when generating the smallest mapping

paths, the overall performance is noticeable high
and is able to meet practical requirements.

Mapping Pruning:
After we deduct the set of all mapping

candidates, we have to efficiently prune them to
obtain the final desired mapping. This process is
also time-critical since it has to be done when the
system interacts with continuous user-input. Here
we propose two approaches for mapping pruning.

After the initial set of candidate mappings
is generated, the user may continue to enter
additional samples to prune the candidate set. This
basic static pruning functions in two steps. In the
first step, source attributes in existing candidate
mappings are being checked towards newly input
samples. Those source attributes not containing
the new samples, together with the corresponding
mappings will be pruned. In the second step,
the connections between newly input samples are
being checked against candidate mappings and
mappings that do not satisfy the new connections
will be removed.

In complement to the static pruning, we
propose dynamic pruning based on automatic
sample instance recommendation. In general,
a user may not realize the critical differences
between various candidate mappings and

12 author

continues with samples supporting a single
existing mapping. This, indeed, renders the
candidate set convergence time not upper-
bounded. In order to make the candidate set
converge faster, we can automatically construct
target instances that satisfy only part of the
candidate set, and ask the user if such a selection
is desired. By this means, the size of the candidate
set quickly shrinks and the user is able to obtain
the goal mapping within just a few interactions.

4 Related Work

Database usability started to receive attention
more than 25 years ago [23] and gained more
momentum lately [37]. Research in database
usability has been mainly focusing on innovative
and effective query interface design, including
visual, text (i.e., keyword), natural language
interfaces, direct manipulation interfaces, and
spreadsheet interfaces.

Visual Interfaces: Query By Example [82],
which is the first study on building a query
interface not based on a database query language,
allows users to implicitly construct queries by
identifying examples of desired data elements.
This work is followed more recently by QBT [67],
Kaleidoquery [57], VISIONARY [9], MIX [56],
Xing [27], and XQBE [12]. Alternatively, forms-
based query interface design has also been
receiving attention. Early works on such interfaces
include [26, 20], which provide users with visual
tools to frame queries and to perform tasks such as
database design and view definition. This direction
is more recently followed by GRIDS [66] and
Acuity [70], and, in XML database systems, by
FoXQ [1], EquiX [21], QURSED [62]. Adaptive
form construction is studied in DRIVE [55],
which enables runtime context-sensitive interface
editing for object-oriented databases, and in [39],
which studies how forms can be automatically
designed and constructed based on past query
history. Recent work by Jayapandian and Jagadish
proposes techniques for automatic construction of
forms based on database schema and data [40] and
expressive form customization [41].

Text Interfaces: The success of Information
Retrieval (IR) style (i.e., keyword based) search
among ordinary users has prompted database
researcher to study a similar search interface

for database systems. The goal is to maintain
the simplicity of the search and exploit not
only the textual content of the tuples, but also
the structures within and across tuples to rank
the results in a way that is more effective than
the traditional IR-style ranking mechanism. For
relational databases, this approach is first studied
by Goldman et. al. in [29] and followed by many
systems, including DBXplorer [2], BANKS [10],
DISCOVER [35], and ObjectRank [7]. For XML
databases, the inherently more complicated
structure within the database content allows the
researchers to explore query languages ranging
from pure keywords and approximate structural
query, and has led to various projects including
XSEarch [22], XRANK [30], JuruXML [16],
FlexPath [5], Schema-Free XQuery [50], and
Meaningful Summary Query [80]. A more recent
trend in keyword-based search is to analyze a
keyword query and automatically discover the
hidden semantic structures that the query carries.
This trend has influenced the design of projects
for both traditional database search [42] and web
search [53].

Natural Language Interfaces: Constructing a
natural language interface to databases has a
long history [6]. In particular, [68] analyzed the
expressive power of a declarative query language
(SEQUEL) in comparison to natural language.
Most recently, NaLIX [49] proposed a generic
natural language interface to XML database, which
is capable of adapting to multiple domains through
user feedbacks. However, to this day, natural
language understanding is still an extremely
difficult problem, and current systems tend to be
unreliable or unable to answer questions outside a
few predefined narrow domains [63].

Direct Manipulation Interfaces: Direct
manipulation [69], although a crucial concept
in the user interface field, is seldom mentioned
in database literature. Pasta-3 [47] is one of the
earliest efforts attempting a direct manipulation
interface for databases, but its support of direct
manipulation is limited to allowing users to
manipulate a query expression with clicks and drags.
Tioga-2 [4] (later developed into DataSplash [60]) is
a direct manipulation database visualization tool,
and its visual query language allows specification
with a drag-and-drop interface. Its emphasis,
however, is on visualization instead of querying.
Recent work by Liu and Jagadish [52] develops a

short title 13

direct manipulation query interface based on an
spreadsheet algebra.

Spreadsheet Interface: Spreadsheets have
proven to be one of the most user-friendly and
popular interfaces for handling data, partially
evidenced by the ubiquity of Microsoft Excel.
FOCUS [73] provides an interface for manipulating
local tables. Its query operations are quite simple
(e.g., allowing only one level of grouping and being
highly restrictive on the form of query conditions).
Tableau [31], which is built on VizQL [32],
specializes in interactive data visualization and
is limited in querying capability. Spreadsheets
have also been used for data cleaning [65], logic
programming [72], visualization exploration [38],
and photo management [44]. Witkowski et al [77]
proposed SQL extensions supporting spreadsheet-
like computations in RDBMS.

Query interface is just one aspect of database
usability, there are many other research fields that
have direct or indirect impacts on the usability of
databases, which we briefly describe below.

Personalization: Studies in this field attempt
to customize database systems for each individual
user and therefore making them easier to explore
and extract information by the particular user,
e.g., [24]. In addition, studies have also been
focusing on analyzing past query workloads to
detect the user interests and provide better results
tuned to those interests, e.g., [46, 19, 36]. It is also
worth noting that the notion of personalization
has also found interest in the information retrieval
community, where the ranking of search results is
biased using a certain personalized metric [34, 43].

Automatic Database Management: To
alleviate the burden on database administrators,
commercial database systems come with a suite
of auxiliary tools. The AutoAdmin project [3, 18]
at Microsoft, initiated by Surajit Chaudhuri and
his colleagues, makes great strides with respect to
many aspects of database configuration including
physical design and index tuning. Similarly, the
Autonomic Computing project [51, 54] at IBM
provides a platform to tune a database system,
including query optimization. However, none of
these projects deal with the user-level database
usability that is the focus of this proposal.

Database Schema Design: This has been
studied extensively [11, 78, 61]. There is a
great deal of work on defining a good schema,
both from the perspective of capturing real-life

requirements (e.g., normalization) and supporting
efficient queries. However, schema design has
typically been considered a heavyweight, one-
time operation, which is done by a technically
skilled database administrator, based on careful
requirements analysis and planning. The new
challenge of enabling non-expert user to
“give birth” to a database schema was posed
recently [37], but no solution was provided.

Usability Study in Other Systems: Usability
of information retrieval systems was studied
in [74, 81], which analyzed usability errors
and design flaws, and also in [25], which
performed a comparison of usability testing
methods. Principles of user-centered design were
introduced in [45, 76], including how they could
complement software engineering techniques to
create interactive systems. Incorporating usability
into the evaluation of computer systems was first
studied in [13]. An extensive user study was
performed in [17] to identify the reasons for user
frustration in computing experiences, while [14]
takes a more formal approach to model user
behavior for usability analysis. There is also a
recent move in the software systems community
to conduct serious user studies [71]. However, for
database systems in particular, these only scratch
the surface of what needs to be done to improve
usability.

5 Conclusion

Today, many users have to manage their own
data, without the luxury of having it managed
for them by a trained DBA. Without technical
training, it is difficult for ordinary users to reason
about abstract concepts, such as schema, let alone
successfully design a database schema or map
the schema of an unfamiliar database. To meet
the needs of such users, we have introduced the
notion of an organic database C distinguished from
the traditional carefully engineered database. In
this paper, we showed two instantiations of this
concept, one for creating a database and one for
schema mapping in data integration.

Acknowledgement

The project is supported in part by NSF grants IIS
1017296 and IIS 1250880.

14 author

References

[1] R. Abraham. FoXQ - XQuery by forms. In IEEE
Symposium on Human Centric Computing Languages
and Environments, 2003.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer:
A System for Keyword-Based Search over
Relational Databases. In ICDE, 2002.

[3] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe,
V. Narasayya, and M. Syamala. Database Tuning
Advisor for Microsoft SQL Server 2005. In VLDB,
2004.

[4] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff.
Tioga-2: A direct manipulation database
visualization environment. In ICDE, pages 208–217,
1996.

[5] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.
FleXPath: Flexible Structure and Full-Text Querying
for XML. In SIGMOD, 2004.

[6] I. Androutsopoulos, G. Ritchie, and P. Thanisch.
Natural Language Interfaces to Databases–an
introduction. Journal of Language Engineering,
1(1):29–81, 1995.

[7] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
ObjectRank: Authority-Based Keyword Search in
Databases. In VLDB, 2004.

[8] G. Bell and J. Gemmell. A Digital Life, 2007.
[9] F. Benzi, D. Maio, and S. Rizzi. Visionary: A

Viewpoint-based Visual Language for Querying
Relational Databases. Journal of Visual Languages and
Computing, 10(2), 1999.

[10] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword Searching and
Browsing in Databases using BANKS. In ICDE,
2002.

[11] J. Biskup. Achievements of relational database
schema design theory revisited. In Semantics in
Databases, pages 29–54. Springer-Verlag, 1998.

[12] D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By
Example): A Visual Interface to the Standard XML
Query Language. ACM Trans. Database Syst., 30(2),
2005.

[13] A. B. Brown, L. C. Chung, and D. A. Patterson.
Including the Human Factor in Dependability
Benchmarks. In DSN Workshop on Dependability
Benchmarking, 2002.

[14] R. Butterworth, A. Blandford, and D. Duke. Using
Formal Models to Explore Display-Based Usability
Issues. Journal of Visual Languages and Computing,
10(5), 1999.

[15] M. Cafarella, A. Halevy, and N. Khoussainova. Data
integration for the relational web. VLDB, 2(1):1090–
1101, 2009.

[16] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass,
and A. Soffer. Searching XML Documents via XML
Fragments. In SIGIR, 2003.

[17] I. Ceaparu, J. Lazar, K. Bessiere, J. Robinson, and
B. Shneiderman. Determining Causes and Severity
of End-User Frustration. International Journal of
Human Computer Interaction, 17(3), 2004.

[18] S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning, RISC-
style Database System. In VLDB, 2000.

[19] Z. Chen and T. Li. Addressing Diverse User
Preferences in SQL-Query-Result Navigation. In
SIGMOD, 2007.

[20] J. Choobineh, M. V. Mannino, and V. P. Tseng. A
Form-Based Approach for Database Analysis and
Design. CACM, 35(2), 1992.

[21] S. Cohen, Y. Kanza, Y. Kogan, Y. Sagiv, W. Nutt,
and A. Serebrenik. EquiX–A Search and Query
Language for XML. JASIST, 53(6), 2002.

[22] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A Semantic Search Engine for XML. In
VLDB, 2003.

[23] C. J. Date. Database Usability. In SIGMOD, New
York, NY, USA, 1983. ACM Press.

[24] X. Dong and A. Halevy. A Platform for Personal
Information Management and Integration. In CIDR,
2005.

[25] A. Doubleday, M. Ryan, M. Springett, and
A. Sutcliffe. A Comparison of Usability Techniques
for Evaluating Design. In DIS, 1997.

[26] D. W. Embley. NFQL: The Natural Forms Query
Language. ACM Trans. Database Syst., 1989.

[27] M. Erwig. A Visual Language for XML. In IEEE
Symposium on Visual Languages, 2000.

[28] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, May 2005.

[29] R. Goldman, N. Shivakumar,
S. Venkatasubramanian, and H. Garcia-Molina.
Proximity Search in Databases. In VLDB, 1998.

[30] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked Keyword
Search over XML Documents. In SIGMOD, 2003.

[31] P. Hanrahan. VizQL: A Language for Query,
Analysis and Visualization. SIGMOD, pages 721–
721, 2006.

[32] P. Hanrahan. Vizql: a language for query, analysis
and visualization. In SIGMOD, page 721, 2006.

[33] C. Hara and S. Davidson. Reasoning about nested
functional dependencies. In PODS, 1999.

short title 15

[34] T. Haveliwala. Topic-Sensitive PageRank: A
Context-Sensitive Ranking Algorithm for Web
Search. IEEE Transactions on Knowledge and Data
Engineering, 15(4):784–796, 2003.

[35] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. In VLDB,
2002.

[36] Y. E. Ioannidis and S. Viglas. Conversational
Querying. Inf. Syst, 31(1):33–56, 2006.

[37] H. V. Jagadish, A. Chapman, A. Elkiss,
M. Jayapandian, Y. Li, A. Nandi, and C. Yu. Making
database systems usable. In SIGMOD, 2007.

[38] T. J. Jankun-Kelly and K.-L. Ma. A spreadsheet
interface for visualization exploration. In IEEE
Visualization, pages 69–76, 2000.

[39] M. Jayapandian and H. V. Jagadish. Automating the
Design and Construction of Query Forms. In ICDE,
2006.

[40] M. Jayapandian and H. V. Jagadish. Automated
creation of a forms-based database query interface.
In VLDB, 2008.

[41] M. Jayapandian and H. V. Jagadish. Expressive
query specification through form customization. In
EDBT, 2008.

[42] T. S. Jayram, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar Information
Extraction System. IEEE Data Eng. Bull., 29(1):40–48,
2006.

[43] G. Jeh and J. Widom. Scaling Personalized Web
Search. WWW, pages 271–279, 2003.

[44] S. Kandel, A. Paepcke, M. Theobald, and H. Garcia-
Molina. The photospread query language.
Technical report, Stanford Univ., 2007.

[45] J. F. Kelley. An Iterative Design Methodology
for User-Friendly Natural Language Office
Information Applications. ACM Trans. Database
Syst., 2(1), 1984.

[46] G. Koutrika and Y. Ioannidis. Personalization of
Queries in Database Systems. In ICDE, 2004.

[47] M. Kuntz and R. Melchert. Pasta-3’s graphical
query language: Direct manipulation, cooperative
queries, full expressive power. In VLDB, pages 97–
105, 1989.

[48] N. Kushmerick. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence, 118(1):15–68,
2000.

[49] Y. Li, H. Yang, and H. V. Jagadish. NaLIX: A Generic
Natural Language Search Environment for XML
Data. ACM Transactions on Database Systems-TODS,
32(4), 2007.

[50] Y. Li, C. Yu, and H. V. Jagadish. Enabling Schema-
Free XQuery with Meaningful Query Focus. VLDB
Journal, in press.

[51] S. Lightstone, G. M. Lohman, P. J. Haas, et al.
Making DB2 Products Self-Managing: Strategies
and Experiences. IEEE Data Eng. Bull, 29(3):16–23,
2006.

[52] B. Liu and H. V. Jagadish. A spreadsheet algebra for
a direct data manipulation query interface. In ICDE,
2009.

[53] J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko,
C. Yu, and A. Halevy. Web-scale Data Integration:
You Can Only Afford to Pay As You Go. In CIDR,
2007.

[54] V. Markl, G. M. Lohman, and V. Raman. LEO: An
Autonomic Query Optimizer for DB2. IBM Systems
Journal, 42(1):98–106, 2003.

[55] K. Mitchell and J. Kennedy. DRIVE: An
Environment for the Organized Construction of
User-Interfaces to Databases. In Interfaces to
Databases (IDS-3), 1996.

[56] P. Mukhopadhyay and Y. Papakonstantinou.
Mixing Querying and Navigation in MIX. In ICDE,
2002.

[57] N. Murray, N. Paton, and C. Goble. Kaleidoquery:
A Visual Query Language for Object Databases. In
Advanced Visual Interfaces, 1998.

[58] A. Nandi and H. V. Jagadish. Assisted Querying
using Instant-Response Interfaces. In SIGMOD,
2007.

[59] A. Nandi and H. V. Jagadish. Qunits: queried units
for database search. CIDR, 2009.

[60] C. Olston, A. Woodruff, A. Aiken, M. Chu,
V. Ercegovac, M. Lin, M. Spalding, and
M. Stonebraker. Datasplash. In SIGMOD, pages
550–552, 1998.

[61] E. Papadomanolakis and A. Ailamaki. Autopart:
Automating schema design for large scientific
databases using data partitioning. In SSDBM, 2004.

[62] Y. Papakonstantinou, M. Petropoulos, and
V. Vassalos. QURSED: Querying and Reporting
Semistructured Data. In SIGMOD, 2002.

[63] A.-M. Popescu, O. Etzioni, and H. A. Kautz.
Towards a Theory of Natural Language Interfaces
to Databases. In IUI, 2003.

[64] L. Qian, K. LeFevre, and H. V. Jagadish. Crius: User-
friendly database design. PVLDB, 4(2):81–92, Nov.
2010.

[65] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In VLDB, pages
381–390, 2001.

[66] R. E. Sabin and T. K. Yap. Integrating Information
Retrieval Techniques with Traditional DB Methods
in a Web-Based Database Browser. In SAC, 1998.

16 author

[67] A. Sengupta and A. Dillon. Query by Templates:
A Generalized Approach for Visual Query
Formulation for Text Dominated Databases. In
ADL, 1997.

[68] B. Sheneiderman. Improving the Human Factors
Aspect of Database Interactions. ACM Trans.
Database Syst., 3(4), 1978.

[69] B. Shneiderman. The future of interactive
systems and the emergence of direct manipulation.
Behaviour & Information Technology, 1(3):237–256,
1982.

[70] S. Sinha, K. Bowers, and S. A. Mamrak. Accessing
a Medical Database using WWW-Based User
Interfaces. Technical report, Ohio State University,
1998.

[71] C. Soules, S. Shah, G. R. Ganger, and B. D. Noble.
It’s Time to Bite the User Study Bullet. Technical
report, University of Michigan, 2007.

[72] M. Spenke and C. Beilken. A spreadsheet interface
for logic programming. In CHI, pages 75–80, 1989.

[73] M. Spenke, C. Beilken, and T. Berlage. Focus:
The interactive table for product comparison and
selection. In UIST, pages 41–50, 1996.

[74] A. Sutcliffe, M. Ryan, A. Doubleday, and
M. Springett. Model Mismatch Analysis: Towards
a Deeper Explanation of Users’ Usability Problems.
Behavior & Information Technology, 19(1), 2000.

[75] B. Tan and F. Peng. Unsupervised query
segmentation using generative language models
and wikipedia. In WWW, 2008.

[76] A. I. Wasserman. User Software Engineering
and the Design of Interactive Systems. In ICSE,
Piscataway, NJ, USA, 1981. IEEE Press.

[77] A. Witkowski, S. Bellamkonda, T. Bozkaya,
G. Dorman, N. Folkert, A. Gupta, L. Sheng, and
S. Subramanian. Spreadsheets in rdbms for olap.
In SIGMOD, 2003.

[78] S. K. M. Wong, C. J. Butz, and Y. Xiang.
Automated database schema design using mined
data dependencies. Journal of the American Society for
Information Science, 49:455–470, 1998.

[79] C. Yu and H. V. Jagadish. Schema Summarization.
In VLDB, 2006.

[80] C. Yu and H. V. Jagadish. Querying Complex
Structured Databases. In VLDB, 2007.

[81] W. Yuan. End-User Searching Behavior in
Information Retrieval: A Longitudinal Study.
JASIST, 48(3), 1997.

[82] M. M. Zloof. Query-by-Example: the Invocation
and Definition of Tables and Forms. In VLDB, 1975.

