AY 2020 Undergraduate School Course Catalog

Natural Sciences

2021/01/30

Back
開講学期
/Semester
2020年度/Academic Year  2学期 /Second Quarter
対象学年
/Course for;
1st year
単位数
/Credits
2.0
責任者
/Coordinator
HONMA Michio
担当教員名
/Instructor
HONMA Michio, FUJITSU Akira, YAMAGAMI Masayuki, SAMPE Takeaki, KITAZATO Kohei, HASHIMOTO Yasuhiro, HAMEED Saji N.
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites
使用言語
/Language

更新日/Last updated on 2020/01/28
授業の概要
/Course outline
(ICTG class starts in Q4.And Prof. Hameed, S. is in charge of the class.)
Physics is a foundation of all the natural sciences, and dynamics is a basis of physics.
Some notions such as mass, conservation laws,energy, and potential in dynamics appear in the other physics, computer science and other natural sciences.
The contents of this lecture include some concrete examples of motions of a particle and other objects. In the exercise class, computer simulations are performed on PC.
授業の目的と到達目標
/Objectives and attainment
goals
Understanding of basic ideas and principles such as coordinate system,equation of motion,some examples of motion, momentum, work, energy, angular momentum and the law of gravity.
授業スケジュール
/Class schedule
1,  Introduction: coordinate system and vector
2,  Motion of objects
3,  Laws of motion
4,  Motion and force 1 (friction, tension)
5,  Motion and force 2 (harmonic oscillation)
6,  Work and energy
7,  Work and energy in three dimension
8,  Conserved force and potential
9,  Projectile motion with resistance
10,  Various oscillations
11,  Two-body collision
12,  Torque
13,  Angular momentum
14,  Law of gravity
教科書
/Textbook(s)
*For Regular course*
"Dynamics"
Sagawa Hiroyuki, Homma michio
maruzen

*For ICT Global course*
"An Introduction to Mechanics"
Daniel Kleppner and Robert Kolenkow, Cambridge University Press
成績評価の方法・基準
/Grading method/criteria
mid-term examination(45%), end-term examination(45%), presentation in the exercise and reports(10%)
履修上の留意点
/Note for course registration
Formal prerequisites:None


Back
開講学期
/Semester
2020年度/Academic Year  4学期 /Fourth Quarter
対象学年
/Course for;
1st year
単位数
/Credits
2.0
責任者
/Coordinator
HONMA Michio
担当教員名
/Instructor
HONMA Michio, FUJITSU Akira, YAMAGAMI Masayuki, RYZHII Maxim V., WATANABE Yodai, HISADA Yasuhiro
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites
使用言語
/Language

更新日/Last updated on 2020/01/28
授業の概要
/Course outline
(ICTG class starts in Q2.And Prof. Ryzhii, M. is in charge of the class.)
A characteristic and new feature of electromagnetism is an idea of field such as an electric field and a magnetic field. This concept does not appear in dynamics. However this is a fundamental idea of a modern physics. It is important to study that all actions are performed through the fields.
授業の目的と到達目標
/Objectives and attainment
goals
Understanding of basic ideas and principles such as electric field, Gauss's law, magnetic field, Ampere's law and electromagnetic induction, Maxwell's equations, and electromagnetic wave.
授業スケジュール
/Class schedule
1. Culomb's law
2. Gauss's law
3. differential formula of Gauss's law
4. electrostatic potential and electrostatic energy
5. Poisson's equation
6. capacitor
7. static current
8. Ampere's force
9. Biot-Savart's law
10, vector potential
11, electromagnetic induction
12. inductance
13. displacement current and Maxwell's equations
14. electromagnetic wave
教科書
/Textbook(s)
*For Regular course*
"Electromagnetism"
Sagawa Hiroyuki, Homma michio
maruzen

*For ICT Global course*
"Schaum's Outline of Electromagnetics"
Joseph A. Edministert and Mahmood Nahvi, McGraw-Hill Education
成績評価の方法・基準
/Grading method/criteria
mid-term examination(45%), end-term examination(45%), presentation in the exercise and reports(10%)
履修上の留意点
/Note for course registration
Formal prerequisites:None
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
「電磁気学」大林康二著 共立出版


Back
開講学期
/Semester
2020年度/Academic Year  1学期 /First Quarter
対象学年
/Course for;
2nd year
単位数
/Credits
2.0
責任者
/Coordinator
HONMA Michio
担当教員名
/Instructor
HONMA Michio
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites
使用言語
/Language

更新日/Last updated on 2020/01/28
授業の概要
/Course outline
(ICTG class starts in Q4.And Prof. Hameed, S. is in charge of the class.)
Quantum mechanics deal with very small particles such as an electron or an atom. It is difficult for beginners to understand quantum mechanics because we cannot see any phenomena concerning the quantum mechanical objects directly and quantum mechanics looks very much different from classical mechanics. The lectures mainly treat a problem of the square well potential as a concrete example.
授業の目的と到達目標
/Objectives and attainment
goals
Understanding of basic ideas and principles such as wave-particle duality of microscopic objects, uncertainty principle, Schrodinger equation, tunneling and spin.
授業スケジュール
/Class schedule
1.  Review of wave
2.  Wave particle duality of light
3.  Photoelectric effect and Compton effect
4.  Wave-like property of matter
5.  Uncertainty principle
6.  Shcrodinger equation
7.  Mid-term examination
8.  Square well potential 1 (normalzation and expectation value)
9.  Square well potential 2 (eigenvalue)
10.  Square well potential 3 (commutation relation)
11.  Harmonic oscillator
12.  Tunneling
13.  Spin 1 (introduction)
14.  Spin 2 (operator and property)
教科書
/Textbook(s)
*For Regular course*
”Quantum Mechanics"
Sagawa Hiroyuki, Shimizu Katsutaro
maruzen

*For ICT Global course*
"Quantum Physics for Scientists and Technologists"
Paul Sanghera, Wiley
成績評価の方法・基準
/Grading method/criteria
mid-term examination(50%), end-term examination(50%)
履修上の留意点
/Note for course registration
初めて量子力学を学ぶ人にとっては、前半がわかりずらい。がまんしてそこを乗りきれば、量子力学がどういうものかわかってくる。
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
「量子力学と私」のなかの「光子の裁判」 朝永振一郎著, 岩波文庫


Back
開講学期
/Semester
2020年度/Academic Year  3学期 /Third Quarter
対象学年
/Course for;
2nd year
単位数
/Credits
2.0
責任者
/Coordinator
TOMIOKA Yoichi
担当教員名
/Instructor
TSUKAHARA Tsuneo, TOMIOKA Yoichi, RYZHII Maxim V.
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites
使用言語
/Language

更新日/Last updated on 2020/09/04
授業の概要
/Course outline
C1,C2,C5,C6: Online lecture will be used
C3,C4: Face-to-face lecture will be used

ICT in our current society is fundamentally supported by the semiconductor technologies. They have been applied to Internet servers, network infrastructures, and electronic gadgets such as PCs, telephones, and to enormous transportation machinery markets, like automobiles in recent years. The technologies have been so widely and deeply spread into our human life fundamentals, that we may not be able to sense their existence. Especially, in a few ten years, they have drastically changed our modern human life styles. This course will give the fundamental knowledge, principles, and the summarized history of the semiconductor technologies related to MOS semiconductor structures and devices.
授業の目的と到達目標
/Objectives and attainment
goals
1. Students will be able to understand physical and chemical fundamentals to understand
semiconductor devices.
2. Students will be able to understand the behavior of semiconductor devices such as intrinsic
semiconductor, extrinsic semiconductor, MOS transistors, CMOS circuits, and semiconductor photodevices.
3. Students will be able to understand relations among physics, chemical, logic circuits and
computer systems.
4. Students will be able to obtain basis knowledge of semiconductor devices for software and
hardware engineering.
授業スケジュール
/Class schedule
(1) Introduction and progress of LSI, SI units
(2) periodic table, properties of chemical bond and material, orbit, and band structure
(3) Fermi level and intrinsic semiconductor
(4) Extrinsic semiconductor and carrier
(5) Pn junction and depletion layer, diffusion potential and rectification element
(6) Contact with metal and the semiconductor, and MOS structure
(7) Midterm exam
(8) MOS transistors
(9) CMOS basic circuits
(10) CMOS logic circuits
(11) Memory circuits
(12) VLSI technology and process technology
(13,14) Other related semiconductor devices and recent research topics
教科書
/Textbook(s)
C1,C2,C5,C6:古川静二郎、荻田陽一郎、浅野種正「電子デバイス工学[第2版]・新装版」森北出版
C3,C4: Not assigned
成績評価の方法・基準
/Grading method/criteria
The plan of evaluation is as follows:
Quizzes 25%
Midterm exam 30%
Final exam 45%
Additionally, the behavior in the lecture is also evaluated.
履修上の留意点
/Note for course registration
(Prerequisite: none)
Courses whose knowledge is required as basic: Dynamics, Electromagnetism and CSE laboratories

Related courses: CSE laboratories, Logic Circuit Design, Introduction to Optoelectronics and
Discrete Systems
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
The course instructor Tsuneo Tsukahara has practical working experience. He worked for
NTT labs for 25 years where he was involved in R&D of semiconductor integrated circuits
and LSI chips for communication systems. Based on his experience, he can teach the basics of semiconductor devices.

Each instructor prepares course website.



Back
開講学期
/Semester
2020年度/Academic Year  2学期 /Second Quarter
対象学年
/Course for;
2nd year
単位数
/Credits
2.0
責任者
/Coordinator
OGAWA Yoshiko
担当教員名
/Instructor
OGAWA Yoshiko, LUBASHEVSKIY Igor
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites
使用言語
/Language

更新日/Last updated on 2020/01/18
授業の概要
/Course outline
The course deals with thermodynamics and statistical thermodynamics. The special focus is placed on entropy.
The aim of this course is to help students acquire an understanding of the macro- and micro- physics.
授業の目的と到達目標
/Objectives and attainment
goals
The objectives and goals of this course are to:
1. Obtain basic knowledge about thermodynamics
2. Understand the statistical thermodynamics
3. Comprehend the relationship between macro- and micro physics
授業スケジュール
/Class schedule
1. Introduction: Overview of the course, First law of thermodynamics, Second law of thermodynamics,
2. Heat engines, Carnot principle
3. Entropy (I): What is entropy?
4. Entropy (II): The law of increasing entropy
5. Thermal equilibrium (I): Absolute temperature
6. Thermal equilibrium (II): Free energy
7. Microstate (I): Boltzmann's entropy formula
8. Midterm exam and commentary after exam
9. Microstate (II): Density of states, Canonical ensemble, Boltzmann factor
10. Maxwell-Boltzman distribution, Equipartition theorem
11. Entropy of mixing (I): Partition Function
12. Entropy of mixing (II): Case for ideal gases
13. Dilute solution (I): Henry's law
14. Dilute solution (II): Freezing point depression
15. Final exam and commentary after exam
教科書
/Textbook(s)
Will be introduced in the class.
成績評価の方法・基準
/Grading method/criteria
Your final grade will be calculated according to the following process: Mid-term Examination (40%), term-end Examination (60%), and a fraction of short reports.


Responsibility for the wording of this article lies with Student Affairs Division (Academic Affairs Section).

E-mail Address: sad-aas@u-aizu.ac.jp