AY 2018 Undergraduate School Course Catalog

Integrated Exercise

2019/01/30

Back
開講学期
/Semester
2018年度/Academic Year  前期 /First Semester
対象学年
/Course for;
3rd year
単位数
/Credits
3.0
責任者
/Coordinator
Hiroshi Saito
担当教員名
/Instructor
Hiroshi Saito, Yukihide Kohira, Lei Jing
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2018/05/31
授業の概要
/Course outline
(Prof. Jing, L. is in charge of the ICTG class.)
Raspberry Pi is a reasonable educational board. Using Raspberry Pi, we can develop programs, control sensors and actuators,and realize deep machine learning under Linux based OS. Therefore, we can understand a computer system with hardware and software.
Raspberry Pi is one of well used materials in world wide to understand computer systems in world wide.
授業の目的と到達目標
/Objectives and attainment
goals
The purpose of this exercise is to understand computer systems using Raspberry Pi through the following exercises.

1. Understanding the architecture of Raspberry Pi and installation of Raspbian OS
2. Connection to Internet
3. Programming using Python
4. Control of sensors and actuators through GPIO, I2C, and A/D conversion IC
5. Capturing of images using a camera

In the last half of the exercise, students are required to implement their idea using Raspberry Pi.

Note that a part of the contents may be changed in AY2018 because this exercise is newly opened.
授業スケジュール
/Class schedule
Basic
1 Introduction of this exercise and the architecture of Raspberry Pi
(Exercise 1) Installation of Raspbian OS, setting of Raspbian, and use of a terminal and an editor

2 Connection to Internet
(Exercise 2) Fixing IP address, installation of applications, and use of a browser

3 Programming by Python
(Exercise 3) Installation of Python and programming by Python

4-5 Control of sensors and actuators
(Exercise 4) Control of sensors and actuators using GPIO, I2C, and A/D conversion IC

Application
6-7 WebIOPi
(Exercise 5) Control from a smart phone using WebIOPi

8 Capturing of images using a camera
(Exercise 6) Capturing of images using a camera

Advanced
9 About individual work and presentation using Raspberry Pi
(Exercise 7) Implementation of your idea using Raspberry Pi

10 - 12
(Exercise 7) Implementation of your idea using Raspberry Pi

13, 14 Presentation
Each student present his/her work using slides (3 min)
After all presentations, each student demonstrates his/her work at his/her desk

Note that a part of the contents may be changed in AY2018 because this exercise is newly opened.
教科書
/Textbook(s)
None
成績評価の方法・基準
/Grading method/criteria
Exercise 1 - 6 42%
Exercise 7 58%
履修上の留意点
/Note for course registration
To understand computer systems through this course, all of exercises are carried out individually.
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
Japanese textbook
林、”ラズベリーパイで遊ぼう!”、ラトルズ 


Back
開講学期
/Semester
2018年度/Academic Year  後期 /Second Semester
対象学年
/Course for;
3rd year
単位数
/Credits
3.0
責任者
/Coordinator
Yoichi Tomioka
担当教員名
/Instructor
Yoichi Tomioka, Naohito Nakasato, Yuichi Okuyama
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2018/05/31
授業の概要
/Course outline
(Prof. Okuyama is in charge of ICTG class.)
In this exercise, students will study embedded system development using Field-Programmable Gate Array (FPGA). An FPGA is an integrated circuit that allows users to change logic and wiring freely, and it is possible to immediately implement the designed circuit on the FPGA and verify it on site. Compared with Application Specific Integrated Circuit (ASIC) in which logic and wiring are fixed after manufacture, it is known that FPGA can reduce engineering cost and development period. In embedded systems, microcomputers are often used, but for many applications such as speech processing, image processing, and so on, it may not be possible to achieve sufficient speed with microcomputers alone. In such a case, real-time processing is realized while maintaining low power consumption by implementing a dedicated circuit for large-scale parallel processing of the target application on the FPGA. For this reason, FPGA is an indispensable device along with microcomputers in today's embedded system development. In this exercise, students will learn the embedded system development through that combines software and hardware with subjects of switch, LED control and image processing.
授業の目的と到達目標
/Objectives and attainment
goals
1. Students will deepen their understanding of computer systems by reviewing the contents of logic circuits design, advanced logic circuits design, computer architectures, programming C, and so on.
2. Students will acquire practical system design knowledge and skills through design and FPGA implementation, and verification of peripheral control modules, image processing modules, and interconnect.
授業スケジュール
/Class schedule
Ex. 1. Tutorial on Quartus Prime
  Students will study logic circuit design flow using Quartus Prime
Ex. 2. Modeling and Implementation of Combinational Circuits
  Students will study modeling of combinational circuits using assign and always statements and how to implement them on FPGA
Ex. 3-4 Modeling and Implementation of Sequential Circuits
  Students will study modeling of memory logics and sequential circuits using always statement
Ex. 5-7 Embedded System Design using Nios II processor
  Students will study interconnect design using Qsys and an embedded system development using the Nios II processor.
Ex. 8 Input and Output of Image
  Students will study image how to use Signal TAP, image input from camera/PC, and image output to display.
Ex. 9-10 Development of Image Processing System using Nios II processor
  Students will construct a image processing system using Nios II processor.
Ex. 11-14 Acceleration of Image Processing System
  Students will accelerate a part of image processing by designing dedicated circuits.
教科書
/Textbook(s)
Not assigned
成績評価の方法・基準
/Grading method/criteria
Report: 100%
履修上の留意点
/Note for course registration
Related courses: Logic Circuit Design, Advanced Logic Circuit Design, Computer Architecture, C Programming
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
圓山 宗智,完全版 FPGA電子工作オールインワン・キット (トライアルシリーズ) 単行本,CQ出版


Back
開講学期
/Semester
2018年度/Academic Year  前期 /First Semester
対象学年
/Course for;
3rd year
単位数
/Credits
3.0
責任者
/Coordinator
Yutaka Watanobe
担当教員名
/Instructor
Yutaka Watanobe, Yohei Nishidate, Xin Zhu, Konstantin Markov, Rentaro Yoshioka
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2017/12/15
授業の概要
/Course outline
 Developing software is an activity that involves, understanding of requirements, design of computational structures and behavior, and implementation of the designs. It requires practical application and integration of various knowledge/skills including but not limited to programming and software engineering.
In Integrated Exercise for Software, 2 to 3 students work in teams to learn practical software development by developing a software that solves a given problem (project theme). Project themes will be decided at beginning of the course, development is performed incrementally in phases of 3 weeks each, and results are reported at an interim review and a final review session. Teams working on same project theme will compete on developing a better software product. The teams are required to plan and manage their development using project tools to provide high transparency of their activity.
For Integrated Exercise for Software I, software that integrates contents covered in multiple 1st-2nd year courses will be developed. Themes will emphasize data computation software with a focus on selecting appropriate data structures and algorithms and improving their efficiency.
授業の目的と到達目標
/Objectives and attainment
goals
1. Understand software requirements and define corresponding models
2. Create a software design that satisfies functional and quality requirements
3. Setup a suitable development environment and effectively manage development activities
4. Design and perform sufficient tests to verify software
5. Validate software by checking that it meets the needs of stakeholders
授業スケジュール
/Class schedule
In each class (3 periods),
1. Progress report by each team and feedback by lecturers
2. Short lecture on the week’s activity by lecturer
3. Team meeting and development activity
will be performed.

Week 1: Team kickoff, Setup development environment
 Form teams, divide roles among members, prepare development environment.
Week 2: Task definition, create project plan
 Receive development task, analyze requirements, and create an incremental development plan.
Week 3: Phase 1 Requirements definition
 Select and review requirements to implement in first phase and begin design.
Week 4: Phase 1 Implementation and design
 Refine requirements and create designs and perform implementation.
Week 5: Phase 1 Demo
 Review current software prototype and adjust requirements, design, and implementation plan.
Week 6: Phase 2 Requirements definition
 Select and review requirements to implement and begin design.
Week 7: Phase 2 Design and implementation
 Refine requirements and create designs and perform implementation.
Week 8: Phase 2 Demo (Mid-term review)
 Review current software prototype and adjust requirements, design, and implementation plan.
Week 9: Phase 3 Requirements definition
 Select and review requirements to implement and begin design.
Week 10: Phase 3 Design and implementation
 Refine requirements and create designs and perform implementation.
Week 11: Phase 3 Demo
 Review current software prototype and plan for testing and final review.
Week 12: Test Planning
 Create test plan and begin tests.
Week 13: Test and Improvement
 Iterate test and fix cycle and improve quality.
Week 14: Final Review
 Review software product and test results to deliver accept/reject decision.

教科書
/Textbook(s)
Handouts will be provided if necessary
成績評価の方法・基準
/Grading method/criteria
Performance will be assessed by the following items.
1. Presentation at each review (interim and final) 25%
2. Software product (documents and software) 40%
3. Final exam (individual interview) 25%
4. Participation in class activities and attitude 10%
* Assessment of software product will be based on fulfillment of requirements (implemented functions and precision), performance, creativity, and innovation.
* Contribution of each student will be checked in each review and development records.
* Form and content of final examination will be announced at the beginning of the course.
履修上の留意点
/Note for course registration
* This course is based on practical activities that requires proactive participation by the students.
* Due to the nature of activity, necessary knowledge/skills vary depending on the theme. Students are requested to self-study (individually or in teams, outside of classroom hours) any knowledge or skills as required to complete the project.
* The intended programming language is C or Java. Use of other programming languages is possible with prior permission from the lecturer.
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
*Under preparation


Back
開講学期
/Semester
2018年度/Academic Year  後期 /Second Semester
対象学年
/Course for;
3rd year
単位数
/Credits
3.0
責任者
/Coordinator
Rentaro Yoshioka
担当教員名
/Instructor
Rentaro Yoshioka, Pierre-Alain Fayolle, Wang Junbo, Maxim Mozgovoy
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2017/12/15
授業の概要
/Course outline
Developing software is an activity that involves, understanding of requirements, design of computational structures and behavior, and implementation of the designs. It requires practical application and integration of various knowledge/skills including but not limited to programming and software engineering.
In Integrated Exercise for Software, 3 to 4 students work in teams to learn practical software development by developing a software that solves a given problem (project theme). Project themes will be decided at beginning of the course, development is performed incrementally in phases of 3 weeks each, and results are reported at an interim review and a final review session. Teams working on same project theme will compete on developing a better software product. The teams are required to plan and manage their development using project tools to provide high transparency of their activity.
For Integrated Exercise for Software II, software that integrates contents covered in multiple 1st-3rd (up to S1) year courses will be developed. Themes will include requirements, in addition to the contents of Integrated Exercise for Software I, on object-oriented design, databases, and user-interfaces.
授業の目的と到達目標
/Objectives and attainment
goals
1. Understand software requirements and define corresponding models
2. Create a software design that satisfies functional and quality requirements
3. Setup a suitable development environment and effectively manage development activities
4. Design and perform sufficient tests to verify software
5. Validate software by checking that it meets the needs of stakeholders
授業スケジュール
/Class schedule
In each class (3 periods),
1. Progress report by each team and feedback by lecturers
2. Short lecture on the week’s activity by lecturer
3. Team meeting and development activity
will be performed.

Week 1: Team kickoff, Setup development environment
Form teams, divide roles among members, prepare development environment.
Week 2: Task definition, create project plan
 Receive development task, analyze requirements, and create an incremental development plan.
Week 3: Phase 1 Requirements definition
 Select and review requirements to implement in first phase and begin design.
Week 4: Phase 1 Implementation and design
Refine requirements and create designs and perform implementation.
Week 5: Phase 1 Demo
Review current software prototype and adjust requirements, design, and implementation plan.
Week 6: Phase 2 Requirements definition
Select and review requirements to implement and begin design.
Week 7: Phase 2 Design and implementation
Refine requirements and create designs and perform implementation.
Week 8: Phase 2 Demo (Mid-term review)
 Review current software prototype and adjust requirements, design, and implementation plan.
Week 9: Phase 3 Requirements definition
Select and review requirements to implement and begin design.
Week 10: Phase 3 Design and implementation
Refine requirements and create designs and perform implementation.
Week 11: Phase 3 Demo
Review current software prototype and plan for testing and final review.
Week 12: Test Planning
Create test plan and begin tests.
Week 13: Test and Improvement
 Iterate test and fix cycle and improve quality.
Week 14: Final Review
Review software product and test results to deliver accept/reject decision.
教科書
/Textbook(s)
Handouts will be provided if necessary
成績評価の方法・基準
/Grading method/criteria
Performance will be assessed by the following items.
1. Presentation at each review (interim and final) 25%
2. Software product (documents and software) 40%
3. Final exam (individual interview) 25%
4. Participation in class activities and attitude 10%
* Assessment of software product will be based on fulfillment of requirements (implemented functions and precision), performance, creativity, and innovation.
* Contribution of each student will be checked in each review and development records.
* Form and content of final examination will be announced at the beginning of the course.
履修上の留意点
/Note for course registration
* This course assumes students have already completed IE03 Integrated Exercise for Software I and F14 Introduction to Software Engineering courses.
* This course is based on practical activities that requires proactive participation by the students.
* Due to the nature of activity, necessary knowledge/skills vary depending on the theme. Students are requested to self-study (individually or in teams, outside of classroom hours) any knowledge or skills as required to complete the project.
* The intended programming language is Java. Use of other programming languages is possible if the lecturer provides permission.
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
*Under preparation


Responsibility for the wording of this article lies with Student Affairs Division (Academic Affairs Section).

E-mail Address: sad-aas@u-aizu.ac.jp