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Abstract

In this paper, we introduce a new mesh filtering method:
a mesh median filter. This is an application of the me-
dian filter to smoothen 3-D noisy shapes given by triangle
meshes. An algorithm of the mesh median filter is realized
by applying the median filter to face normals on triangle
meshes and updating mesh vertex positions to make them fit
to the filtered normals. As an advanced modification of the
mesh median filter, we further introduce a weighted mesh
median filter. The weighted mesh median filter has a rein-
forced feature preservation effect. The weighted mesh me-
dian filter with positive weighting has the smoothing effect,
and the one with negative weighting has the enhancing ef-
fect. The two kinds of mesh median filters are compared
with two conventional mesh filtering methods: the Lapla-
cian smoothing flow and the mean curvature flow. Experi-
mental results demonstrate that the mesh median filter does
not induce oversmoothing.

Keywords: triangulated surfaces, triangle meshes, 3-D
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1 Introduction

Triangulated surfaces reconstructed from real-world data
usually contain undesirable noise. It is an important require-
ment to smooth the noise on a triangulated surface while
preserving geometric features of the surface.

Let us consider the definition of noise on a triangulated
surface. On a triangle mesh with no additive noise, vertices
of each triangle exist at proper positions, especially touch-
ing on the mesh surface. If a triangle mesh is added some
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noise, the vertices are disarranged and their positions sepa-
rates from the mesh. We define the noise as mesh vertices
separating from their proper positions on the mesh surface.
Thus, a noise suppression process is equivalent to the cor-
rection of mesh vertex positions. To perform such noise
suppression, concepts based on the heat diffusion on a sur-
face and the differential geometry approach have been used
in previous work [2, 3, 5, 10]. However, noise suppression
based on these approaches usually distort sharp geometric
features as shown in Fig. 1-(c) and (d).

In signal and image processing, a nonlinear filter usually
has a feature-preserving effect. The median filter [4] is one
of such nonlinear filters. In this study, we apply the median
filter to suppress undesirable noise on 3-D shapes given by
triangle meshes, and investigate its feature-preserving ef-
fect. Fig. 1 shows an example how the mesh median filter
works; it suppresses noise while preserves the sharp feature.

To discuss how to apply the median filter to triangle
meshes, we consider how it works in image processing. The
median filter in image processing [4] is applied to intensity
values of image pixels. At a filtering process, a local neigh-
borhood centered at the filtered pixel is considered. We col-
lect all intensity values from the local neighborhood; select
the median value; and set it to the center pixel. Therefore, to
apply the median filter to face normals on triangle meshes,
we consider the direction of a face normal as the intensity
value of a image pixel, and update the direction at a smooth-
ing process.

In this paper, a weighted mesh median filter is also in-
troduced as an advanced modification of the mesh median
filter. The weighted mesh median filter has a strengthened
feature-preserving effect. Positive weighting increases the
low-pass filtering (smoothing) effect, and negative weight-
ing boosts the high-pass filtering (enhancing) effect.

This paper is organized as follows. Section 2 describes
frameworks of the two conventional mesh smoothing meth-
ods. In section 3, an algorithm of the mesh median filter is
presented, and then the weighted mesh median filter is de-
picted in section 4. Experimental results are discussed in
section 5, and they are discussed in section 6. This paper is
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Figure 1. (a) A two-holed torus model. (b) Noise is added. (c) Smoothed by the Laplacian smoothing ow. (d)

Smoothed by the mean curvature ow. (e) Smoothed by the mesh median �lter.

concluded in section 7.

2 Background

In this section, two conventional methods of polygonal
surface smoothing are considered: the Laplacian smoothing
flow [5, 10] and the mean curvature flow [2, 3]. The Lapla-
cian smoothing is developed from a two-dimensional heat
equation, and the mean curvature flow is formulated based
on concepts of the differential geometry.

Consider a discrete mesh evolution process at which
mesh vertex positions are updated according to

Pnew  Pold + �D(Pold) (1)

where D(P ) is a displacement vector, and � is a step-size
parameter.

The Laplacian smoothing flow is obtained from Eq. (1)
if the displacement vector D(P ) is defined by the so-called
umbrella operator [5]

U(P ) =
1

n

X
i2N1(P )

Qi � P (2)

where P is a mesh vertex, and N1(P ) =
fQ0; Q1; : : : ; Qn�1g is the 1-ring of mesh vertices
neighboring on P , as seen in Fig. 2.

For the explicit vertex updating scheme corresponding to
the mean curvature flow, the displacement vector D(P ) in
Eq. (1) is equal to the mean curvature vector [2, 3]

Hn(P ) =
3

2A

X
i2N1(P )

(cot�i + cot�i)(Qi � P ): (3)

Here �i and �i are the angles opposite to the edge QiP , as
seen in Fig. 4.

In order to eliminate mesh shrinking, we keep the vol-
ume of the evolving mesh constant by rescaling the mesh
after each step of the mesh evolution process [3].
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Figure 2. 1-ring of neighbors of vertex P .

Figure 3. Updating vertex position by umbrella oper-
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Figure 4. Angles �i and �i are used to estimate the

mean curvature vector at P .



3 Mesh Median Filter

An implementation of the mesh median filter is dis-
cussed in this section. Consider an oriented triangle mesh.
Let T be a mesh triangle; n(T ) be the unit normal; A(T )
be the area of T ; and C(T ) be the centroid of T . N (T )
indicates the set of all triangles touching T with a edge or a
vertex. One cycle process of the mesh median filter consist
of the following two consecutive steps.

Step 1. In the local neighborhood N (T ), an angle � i =
6 (n(T ); n(Ui)) is considered over all triangles adjacent to
the T . The classical median filter is applied to those angles
�i. Let �i be the median angle in the N (T ), then face nor-
mal of the center triangle n(T ) is replaced by n(Ui). We
define the replaced normal as m(T ). This replacement op-
eration is performed throughout all triangles of a mesh.

Step 2. Consider all face normals on a mesh have been
already modified in the step 1. For each mesh vertex P , its
position is updated by

Pnew  � Pold +
1P
A(T )

X
A(T )v(T ) (4)

with v(T ) =
h��!
PC �m(T )

i
m(T ) (5)

where the summations are taken over all triangles T adja-

cent to P , and v(T ) is the projection of a vector
��!
PC onto

the direction of m(T ), as shown by the right image of Fig. 5.
The application of the median filter to face normals on a tri-
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Figure 5. Left: a center triangle T and neighboring

triangles Ui in a local neighborhoodN (T ). n(T ) and
n(Ui) are original face normals and m(T ) and m(Ui)
are �ltered ones. Right: a visual representation of

Eq. 5.

angle mesh (Step 1) defines a new unit vector field, and
then the renewal of mesh vertex positions (Step 2) try to
find a new mesh whose normals are close to the new unit
vector field. The complete process of the mesh median fil-
ter is composed of the application of Step 1 and Step 2 in a
sufficient number of iterations.

4 Weighted Mesh Median Filter

In this section, we first discuss about the principle of the
weighted median filter, and then it is applied to 3-D mesh
smoothing.

Consider a set of samples (x0; x1; : : : ; xn�1) and posi-
tive weights (w0; : : : ; wn�1). The output of the weighted
median filter x̂ is defined by

x̂ =Median(w0 � x0; : : : ; wn�1 � xn�1); (6)

where
wi � xi = xi; xi; : : : ; xi| {z }

wi times

: (7)

It is evident that elements with large weights are more fre-
quently selected by the weighted median filter [1].

To apply the weighted median filter to triangle meshes,
we divide a set of all triangle adjacent to a triangle T into
two subsets: Ne(T ) andNv(T ). TheNe(T ) is a set of mesh
triangles sharing an edge with the T , and theNv(T ) is a set
of mesh triangles touching the T with a vertex. We assign
a weight 2 to all triangle of theNe(T ) and a weight 1 to all
triangles of the Nv(T ), as shown in Fig. 6. The weighted
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Figure 6. Allocate weights to all triangles of N (T )
except the center triangle.

median filter is applied to all angles �i = 6 (n(T ); n(Ui))
inN (T ) based on the weight allocation illustrated in Fig. 6.

The weighted mesh median filter has a better feature-
preserving effect than the mesh median filter does. The pos-
itive weighting increases the smoothing effect of the mesh
median filter. In flip side, the negative weighting boosts the
enhancing effect of the mesh median filter, but the smooth-
ing effect weakens. In this case, a weight -2 is allocated to
all triangles ofNe(T ). An operation of the negative weight-
ing is as follows:

(�wi)� xi = wi � (�xi);
= �xi;�xi; : : : ;�xi| {z }

wi times

:

A difference between the positive weighting and the nega-
tive weighting is demonstrated in Fig. 8.
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Figure 7. Smoothing results of a two-holed torus. (a): Original model. (b): Noise is added. (c): smoothed by the

mesh median �lter. (d): smoothed by the weighted mesh median �lter.

Figure 8. Top: the results of the weighted mesh median �lter with positive weights. Bottom: the results of the

weighted mesh median �lter with negative weights.

(a) (b) (c)

Figure 9. A mesh model is used at a bench-mark test. (a) The original model. (b) A wireframe representation of (a).

(c) Subdivided linearly.



5 Experimental Results

We evaluate the two kinds of mesh median filters with
the following three points of view: a speed of processing;
a resistance to oversmoothing; and a effect of preserving
sharp geometric features.

First, we check processing speeds of the two kinds of
median filters through a speed-benchmark test. A personal
computer used in the test is equipped with a 1.7-gigahertz
CPU (Pentium 4) and a 512-megabyte RAM. A triangle
mesh, as seen in Fig. 9, is used for the benchmark test; the
mesh model is constructed by 2174 vertices and 4352 trian-
gle faces. We measure how much time does it cost to com-
plete a process of 20-iteration smoothing (case 1). Further,
the mesh model is linearly subdivided to be constructed by
8702 vertices and 17408 triangle faces. The same experi-
ment is performed for the subdivided mesh (case 2). Tables
in Fig. 10 shows the results of the benchmark test.

METHOD
TIME (msec)

(Case 2)/(Case 1)Case 1 Case 2
(a) 15 47 3.100
(b) 46 203 4.413
(c) 469 1938 4.132
(d) 672 2672 3.976

PROPERTY
QUANTITY

(Case 2)/(Case 1)Case 1 Case 2
Vertex 2174 8702 4.002
Face 4352 17408 4.000

Figure 10. Top: the results of the speed-benchmark

test. (a) Laplacian smoothing. (b) Mean curvature

ow. (c) Mesh median �ltering. (d) Weighted mesh

median �ltering. The bottom table shows how many

vertices and faces are increased through the subdivi-

sion operation.

Second, we perform an experiment to inspect the re-
sistance to oversmoothing of the mesh median filter. In
this experiment, a moai statue model digitized by a 3-D
laser scanning system (Minolta VIVID 700) is smoothed
by the Laplacian smoothing, the mean curvature flow, and
the mesh median filter. The number of smoothing iterations
is 200 for the Laplacian smoothing and the mean curva-
ture flow. The step size of these methods is similarly 0.2.
The mesh median filter is applied by 400 iterations. For the
moai model, 20-iteration smoothing is suitable. As shown
in Fig. 11, the mesh median filter has a strong resistance to
the oversmoothing.

We then verify the effect of preserving geometric fea-
tures through another experiment. A monk statue model
digitized by the VIVID 700 is used in this experiment. This
model has several big hollows on its surface, as seen in
Fig. 12. However, these hollows does not exist on the cap-
tured object. We apply smoothing methods until suppress-
ing those hollows and then check a smoothing effect for
other parts. If geometric features are well preserved after
the smoothing operation, we consider that the smoothing
method has the feature-preserving effect. In this experi-
ment, the Laplacian smoothing, the mean curvature flow,
the mesh median filter, and the weighted mesh median filter
are used.

Fig. 12 show the experimental results. To fill up the hol-
lows, all smoothing methods are applied by 100 iterations.
The step size of the Laplacian smoothing is 0.2, and the one
of the mean curvature flow is 0.1.

6 Discussion

The top table in Fig. 10 shows that the Laplacian smooth-
ing and the mean curvature flow faster work than mesh me-
dian filters. However, they degrade sharp features of the
mesh model.

The mean curvature flow, the mesh median filter, and the
weighted mesh median filter are nonlinear methods. Af-
ter the subdivision operation, their processing times are in-
creased to be approximately four times as many as the pre-
vious ones. The increasing rate is nearly similar to ones
of vertices and faces. The Laplacian smoothing, a linear
method, has the least increasing rate of the processing time.

As shown in Fig. 11, it is evident that the mesh median
filter more stably performs than the conventional smooth-
ing methods do. Geometric features of the moai statue
model, smoothed by the mesh median filter, is not blurred
at the filtering process. The mesh median filter gives us
such smoothing results even if we set the large number of
smoothing iterations.

We must set the step size when using the Laplacian
smoothing and the mean curvature flow. If a wrong step
size is set to these smoothing methods, the oversmoothing
occurs in few iterations. However, the mesh median filter
does not require such step size, and the oversmoothing is
restrained at a smoothing process.

Fig. 12 shows that the mesh median filter is effective to
suppress big noise. In fact, the mesh median filter sup-
presses needless hollows on the monk statue model while
preserves the model’s geometric features. The weighted
mesh median filter has a better feature-preserving effect
than the mesh median filter does, as seen Fig. 7 and 12.



7 Conclusion

In this paper, we applied the mesh median filter and the
weighted mesh median filter to 3-D mesh smoothing. The
mesh median filter is constructed by a combination of 1)
the application of the median filter to face normals on tri-
angle meshes and 2) the evolution of mesh vertex posi-
tions to make them fit to the filtered normals. Numerical
experiments show that the two median filters are satisfac-
tory in noise reduction and feature preservation in 3-D mesh
smoothing applications.
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Figure 11. (a): A moai statue model with real-world noise. (b), (c), and (d) are the results of 20-iteration smoothing.

(b): Smoothed by the Laplacian smoothing. (c): Smoothed by the mean curvature ow. (d): Smoothed by the mesh

median �lter. (e) and (f) are the results of 200-iteration smoothing. (e): Smoothed by the Laplacian smoothing. (f):

Smoothed by the mean curvature ow. (g) is the results of 400-iteration smoothing. It was smoothed by the mesh

median �lter.
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Figure 12. (a) A monk statue model. (b) Needless hollows exist on the triangulated surface. (c) Smoothed by the

Laplacian smoothing. (d) Smoothed by the mean curvature ow. (e) Smoothed by the mesh median �lter. (f)

Smoothed by the weighted mesh median �lter.


