2021/01/30 現在 |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 2学期 /Second Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
ヴィジェガス オロズコ ジュリアン アルベルト |
担当教員名 /Instructor |
ヴィジェガス オロズコ ジュリアン アルベルト, コーエン マイケル |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/05/14 |
---|---|
授業の概要 /Course outline |
The purpose of this course is to study the fundamentals of audio signal processing and its application to music. Besides reviewing the underlying techniques, this course focuses in practical implementations of such techniques, so the course is intense in hands-on exercises, assignments, and projects mainly based on Matlab/Octave, C/C++, and Pure-data. Note: because of the COVID-19 pandemic, this course will be offered online. |
授業の目的と到達目標 /Objectives and attainment goals |
• Students who register this course are expected to understand the basic techniques employed in computer music, as well as the literature and terminology on this topic. • Students at the end of the term should be able to decide which of the presented techniques is best for creating a desired sound effect in music. • Upon completion of this course, students should be able to create their own sound effect chain. |
授業スケジュール /Class schedule |
Session 1. Introductions: Introductions, Syllabus, modifications, Fourier review Session 2. Visual programming for audio: Introduction to Pure-data Session 3. DFT, Causality and stability: windowing, overlapping, spectrograms, Complex numbers, poles and zeros, stability Session 4. Basic Filters: transformations, z-plane, discrete convolution, visual representations, z-transform and unit delay, FIR, IIR, basic filters, phase and group delay, canonical filters, shelving filters, peak and cut filters Session 5. Time-varying effects I: Wah-wah, Tremolo, [clone] objects in Pd, Basic delay structure, FIR comb filter, IIR comb filter, Vibrato, Chorus, Universal comb filter, fexpr features in Pd. Session 6. Time-varying effects II: Delay lines, Flanger, chorus, slapback, echo,Phaser, Fractional delay lines, waveguides Session 7. Modulation: Beats, AM, RM, SSB, Hilbert transform, amplitude envelop follower, analytic signals, FM, PM. Session 8. Nonlinear FXs I: Valve simulation, Overdrive, distortion and fuzz, Harmonic and subharmonic generation, Tape saturation, Exciters, Enhancers Session 9. Nonlinear FXs II: Dynamic range control, Limiter, Compressor and expander, Noise gate, De-esser, Infinite limiters, Musical distortion and saturation effects Session 10. Harmony phenomena: Harmonic spectra, Schroeder phase, perceptual fusion, pitch detection, roughness, roughness models, consonance, intervals, scales, tuning, intonation, pitch drift, roughness and preference Session 11. Pitch phenomena: VSR, LTAS, vocoder, phase vocoder, SOLA, PSOLA, DP, time warping. Session 12. Beat detection: algorithms detection of transients in audio, ODFs (energy base, spectrum based, etc.), LPC, workshop. Session 13. Pure-data: Developing Pure-data objects in C++ Session 14. Faust: Developing sound projects in Faust |
教科書 /Textbook(s) |
• U. Zölzer, editor. DAFX – Digital Audio Effects. John Wiley & Sons, New York, NY, USA, 2nd edition, 2011. • Various materials prepared by the instructors |
成績評価の方法・基準 /Grading method/criteria |
Exercises and quizzes 40% Workshops 60% |
履修上の留意点 /Note for course registration |
Although Pure-data is briefly introduced at the beginning of the course, experience on this programming language is desirable since many of the exercises are based on this. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
Course website: http://onkyo.u-aizu.ac.jp/index.php/classes/ita01/ • Theory and Techniques of Electronic Music (M. Puckette): http://msp.ucsd.edu/techniques.htm • Julius Orion Smith III website: https://ccrma.stanford.edu/~jos/ • Matlab documentation: www.mathworks.com/help/matlab/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 4学期 /Fourth Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
朱 欣 |
担当教員名 /Instructor |
朱 欣 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/30 |
---|---|
授業の概要 /Course outline |
Biomedical modeling and visualization is an important technology to extract useful information and discover the biomedical mechanisms buried in the huge amount of data produced in the basic biomedical researches and clinical medical practice. This course will introduce how to implement computer information technology in biomedical modeling and visualization. Main lecture contents include computer modeling and simulation of biological cells, organs, and systems, mathematical basis for biomedical modeling and simulation, physiological modeling and simulation, and biomedical visualization. Homework and projects will be assigned based on measured data in Biomedical Information Technology lab and medical database available in the Internet. |
授業の目的と到達目標 /Objectives and attainment goals |
This course will help students to obtain the skills and experiences in implementing computer information technology to biomedicine. Through this course, it will strengthen students' R&D ability in future biomedical research and work. |
授業スケジュール /Class schedule |
1. Biomedical modeling and visualization: its application in clinical and basic medicine 2. Mathematical basis for biomedical modeling and simulation 3. Cellular level modeling and simulation: Hodgkin-Huxley model 4. Tissue level modeling and simulation: rule-based model and reaction-diffusion model 5. Construction and visualization of biological models with realistic shapes 6. Organic modeling and simulation: whole-heart model 7. Computer simulation of arrhythmias: atrial fibrillation, supraventericular tachycardias, and ventricular fibrillation 8. Physiological modeling and simulation: heart rate variability, and its linear and nonlinear dynamics 9. Topics on other biomedical modeling and simulation: cerebral networks, bioheat transfer, biomechanics, biofluid mechanics, and etc. 10. General-purpose GPU in biomedical modeling and visualization |
教科書 /Textbook(s) |
Handout will be distributed in class. |
成績評価の方法・基準 /Grading method/criteria |
Homework 60% Project an presentation 40% |
履修上の留意点 /Note for course registration |
Digital signal processing Computer graphics Biomedical information technology Image processing |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
http://www.physiome.jp/ http://www.physiome.org.nz/ http://www.nlm.nih.gov/ http://ecg.mit.edu/ http://www.u-aizu.ac.jp/~zhuxin/course Practical working experinces The course instructor Xin Zhu has practical working experiences. He had performed biomedical image processing at Tianjin University for 5 years, and has performed biomedical image processing at the University of Aizu for 15 years with the financial support from universities and JSPS. Based on his experiences, he can teach this course. |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
西舘 陽平 |
担当教員名 /Instructor |
西舘 陽平 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/02/04 |
---|---|
授業の概要 /Course outline |
This course is a practical introduction to the finite element method. It focuses on algorithms of the finite element method for solid mechanics modeling. Mesh generation and visualization issues are considered. |
授業の目的と到達目標 /Objectives and attainment goals |
The course helps students to understand main algorithms of the finite element method and to gain practical skills in finite element programming. |
授業スケジュール /Class schedule |
1. Introduction. Formulation of finite element equations. 2. Exercise 1. 3. Finite element method for solid mechanics problems 1. 4. Finite element method for solid mechanics problems 2. 5. Exercise 2. 6. Two dimensional isoparametric elements. 7. Three dimensional isoparametric elements. 8. Exercise 3. 9. Data format for finite element analysis. 10. Regular mesh generation. 11. Exercise 4. 12. Assembly and solution of finite element equations. 13. Exercise 5. 14. Visualization of finite element models and results. |
教科書 /Textbook(s) |
Lecture Notes |
成績評価の方法・基準 /Grading method/criteria |
Exercises - 50% Project - 50% |
履修上の留意点 /Note for course registration |
Calculus, Linear Algebra, Numerical Analysis, and some programming courses are recommended as prerequisites. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
Gennadiy Nikishkov, Programming Finite Elements in Java. Springer, 2010, 402 pp. |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 3学期 /Third Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
矢口 勇一 |
担当教員名 /Instructor |
矢口 勇一 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/31 |
---|---|
授業の概要 /Course outline |
In order to determine your research theme related computer vision and image processing, you need to know the latest status of these fields. Actually, image processing needs many technical and conceptual backgrounds from computational algorithms such as Monte-Carlo, forests, dynamic programming, belief propagation, statistical analysis and so on. In the lecture of image processing in the undergraduate course, we learned the concept of digital images and some basic techniques for analyzing image patterns, and this course provides fundamental algorithms how to understand images or patterns and the status which is necessary technically and conceptually to conduct your master/doctor thesis. |
授業の目的と到達目標 /Objectives and attainment goals |
We aim to present the fundamental knowledge for reading and writing academic papers related computer vision and image processing. |
授業スケジュール /Class schedule |
1. Course Instruction, Introduction to Image Recognition and Understanding Image Formation and Representation Image Acquisition and Optics 2. Low-level Image Feature: Pixel, Voxel, Line, Block, Corner Image Feature and Algorithms: SIFT, SURF, HOG, Joint Image Feature and Sparse Representation 3. Image Segmentation – K-Means, Mean-shift Image Cutting - Sneaks, Watershed Object Clustering - K-Means, Fuzzy c-Means, Sequential Clustering, Hieralchical Clustering - First Report: Image Segmentation and Clustering 4. Pattern Recognition 1 – Sparse Representation with Linear Classification Pattern Recognition 2 – Naïve Bayes, Support Vector Machine Pattern Recognition 3 – Neural Network - Second Report: Image Recognition – Find Human Faces 5. Image Understanding 1 – Bayesian Net Image Understanding 2 – Principal Component Analysis, Latent Semantic Indexing Image Retrieval – Bag of Visual Worlds, Sparse Component Analysis - Third Report: Bayesian Net Calculation 6. Motion Feature – Optical Flow, Dense Optical Flow Pattern Matching – Dynamic Time Warping, Continuous DP Motion Analysis – Pixel Trajectory, Gesture Recognition 7. Image Calibration – Calibration Technique, Image Stitching Stereo Image – Epipolar Geometry Wide-baseline Stereo – Factorization, Bundle Adjustment |
教科書 /Textbook(s) |
Main Coursebook - Richard Szeliski, Computer Vision: Algorithms and Applications. (Not need to buy this book, but very helpful for understanding.) Course website - http://hartman.u-aizu.ac.jp/course/view.php?id=5 Prerequisites and other related courses which include important concepts relevant to the course: Image processing and signal processing in the undergraduate school. |
成績評価の方法・基準 /Grading method/criteria |
Several reports are given for exercise (Face detection, Bayesian Net, Clustering) and each report has 25~40 points. |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
愼 重弼 |
担当教員名 /Instructor |
愼 重弼 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/05/13 |
---|---|
授業の概要 /Course outline |
This course deals with the design, analysis and development of methods for the classification or description of patterns, objects, signals and processes. The main goal of this area is to develop advanced technology and paradigms for human action pattern processing, and our ability to create new ideas related to the topics covered. There are many pattern recognition applications exists today, including online / offline pattern recognition, the use of pen-tablets, pattern processing, touch panels, RGB-D cameras, iOS / Android smart devices and virtual reality. We focus on related issues in human action pattern processing from 3 perspectives; Recognition, authentication, and synthesis. This course will be delivered via onsite and online. |
授業の目的と到達目標 /Objectives and attainment goals |
At the end of this course, students will be able to: - perceive an overview of the field of pattern processing related to human action and pattern processing. - learn how various techniques of human action pattern processing can be applied to the software. |
授業スケジュール /Class schedule |
Introduction to human action pattern processing Fundamentals of online/offline pattern recognition Pattern recognition involves human action (HA) Current problems and solving methods associated with the following topics: - Non-touch Interface for Character Input - Pen-based interactive systems - Handwritten font generation - Signature verification and writer identification system - Brush painting systems - HCI using calligraphy systems - Gesture recognition using RGB-D, Leap motion, Myo controller, and web camera - Disease diagnosis using pen-tablet - Daily activity recognition using smartwatch and camera sensor - Multichannel EEG signal analysis for brain computer interface (BCI) - Design of experiments associated with human action pattern processing - HCI for smart and mobile devices - Applications of image recognition and computer vision The presentation of some application programs Students' work: - Investigation, presentation, research report, and discussion of current techniques and producing new ideas. - Programming related to pattern processing. |
教科書 /Textbook(s) |
There are a lot of textbooks available online. Instructors will provide selected topics from books and various journals and conference papers, moreover, our goal in this course is to give you a broad perspective on the field. |
成績評価の方法・基準 /Grading method/criteria |
Investigation, presentation, and research report (40%) Positive class participation (20%) Programming project (40%) |
履修上の留意点 /Note for course registration |
Permission of the instructor. Interest in the area of pattern processing. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
Useful Links: Course Web Site: http://web-int.u-aizu.ac.jp/~jpshin/GS/HAPP.html References: [1] Scott MacKenzie, Human-Computer Interaction: An Empirical Research Perspective (2013) ISBN-10: 0124058655 [2] Jonathan Lazar, Jinjuan Heidi Feng, Harry Hochheiser, Research Methods in Human-computer Interaction, Wiley; ISBN-10: 0470723378 (2010) [3] Alan Dix, Janet E. Finlay, Gregory D. Abowd, Russell Beale, Human-Computer Interaction (2003) ISBN-10: 0130461091 |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 2学期 /Second Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
ヴィジェガス オロズコ ジュリアン アルベルト |
担当教員名 /Instructor |
ヴィジェガス オロズコ ジュリアン アルベルト, コーエン マイケル, 黄 捷 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/05/14 |
---|---|
授業の概要 /Course outline |
The purpose of this course is to study the fundamentals of spatial hearing and its application to virtual environments. By using two ears, human among other species, are able to determine the direction from where a sound is being emitted in a real environment. For virtual environments (e.g., movies, games, recorded or live concerts) is desirable to provide the spatial cues found in nature to increase the realism of the scene. Besides reviewing the underlying theories of spatial hearing, this course focuses in practical implementations of binaural hearing techniques, so the course is intense in hands-on exercises, assignments, and projects mainly based on Pure-data programming language (http://puredata.info). Note: because of the COVID-19 pandemic, this course will be offered online. |
授業の目的と到達目標 /Objectives and attainment goals |
• Students who approve this course are expected to understand the basic underlying mechanisms of spatial hearing, as well as the literature and terminology on this topic. • Given some application constraints (real-time, computing power, etc.) students at the end of the term should be able to decide which of the presented techniques is best for creating the 3D aural illusion. • Upon completion of this course, students should be able to successfully implement virtual 3D sound environments based on head-related transfer functions (HRTF) and multi-speaker systems. |
授業スケジュール /Class schedule |
Session 1. Introductions and motivation Session 2. Spatial hearing and psychoacoustics Session 3. Lateralization Session 4. Lateralization (continuation) Session 5. Elevation cues Session 6. Head-related impulse response and transfer function Session 7. (continuation) Session 8. Distance cues Session 9. Motion cues Session 10. Room cues Session 11. Loudspeaker techniques Session 12. (continuation) Session 13. Headphone techniques Session 14. (continuation) |
教科書 /Textbook(s) |
• Durand R. Begault, 3-D Sound for Virtual Reality and Multimedia, Academic Press, 2000. • Jens Blauert, The Technology of Binaural Listening (Modern Acoustics and Signal Processing) • Various materials prepared by the instructors |
成績評価の方法・基準 /Grading method/criteria |
Quizzes 40% Assignments 60% |
履修上の留意点 /Note for course registration |
* This course uses Matlab and Pure-data for practical demonstrations. Some assignments must be completed in either of these languages as well. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
Prof. Villegas has practical working experience. He worked as an Ikerbasque researcher for about three years at the laboratory of phonetics in the Basque Country University. • Course website: http://onkyo.u-aizu.ac.jp/classes/ita10/ • Bregman, Albert S., Auditory Scene Analysis: The Perceptual Organization of sound. Cambridge, Massachusetts: The MIT Press, 1990 (hardcover)/1994 (paperback). |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 4学期 /Fourth Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
ウィルソン イアン |
担当教員名 /Instructor |
ウィルソン イアン |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/31 |
---|---|
授業の概要 /Course outline |
This course introduces the mechanisms of speech articulation and how to measure them. It also investigates the mapping between articulation and acoustics. Articulation is investigated using tools such as ultrasound and video. Speech acoustics is investigated using Praat – open-source acoustic analysis software. |
授業の目的と到達目標 /Objectives and attainment goals |
After completing this course, students will be able to: (1) describe how human speech is produced and how changes in articulation affect the acoustics of speech (2) use an ultrasound machine to collect speech data (3) analyze speech acoustics and write short scripts to automatically analyze acoustic data (4) understand acoustic concepts such as speech waveforms, formants, FFT, and sine wave speech synthesis |
授業スケジュール /Class schedule |
Classes 1 and 2: How speech is produced and how articulation is measured Classes 3 and 4: Acoustic properties of speech sound classes; Praat script writing Classes 5 and 6: Using Praat to synthesize vowels and manipulate speech Classes 7 and 8: Ultrasound speech data collection and analysis Classes 9 and 10: Mapping of articulation to acoustics Classes 11 and 12: Spectrogram reading and lip reading Classes 13 and 14: Phonetic variability - within and across speakers/languages; final project |
教科書 /Textbook(s) |
Handouts and other materials will be made available on the course website in Moodle. |
成績評価の方法・基準 /Grading method/criteria |
Active Participation: 40% Assignments (Praat script writing, etc.): 30% Final project: 30% |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
CLR Phonetics Lab website: http://clrlab1.u-aizu.ac.jp |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 4学期 /Fourth Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
クリュエフ ヴィタリー |
担当教員名 /Instructor |
クリュエフ ヴィタリー |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/30 |
---|---|
授業の概要 /Course outline |
When the end user needs information, he/she looks on the Internet. The Internet is the source of information of any kind: inquiries, entertainment, science, etc. In this course, we will study the key ideas of text mining, which are available to efficiently organize, classify, label and extract relevant information for today’s information-centric users. |
授業の目的と到達目標 /Objectives and attainment goals |
Text mining can be characterized as a group of techniques to extract useful information from texts. Intelligent information retrieval takes into account the meaning of the words in the texts, order of the words in the user queries, the authority of the document source, and the user feedback. We will present the most advanced models, methods and techniques to provide our students with the state of the art technologies in the area of the intelligent information retrieval and text mining. |
授業スケジュール /Class schedule |
The course covers the basic topics: 1. Introduction 2. Mathematical Background 3. Semantic Retrieval of Text Documents 4. Result Summaries 5. First Story Detection 6. Finding the Real News in News Streams 7. Trends in Modern Information Retrieval Programming assignments: There will be several programming assignments. Their aim is to investigate various IR and web search tasks. |
教科書 /Textbook(s) |
Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More by Matthew A. Russell, O'Reilly Media; 2 edition, 2013. Web Scraping with Python: Collecting Data from the Modern Web by Ryan Mitchell, O'Reilly Media; 2015. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze, Introduction to Information Retrieval, Cambridge University Press. 2008 On-line version: https://nlp.stanford.edu/IR-book/ |
成績評価の方法・基準 /Grading method/criteria |
The final grade will be calculated based on the following weights: Assignments - 50% Active Participation during lectures - 15% Final examination - 35 % |
履修上の留意点 /Note for course registration |
Knowledge of programming concepts and fundamental algorithms is necessary. Students should complete Java Programming 1 and 2, Algorithms and Data Structures, and Advanced Algorithms courses. The Intelligent Information Retrieval and Text Mining course is a major course for students who would like to specialize in software engineering for Internet applications, and designing software applications. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
A course coordinator Prof. Vitaly Klyuev has practical working experience. He was working as a Senior researcher in an international consortium of the INCO Copernicus Program of the Commission for European Communities, Brussels, Belgium. He was involved in the development of the distributed search system running on the Web. He has teaching experience of different courses related to programming for more than 30 years. http://web-int.u-aizu.ac.jp/~vkluev/courses/IRTM/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 2学期 /Second Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
富岡 洋一 |
担当教員名 /Instructor |
富岡 洋一, 浅田 智朗 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/22 |
---|---|
授業の概要 /Course outline |
車や鉄道,航空機,家電設備,工場の生産設備など我々が日常利用している電気機器・機械装置では,その安全で効率的な運用に「自動制御」という考え方が欠かせない。計測と制御では,このような機器の状態を「計測」し,その結果に基づいて機械を「制御」するための基本的原理を学ぶ。計測の基本原理としては,センサの動作原理,計測データの処理・分析法,測定誤差の評価法などを学ぶ。また,制御の基本原理としては,周波数領域および時間領域での被制御対象のモデリングと,制御器の設計手法を学ぶ。さらに,先端的なデジタル技術をベースにしたアドバンスト制御についても,応用事例を通じて学んでゆく。 |
授業の目的と到達目標 /Objectives and attainment goals |
自動制御の基本として,計測の基本原理,実践法,応用,注意点,計測データの処理,分析法,測定誤差の評価を,制御の基本原理として,周波数領域および時間領域での被制御対象のモデリングと,制御器の設計手法を学ぶ。 |
授業スケジュール /Class schedule |
1. イントロダクション 2. 計測と単位系/計測量 3. 測定誤差と精度 4. 最小二乗法とデータの補間 5. 機械的測定/センサ/センシング 6. 信号計測法 7. 信号の処理と分析 8. ラプラス変換 9. 動的システムのモデリングと制御 10. 伝達関数によるモデル化と応答特性 11. フィードバック制御,システムの安定性と制御系設計 12. PID制御系の設計シミュレーション演習1 13. システム同定、シーケンス制御,ファジー制御, 14. PID制御系の設計シミュレーション演習2 |
教科書 /Textbook(s) |
特に使用しない。HP上のハンドアウトを使用する。 |
成績評価の方法・基準 /Grading method/criteria |
レポート,課題 100% |
履修上の留意点 /Note for course registration |
特に無し |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
http://web-int.u-aizu.ac.jp/~ytomioka/graduate/SC.html |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 後期集中 /2nd Semester Intensi |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
平田 成 |
担当教員名 /Instructor |
平田 成, 出村 裕英, JAXA/NAOJ講師 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/29 |
---|---|
授業の概要 /Course outline |
月惑星探査の機器および制御システムの開発を学ぶ。 想定される主ターゲットは月。 主に国立天文台より講師を招き,遠隔授業を行います。 |
授業の目的と到達目標 /Objectives and attainment goals |
主に月着陸ミッションを取り上げて、月惑星探査の機器および制御システムの開発を実習を通じて学ぶ。 コンピュータ理工学のトピックとして宇宙開発分野の基礎知識を学ぶ。 |
授業スケジュール /Class schedule |
参考として、2015年度の実績を挙げる。 #1-4 花田(国立天文台) 「月面天文台の科学と基礎技術」 #5-7 山田(国立天文台) 「惑星地震学の展開」 #8-10 並木(国立天文台) 「レーザ高度計のパフォーマンスモデル」 #11-14 荒木(国立天文台) 「レーザ測距による月探査」 #15-16 菊地(国立天文台) 「探査機の軌道決定に利用されるVLBIデータの解析手法について」 |
教科書 /Textbook(s) |
N/A |
成績評価の方法・基準 /Grading method/criteria |
課題提出、レポート等、各講師指示による。 |
履修上の留意点 /Note for course registration |
関連科目: ITC08A リモートセンシング ITC09A Fundamental Data Analysis with Lunar and Planetary Database ITC10A Practical Data Analysis with Lunar and Planetary Databases SEA11 Software Engineering for Space Programs |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
https://arashima.u-aizu.ac.jp/groups/alps_openwiki/wiki/4af40/ITA19.html すべて図書館にある書籍です。 NASAを築いた人と技術 巨大システム開発の技術文化 はやぶさ―不死身の探査機と宇宙研の物語 宇宙開発の50年 スプートニクからはやぶさまで 衛星設計入門 宇宙工学入門 衛星とロケットの誘導・制御 宇宙工学入門II 宇宙ステーションと惑星間飛行のための誘導・制御 図説 宇宙工学 モデル予測制御 宇宙工学シリーズ 宇宙における電波計測と電波航法 (宇宙工学シリーズ 1 ) ロケット工学 (宇宙工学シリーズ 2 ) 人工衛星と宇宙探査機 (宇宙工学シリーズ 3 ) 宇宙通信および衛星放送 (宇宙工学シリーズ 4 ) 宇宙環境利用の基礎と応用 (宇宙工学シリーズ 5 ) 気球工学 成層圏および惑星大気に浮かぶ科学気球の技術 (宇宙工学シリーズ 6 ) 宇宙ステーションと支援技術 (宇宙工学シリーズ 7 ) イオンエンジンによる動力航行 (宇宙工学シリーズ 8 ) 宇宙からのリモートセンシング (宇宙工学シリーズ 9 ) |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 3学期 /Third Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
朱 欣 |
担当教員名 /Instructor |
朱 欣 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/30 |
---|---|
授業の概要 /Course outline |
Biomedical imaging has been an essential diagnostic and therapeutic tool in clinical and basic medicine since the invention of X-ray photographer. Current imaging technology include X-ray photographer, X-ray CT, MRI, ultrasonic imaging, nuclear medicine imaging, endoscopic and laparoscopic imaging technology, and etc. Nowadays, the advancement of medicine requires the scientists and engineers to invent novel imaging modalities, improve the imaging quality and speed of current technology, and the software for accurate and quick analysis of medical images. We expect to train our students to obtain the physical and mathematical knowledge of biomedical imaging, understand the characteristics of different imaging technologies, and have the ability to do further research in biomedical image processing and analysis. |
授業の目的と到達目標 /Objectives and attainment goals |
We will train our students to master the theoretical basis of biomedical imaging, understand the characteristics and utilities of different imaging technologies, and have some basic abilities to conduct biomedical image processing and analysis. |
授業スケジュール /Class schedule |
1. X-ray CT: Basis of physics and mathematics, system and reconstruction algorithms 2. MRI: Physics and chemistry, system and reconstruction algorithms 3. Ultrasonic imaging: Physics, transducer, and A/B/C/D/F/M modes 4. Nuclear medicine and other imaging modalities: PET, SPECT, OCT, EIT, molecular imaging, and etc. 5. Endoscope and laparoscope: Basis of optics, CCD, CMOS, applications in diagnosis and therapies, and recent development 6. Image processing: Artifacts removal, enhancement, transformation, and etc. 7. Image segmentation: Laplacian filter, snake deformation, and region growing 8. Characteristic extraction from medical images: Preprocessing, region of interest, texture analysis, and characteristic extraction 9. Image information retrieval and registration: Retrieval and analysis of shape and texture, and image registration 10. Computer-aided diagnosis: Reviews on statistics, Bayes’ theorem, classification algorithms, cluster analysis, mammography and angiography 11. Special lecture by outside specialist 12. 3D visualization: Automatic and semi-automatic 3D image reconstruction from 2D slices 13. Surgical navigation system: Imaging and image processing technology for surgical navigation system |
教科書 /Textbook(s) |
Mathematics and Physics of Emerging Biomedical Imaging by National Research council (free download from http://www.e-booksdirectory.com/details.php?ebook=3692), Handout will be distributed in class. |
成績評価の方法・基準 /Grading method/criteria |
Homework 60% Project 40% |
履修上の留意点 /Note for course registration |
Physics and chemistry Electricity and electronics Probability and statistics |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
はじめての核医学画像処理 http://www.ne.jp/asahi/ma-ku/104216/ C言語で学ぶ医用画像処理 著者:広島国際大学保健医療学部 石田 隆行 編 オーム 社 Practical working experiences The course instructor Xin Zhu has practical working experiences. He had performed biomedical image processing at Tianjin University for 5 years, and has performed biomedical image processing at the University of Aizu for 15 years with the financial support from universities and JSPS. Based on his experiences, he can teach this course. |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 3学期 /Third Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
陳 文西 |
担当教員名 /Instructor |
陳 文西 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/09/15 |
---|---|
授業の概要 /Course outline |
Combination of face-to-face classes and remote classes Biosignal enhancement, feature extraction and physiological interpretation are important aspects in biomedical engineering field. Various biosignals can be manipulated through proper representation, transformation, classification, optimization and visualization. This course will introduce fundamental concepts and approaches, such as filtering, detection, estimation, and classification for various biosignal processing and data mining. It will provide students a brief picture of biosignal from detection to clinical application by following the course “Introduction to Biosignal Detection”. |
授業の目的と到達目標 /Objectives and attainment goals |
1. To understand how to apply statistical mathematics and digital signal processing methods to deal with various biosignals. 2. To understand how to utilize fundamental approaches of signal processing and data mining in biomedical information technology field. |
授業スケジュール /Class schedule |
1. Introduction 2. Decomposition and Reconstruction of Biosignals 3. Detection of Signatures and Events 4. Preprocessing of Biosignals 5. Analysis of HRV in Time Domain 6. Analysis of HRV in Frequency Domain 7. Analysis of HRV in Nonlinear Domain |
教科書 /Textbook(s) |
Biomedical Signal Processing and Signal Modeling, Eugene N. Bruce, ISBN: 978-0-471-34540-4, December 2000, Wiley https://www.wiley.com/en-jp/Biomedical+Signal+Processing+and+Signal+Modeling-p-9780471345404 Practical Biomedical Signal Analysis Using MATLAB (Series in Medical Physics and Biomedical Engineering), Katarzyn J. Blinowska and Jaroslaw Zygierewicz, CRC Press; 1 edition (September 12, 2011), ISBN-10: 1439812020, ISBN-13: 978-1439812020 https://www.crcpress.com/Practical-Biomedical-Signal-Analysis-Using-MATLAB/Blinowska-Zygierewicz/p/book/9781439812020 Seamless Healthcare Monitoring - Advancements in Wearable, Attachable, and Invisible Devices, Editors: Tamura, Toshiyo, Chen, Wenxi, Springer International Publishing, 2018, DOI 10.1007/978-3-319-69362-0, eBook ISBN 978-3-319-69362-0, Hardcover ISBN 978-3-319-69361-3 https://www.springer.com/us/book/9783319693613 |
成績評価の方法・基準 /Grading method/criteria |
Research report, 100% |
履修上の留意点 /Note for course registration |
Introduction to Biosignal Detection Probability and Statistics Discrete Mathematics and Linear Algebra Digital Signal Processing |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
The course instructor has practical working experience and has worked for 5 years at Nihon Kohden Industrial Corp., a professional manufacturer of world famous medical equipment, and has been engaged in R & D for bioinstrumentation, signal processing and data analysis. Based on this experience, he will teach the fundamental knowledge and latest advancements in “Biosignal Processing and Data Mining”. http://i-health.u-aizu.ac.jp/BPDM/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 前期集中 /1st Semester Intensi |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
1.0 |
責任者 /Coordinator |
姫野 龍太郎(理研) |
担当教員名 /Instructor |
姫野 龍太郎(理研), 検崎 博生(理研), 野田 茂穂(理研), 陳 文西 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/09/15 |
---|---|
授業の概要 /Course outline |
遠隔授業 コンピュータの性能向上と計算手法の進化、そして各種計測手法の発展により、これまで不可能だった生体のシミュレーションが広い範囲で可能になってきている。この生体シミュレーション技術の基礎と現状を、ミクロ(生体分子シミュレーション)とマクロ(生体硬組織・生体流体シミュレーション)両面から学ぶとともに、実習を通してその一部を体験する。生体分子シミュレーションでは、分子動力学のシミュレーションの基礎から実際の応用例までを学ぶとともに、実際に分子動力学シミュレーションを体験する。同様に生体硬組織と生物流体の基礎方程式から解法、実際の応用例を学び、医療画像からの血流シミュレーションを体験する。 |
授業の目的と到達目標 /Objectives and attainment goals |
ミクロからマクロまでの生体のシミュレーションの方法の基礎方程式と計算方法とその種々の応用の実際を学ぶ。具体的には、 1)生体分子:分子動力学シミュレーション 2)生体硬組織:構造力学の基礎と生体のシミュレーションに必要な非線形構造力学 3)生体流体:血流を主な対象とした流体シミュレーションの基礎方程式と解法 このうち1)と3)については実習を通して、実際に自分で問題を解けることを目指す。 |
授業スケジュール /Class schedule |
1. 概要紹介:姫野龍太郎 (1コマ) 2. 生体分子シミュレーション:検崎博生 (2コマ) ・ 基礎理論 ・ 応用 ・ 演習 3. 生体硬組織シミュレーション: 姫野龍太郎 (2コマ) ・ 基礎理論 4. 生体流体シミュレーション ・ 基礎理論: 姫野龍太郎 ・ 医療応用: 姫野龍太郎 ・ 演習: 野田茂穂 (2コマ) 合計7コマ |
教科書 /Textbook(s) |
教科書は使わず、必要な教材は資料として提供する。 |
成績評価の方法・基準 /Grading method/criteria |
各授業内での小テストおよび課題、実習での評価:100% |
履修上の留意点 /Note for course registration |
PCを使った実習のために各自PCを持参すること。OSは実行するソフトウェアの関係でWindowsまたはLinux。他のOSしか用意できない場合は事前に相談すること |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
実務経験(姫野):生体流体シミュレーションで扱う流体シミュレーションは、日産自動車(株)に勤務していたときに業務で活用してきた約15年の実務経験がある。この経験を元に流体シミュレーションの基礎を教授する。 Simulation software for exercise of molecular simulation of living matter. Coarse-grained biomolecular simulation software CafeMol: http://www.cafemol.org/ Simulation software for exercise of Blood flow simulation of living matter. The system is based on VCAD System. http://vcad-hpsv.riken.jp/en/release_software/block/04.php |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 4学期 /Fourth Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
白 寅天 |
担当教員名 /Instructor |
白 寅天 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/27 |
---|---|
授業の概要 /Course outline |
The semantic Web is the second wave of Web technology, and its environment evolves from human-readable to machine-readable. The key technology of the semantic Web is knowledge representation technique–ontology, and its management. Main issue of this course is to learn the semantic Web service technology: ontology,its learning and engineering, and its application to Web service. Background of web evolution, ontology for knowledge representation, Web service, and application to service composition will be covered. If you have interests on the areas in the semantic Web service (SWS) technology, please e-mail to me (paikic@u-aizu.ac.jp) or visit my office (307-C). |
授業の目的と到達目標 /Objectives and attainment goals |
Main objective of this course is to give students ability of application of semantic technology based on some theoretic background. Historical motivation in Internet and Web technology, ontology basics and application, and how to apply ontology to other domains will be explained. |
授業スケジュール /Class schedule |
1. Introduction to Web Technologies and Semantic Web 2. Resource Description Framework (RDF) and DAML-OIL 3. Ontology Language - OWL (I) 4. Ontology Language (OWL) (II) 5. Semantic Web Rule Language 6. Ontology Design Exercise in OWL (Using Protege) 7. Rule Design Exercise in SWRL (Using Protege) 8. Rule Design Exercise in SWRL (Using Protege) 9. Ontology Learning by Text Mining 10. Ontology Matching and Merging 11. Ontology Engineering 12. Semantic Web Service Frameworks (OWL-S and BPEL) 13. Semantic Web Service Frameworks (WSMO) 14. Final Examination |
教科書 /Textbook(s) |
Lecture Slides will be provided on lecture Web site. |
成績評価の方法・基準 /Grading method/criteria |
1. Examination --- 50% 2. Paper Presentation & Term Project --- 50% |
履修上の留意点 /Note for course registration |
* Prerequisites: - JAVA Programming I & II - Web Programming - Artificial Intelligence |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
* Reference 1) J. Davies, R. Studer, P. Warren, Semantic Web Technologies, Wiley, 2007. 2) A. Gomez-Perez, M. Fernandex-Lopez, O. Corcho, Ontological Engineering, Springer, 2004. 3) J. Davies, D. Fensel, F.V. Harmelen, Towards The Semantic Web, Ontology-Driven Knowledge Management, Wiely, 2003. 4) M.C. Daconta, L.J. Obrst, K.T. Smith, The Semantic Web, Wiley, 2003. |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
3.0 |
責任者 /Coordinator |
ヴィジェガス オロズコ ジュリアン アルベルト |
担当教員名 /Instructor |
ヴィジェガス オロズコ ジュリアン アルベルト, コーエン マイケル |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/02/12 |
---|---|
授業の概要 /Course outline |
このコースでは、インタラクティブマルチメディア、つまりリアルタイムゲーム、マンマシンインタフェースを学ぶクラスです。 この講座では学部生や大学院生を対象に、特にデスクトップVR(別名、fishtank VR)を通してヒューマンインターフェースの技術と仮想現実の範例を紹介します。 講座ではCGM(消費者生成メディア)とUGC(ユーザー生成コンテンツ)を活用して自身でデザインした仮想世界の作成を実際に行います。 主に、オブジェクト指向でラピッドプロトタイピング3Dシナリオ統合開発環境である「Unity」を用いて、ソフトウェア工学同様、デスクトップVR、 モーション グラフィックス、 色彩 (とカラー勾配)、図形・視覚のデザイン、テクスチャマッピング、音、音楽、スピーチ、 ソフトウェア工学、 イベント 駆動型 プログラミング、 並列計算、 対話の分野の表現を行います。 Photopea、Audacity、GarageBandなどのソフトも用います。 実用的な実験、体験的なレッスンなどに力を入れています。 |
授業の目的と到達目標 /Objectives and attainment goals |
マルチメディアの基礎課題を実践しながらヒューマンインターフェースについて学びます。マルチメディアにはカラーモデル、 画像の取り込みと合成、グラフィックの合成と3Dデザイン、テクスチャマッピング、 立体視、音響(対話を含む)、音楽編集などがあり ます。仮想のキャラクターやコンピュータで製作された映画用の映画撮影術を用いて物語を製作し、ゲームやインタラクティブなウェブサイトのような動的な環 境にユーザーを引き込むためにオブジェクト指向技術で製作された自身で製作した多様なインターフェースを学生は用いる。 This course spans the same topics as its undergraduate sibling IT06: Human Interface & Virtual Reality; ヒューマン インターフェイスと仮想現実 (Game Design), but is more demanding, both quantitatively and qualitatively. Quantitatively, for assignments in which a certain number of objects are assigned, graduate students are expected to make “half-again” (50% more) beyond the requirements for undergraduates. Qualitatively, graduate students are required to make stereographic displays (via anaglyphic rendering for Blender CAD, parallel channels for Unity scenarios), explore more audio effects, parameterize text-to-speech synthesis, and enrich default spatial soundscapes. |
授業スケジュール /Class schedule |
基本概念への導入は物理学に関係します。スペース(物理的なものやその他)とトポロジー、指数プロセスを含む数とアルゴリズムの複雑性、ソフトウェア工学とプログラミング(パラメーター表示・ランダム化・再帰・データ構造・イベント処理)、インタラクティブマルチメディアと知覚様式、グラフィックスとCGのレンダリング、CAD(コンピュータ設計)、視覚言語、立体映像と立体視(3D図面を含むオートステレオグラム・ランダムドットステレオグラム・アナグリフ・クロマステレオスコープ)、パノラマでターノラマなイメージとイメージベースドレンダリング、音・音響・TTS(text-to-speech synthesis)とSFX(sound effects)編集、BGM(background music)のためのDTM(desk-top music)作曲、インターフェースパラダイム、デジタルインタラクティブストリーテリングとメチネマ。 1 Introduction, Tutorials 2 Scene Composition 3 Scripting, Event Handling 4 Photographic Capture and Texture Mapping 5 Drawing, Painting, Texture Mapping 6 Individual Project Presentations 7 3D Modeling (Blender) 8 Panoramic & photospherical imagery, skybox 9 Color Models, Scripting 10 TTS (text-to-speech) (macOS say) 11 Audio Editing (Audacity) 12 DTM (desk-top music), BGM (background music) (Garageband) 13 Collision Detection & Rigid Body Physics 14 Group Project Presentations アートフォームに関して含むもの アニメーション:イラスト、キャラクターデザイン、モデリング、イメージや動きを組み合わせた図 ドラマチックライティング; 戯曲やストーリーテリングの脚本 グラフィクデザイン:2次元情報の提示 インターラクティブデザインとゲーム開発:エンターテイメントコンピューティングとリッチメディアの開発 モーションメディア:アバターやオブジェクトの振付け 彫刻:3次元モデリング シーケンシャルアート:効果的な物語の絵コンテ、映像 テーマの決められたエンターテイメント:仮想現実のデザイン、 視覚効果:クラフト幻想 |
教科書 /Textbook(s) |
教師による授業、TAとSA. 学生は授業中にアナグリフとクロマステレオスコピック用の立体視用めがねを購入する必要があります(¥1,000)。 Google Cardboard (¥500)。 また、4GB USBメモリースティック(Type A)を購入する必要もあります(¥500)。 |
成績評価の方法・基準 /Grading method/criteria |
必要な技術が身に付いているかを毎週『チェックポイント』課題で、発見やデザインの確認をします。シナリオ製作と絵コンテ製作、絵描きと色塗り、カラーモデルと仕様、デジタル合成(レイヤー・オーバレイ・テクスチャマッピング)、立体視(アナグリフ・クロマステレオグラム)、SFXを用いた音声編集、TTSによる音声との対話、BGM用のデスクトップ音楽の合成を通じて、仮想世界とストーリーを徐々に製作していきます。クリエイティブスタジオでの課題と時折クイズ、試験があります。クロマステレオスコピックアートコンテストを開催し、優秀な作品は大学図書館に展示されます。また、「Unity」を用いてシナリオ、動画、ゲームなどの独創的な作品を製作します。中間試験は個人製作、期末試験ではチームで製作し、スペシャルレビューセッションで授業中に発表します。 演習、クイズ: 35 試験: 25% 個別プロジェクト: 20% グループ プロジェクト: 20% |
履修上の留意点 /Note for course registration |
先修科目及び重要な関連科目 通常のプログラミングの講座以外特に無し L10: マルチメディアシステム概論 (http://web-int.u-aizu.ac.jp/~shigeo/course/mms/, http://onkyo.u-aizu.ac.jp/ims/) ITC02: Computer Graphics (http://web-int.u-aizu.ac.jp/~fayolle/teaching/cg/) grad school courses ITC01: Java 2D/3D Graphics (http://web-int.u-aizu.ac.jp/~fayolle/teaching/java_2d_3d/) ITC11A: 3次元コンピュータグラフィックスとGPUプログラミング (http://web-int.u-aizu.ac.jp/~nisim/cg_gpu/) This course is in conjunction with graduate school course ITA33: Multimedia Machinima; マルチメディア マシニマ. Students who pass this course and go on to graduate school at the U. of Aizu may not register for ITA33. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
Related web pages: course home page: http://web-int.u-aizu.ac.jp/~mcohen/welcome/courses/AizuDai/undergraduate/IT06 HI&VR PhotoBooth photo capture: https://support.apple.com/ja-jp/guide/photo-booth/welcome/mac Photos photo manipulation: https://www.apple.com/jp/macos/photos/ OS X "say" TTS (text-to-speech) utility: http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/say.1.html Audacity audio editor: http://audacity.sourceforge.net/?lang=ja Photopea image editor: https://www.photopea.com Google Cardboard: https://developers.google.com/cardboard?hl=ja, https://ja.wikipedia.org/wiki/Google_Cardboard GarageBand DTM (desk-top music) composition application: http://www.apple.com/jp/mac/garageband/ University of Aizu virtual tour: http://u-aizu.ac.jp/~mcohen/welcome/courses/AizuDai/undergraduate/HI&VR/VirtualTour Chromastereoptic stereo system: http://www.chromatek.com Unity: https://unity.com/ja Unity チュートリアル: https://unity.com/jp/learn/tutorials Blender: https://www.blender.org (https://blender.jp) Prof. Cohen has several years of industrial experience related to the course contents. Besides appointments to academic positions at the University of Washington (Industrial Engineering Dept.) and the African University of Technology (Computer Science Dept.) teaching these topics, he has worked in industry on virtual environments, especially audio interfaces, at Bellcore (Bell Communications Research), doing R&D of synchronous and asynchronous network services, including hypermedia collaborative tools and TTS, and at the NTT Human Interface Laboratories, researching stereotelephony, digital typography, hypermedia, and groupware, and visual languages. Prof. Villegas has practical working experience. He worked for the Productivity National Center in Colombia and as a private consultant for five years. He was involved in the development of web-based industry productivity solutions. |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 2学期 /Second Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
マルコフ コンスタンティン |
担当教員名 /Instructor |
マルコフ コンスタンティン |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/07/13 |
---|---|
授業の概要 /Course outline |
Machine learning is one of the fastest-growing and most exciting fields of AI, and deep learning represents its true bleeding edge. Deep Learning is one of the most highly sought after skills in IT industry. In this course, students will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to complete successful machine learning projects. It will teach students how to train and optimize basic neural networks (NN), Convolutional neural networks (CNN), Recurrent neural networks (RNN, LSTM), autoencoders (AE), etc. Complete learning systems will be introduced via projects and assignments. This course is offered online. |
授業の目的と到達目標 /Objectives and attainment goals |
Students will learn to solve new classes of problems that were once thought prohibitively challenging, and come to better appreciate the complex nature of human intelligence as they solve these same problems effortlessly using deep learning methods. Students will master not only the theory, but also see how it is applied in practical case studies from various fields such as image recognition, music generation, natural language processing, etc. |
授業スケジュール /Class schedule |
1. Introduction and Background. - Course introduction. - Basic probability theory and statistics. 2. Machine Learning and Neural Networks - Machine Learning fundamentals. - Neural Networks fundamentals. 3. Deep Neural Networks basics I. - Training – Back Propagation. - Regularization and Normalization. 4. Deep Neural Networks basics II. - Loss functions, Optimizations. 5. Feed-Forward DNN Applications. - DNN classification and regression. 6. Convolutional Neural Networks (CNN). - Translation invariance. - Templates and filters. 7. CNN Applications. - CNN for vision – VGG, Inception. - CNN for signal and text processing. 8. Recurrent Neural Networks (RNN). - LSTM, GRU variants. - Sequence and time series data modeling with RNN. 9. RNN Applications. - RNN in Natural Language Processing. - RNN for sequence generation. 10. Sequence-to-Sequence models (Seq2Seq) Attention mechanism. Word embeddings. Seq2Seq for Language Translation. 11. Autoencoders (AE) Denoising AE. Variational AE. AE for Dimensionality Reduction. 12. Tools for DNN application development I. TensorFlow basics. DNN variants with TensorFlow. 13. Tools for DNN application development II. PyTorch. Caffe2, Chainer, etc. 14. Project discussion. |
教科書 /Textbook(s) |
I. Goodfellow,Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016. Online version: http://www.deeplearningbook.org T. Hope, Y. Resheff and I. Lieder, Learning Tensorflow: A Guide to Building Deep Learning Systems, Oreilly, 2017. F. Chollet, Deep Learning With Python, Manning Pubs, 2017. |
成績評価の方法・基準 /Grading method/criteria |
Laboratory exercises: 60 points Project: 40 points |
履修上の留意点 /Note for course registration |
As this is an intermediate to advanced level course, the following experience and skills are disirable: - Programming experience (preferably in Python) - Basic machine learning knowledge (especially supervised learning) - Basic statistics knowledge (mean, variance, etc.) - Linear algebra (vectors, matrices, etc.) - Calculus (differentiation, integration, partial derivatives, etc.) Prior to enrolling to this course, it is recommended (but not required) to take the following related courses: - ITC12F Machine Learning - CSA01 Neural Networks I: Fundamental Theory and Applications |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
http://hi-srv2.u-aizu.ac.jp/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 4学期 /Fourth Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
ファヨール ピエール アラン |
担当教員名 /Instructor |
ファヨール ピエール アラン, 西舘 陽平 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/09/15 |
---|---|
授業の概要 /Course outline |
This course provides a description of the Java 2D API, the Java 3D API and the OpenGL API (via its Java bindings) for the development of graphics applications using the Java programming language. While going through the main functionalities of these APIs, we will study how they are implemented and as a consequence look at the same time at some of the main techniques in computer graphics (modeling and rendering techniques essentially). Depending on the situation this course may be offered online via Zoom. This will be decided and announced to registered students before the start of the course. |
授業の目的と到達目標 /Objectives and attainment goals |
The main objectives of the course are: * The development of graphics programs in Java (using the Java 2D, Java 3D and OpenGL API) * The study of the most common techniques in graphics programming (modeling and rendering techniques mostly) * The study of some of the implementation details of these APIs |
授業スケジュール /Class schedule |
1) Course introduction, Projects description, Java 2D introduction, and Java 2D geometry 2) Java 2D painting and stroking 3) Java 2D rendering, Porter and Duff work on compositing, Text manipulation with Java 2D 4) Java 2D image and image processing 5) Procedural modeling 6) Interlude: Ray-tracing, sphere-tracing (SDF rendering) 7) Prelude: Polygon mesh processing 8) Prelude: The polygon rendering pipeline 9) OpenGL bindings (core mode; shaders) 10) OpenGL bindings (continued) 11) Java 3D introduction, scene-graph 12) Java 3D shapes 13) Java 3D appearance, lights, illumination model and shading, texture mapping 14) Java 3D behaviors, and special behaviors |
教科書 /Textbook(s) |
None. Slides, notes and code are provided. |
成績評価の方法・基準 /Grading method/criteria |
Two projects: each of them has a weight of 50%. |
履修上の留意点 /Note for course registration |
Knowledge of Java programming; Some basic knowledge of graphics programming (though we will go through and study some of the most common techniques in graphics programming during the course). Note: Depending on the situation, the lectures may be offered online via Zoom. This will be decided and announced to registered students before the start of the course. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
Course web-site (internal) https://web-int.u-aizu.ac.jp/~fayolle/teaching/java_2d_3d/index.html |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
コーエン マイケル |
担当教員名 /Instructor |
コーエン マイケル, ヴィジェガス オロズコ ジュリアン アルベルト |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/02/12 |
---|---|
授業の概要 /Course outline |
We survey the physics and nature of sound waves (compression & rarefaction, propagation, transmission, diffusion, diffraction, refraction, spreading loss, absorption, boundary effects, non-point sources, reflection, reverberation, superposition, beats & standing waves), description and representation of sound (analog/digital, complex analysis, waveforms, pulse code modulation, Fourier analysis), measurements of sound and audio (sampling, aliasing, decibels, pressure, power, intensity, level), synthesis (additive, AM, FM, envelopes, filtering, equalizers, spatialization, distortion), psychophysics (loudness, masking, critical bands), coding and compression (SNR, A-law, u-law, MP3, AAC, parametric stereo), display and multichannel ("discrete") systems (transducers, 5.1, speaker arrays, WFS), tuning, and user interfaces (conferencing, virtual concerts, mixed and virtual reality). |
授業の目的と到達目標 /Objectives and attainment goals |
Demonstration-rich formal lectures interleaved with laboratory sessions provide a rigorous, theoretical background as well as practical experience regarding basic audio operations. The university's exercise rooms feature multimedia workstations, at which students can work individually or in teams to explore concepts regarding sound and audio. Interactive exercises, based on workstations and tablets, provide realtime "hands-on" multimedia educational opportunities that are stimulating and creative, as students enjoy intuitive, experiential learning. Utilized resources include audio synthesis and multimedia data-flow visual programming (Pure Data), audio editing and analysis software (Audacity), interactive physics visualization and auralization physics applets (illustrating wave behavior, DSP, filtering, etc.), advanced computational and plotting utilities (Mathematica), effects processing (GarageBand), and our own web-based multimedia courseware. This course is intended to be useful to audio engineers and researchers, as well as musicians. In other words, this course is about theory, simulation and practice: playing with sound, learning by doing, and about saying (instead of "see you") "hear you!" Students who complete this course will be empowered with basic knowledge of sound and audio and the confidence to apply those principals to generally encountered situations in sound and audio engineering. |
授業スケジュール /Class schedule |
1. Overview: Course organization, assessment, tablets & courseware, hearing anatomy and physiology, analog vs. digital 2. Hearing: auditory pathway, pinna, psychoacoustics & perception 3. Waves: waveforms, phase, complex numbers, logarithms, FFT & Spectrogram 4. Waves: pressure (compression & rarefaction), propagation, transmission, diffusion, diffraction, refraction, spreading loss 5. Waves: absorption, boundary effects, non-point sources, reflection, reverberation, superposition, beats & standing waves 6. Frequency: tone, register, harmony 7. Harmonic content: harmonics, overtones, timbre, Fourier analysis, sampling theorem, aliasing, AM & FM 8. Musical Frequency: intervals, tone, semi-tone, pitch, octaves, scales 9. Intensity: volume, loudness, PCM 10. Intensity: pressure, power, envelope, RMS, decibels, level, masking 11. Multichannel: stereo, speaker arrays, spatialization 12. Applications; coding & compression, digital recording and audio editing, filtering, equalizers, speech synthesis 13. Time: duration, tempo, repetition, reversal, duty cycle, rhythm & cadence 14. Music: DTM composition, audio effects |
教科書 /Textbook(s) |
William M. Hartmann: "Principles of Musical Acoustics" ("PMA"), Kindle edition. Eric Heller: "Why You Hear what You Hear" ("WYHWYH"), Kindle edition. Introduction to Sound, by Charles E. Speaks (ISBN 1-56593-979-4) [Amazon listing] Hyperphysics: Sound & Hearing Various materials prepared by the instructors. Besides normal lectures and exercises, we'll also use iPads (one lent to each student for the term) extensively for courseware and interactive projects. A full list of relevant apps is listed on the course home page. |
成績評価の方法・基準 /Grading method/criteria |
This course is concerned not only aesthetic issues, but also with technical issues, and as such would be useful to audio engineers and researchers, as well as musicians. Most of the coursework involves reading, homework exercises, and lab projects. There are mid-term and final exams. Evaluation: Homework problem sets (25%), lab exercises (25%), midterm exam (25%) and final exam (25%). |
履修上の留意点 /Note for course registration |
This course is a prerequisite for ITA10, "Spatial Hearing and Virtual 3-D Sound." |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
course homepage: http://u-aizu.ac.jp/~mcohen/welcome/courses/AizuDai/graduate/ITC02A%20Sound%20&%20Audio/syllabus.html Audacity audio editor: http://audacity.sourceforge.net/?lang=ja GarageBand DTM (desk-top music) composition application: http://www.apple.com/jp/mac/garageband/ technical computing software Mathematica: https://wolfram.com/mathematica/index.html.ja |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
成瀬 継太郎 |
担当教員名 /Instructor |
成瀬 継太郎, 渡部 有隆 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/05/13 |
---|---|
授業の概要 /Course outline |
この講義ではロボット工学を情報技術の面から学ぶ.このとき課題となるのはロボットプランニングである.本講義では,移動ロボットとアーム型ロボットを例題として,経路計画と制御について学ぶ.具体的には座標変換,運動学,ヤコビ行列である.またmatlabを使った演習により理解を深める. 授業は遠隔講義で実施する. |
授業の目的と到達目標 /Objectives and attainment goals |
この科目を履修した学生は以下のことができるようになる. (A) 移動ロボットとアーム型ロボットの運動学とプランニング (B) 移動型ロボットのアーム型ロボットの動力学とシミュレーション (C) ロボットの環境認識と学習 |
授業スケジュール /Class schedule |
#1 序論と概要 #2 移動ロボット,座標変換,運動学 #3 演習 #4 アーム型ロボットの順運動学,DH法,演習 #5 演習 #6 アーム型ロボットの逆運動学,ヤコビ行列,演習 #7 演習 #8 移動ロボット,動力学,ロボットシミュレーション #9 演習 #10 アーム型ロボット,動力学,ロボットシミュレーション #11 演習 #12 学習と環境認識 #13 演習 #14 演習・まとめ |
教科書 /Textbook(s) |
なし,授業中に配布する. |
成績評価の方法・基準 /Grading method/criteria |
レポート(100%) |
履修上の留意点 /Note for course registration |
学部のロボット工学と自動制御を履修していることが望ましい |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
http://iplab.u-aizu.ac.jp/moodle/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 4学期 /Fourth Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
成瀬 継太郎 |
担当教員名 /Instructor |
成瀬 継太郎, 矢口 勇一 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/09/11 |
---|---|
授業の概要 /Course outline |
※授業は遠隔形式で行います. 本科目では現代制御理論を学ぶ.具体的には,状態空間モデル,安定性,可制御性,可観測性,レギュレータ,オブザーバ,線形二次レギュレータによる最適制御を学ぶ.また演習により理解を深める. |
授業の目的と到達目標 /Objectives and attainment goals |
この科目を受講した学生は以下ができるようになる. (A) システムの状態空間表現 (B) システムの安定性,可制御性,可観測性の判定,リャプノフ関数 (C) システムの制御器(レギュレータ)の設計 (D) システムの観測器(オブザーバ)の設計.カルマンフィルタとパーティクルフィルタを含む (E) 最適制御系の設計 (F) matlabによる設計シミュレーション |
授業スケジュール /Class schedule |
#1 序論と概要 #2 微分方程式と状態空間モデル #3 演習 #4 安定性,可制御性,レギュレータの設計 #5 演習 #6 可観測性,オブザーバの設計 #7 演習 #8 オブザーバ・レギュレータシステムの設計,最適制御 #9 演習 #10 離散時間カルマンフィルタ #11 演習 #12 離散時間モンテカルロマンフィルタ #13 演習 #14 演習・まとめ |
教科書 /Textbook(s) |
なし,必要な資料は授業中に配布する. |
成績評価の方法・基準 /Grading method/criteria |
レポート(100%)による |
履修上の留意点 /Note for course registration |
関連科目(必須ではない) 学部:ロボット工学と自動制御 大学院:advanced robotics |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
http://iplab.u-aizu.ac.jp/moodle/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 2学期 /Second Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
趙 強福 |
担当教員名 /Instructor |
趙 強福, 劉 勇, 矢口 勇一 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/08/04 |
---|---|
授業の概要 /Course outline |
Learning ability is one of the most fundamental abilities for realizing “intelligence”. A system with the learning ability can become more and more efficient and/or effective for solving given problems. Briefly speaking, machine learning is a research field for studying theories, methodologies, and algorithms that enable computing machines to learn and to become intelligent. So far, many approaches have been proposed in the literature for machine learning; and multilayer perceptron, convolutional neural network, Bayesian network, and decision tree are just a few examples. In this course, we categorize many existing approaches into a few groups, namely, learning based on distance, learning based on probability, learning based on layered structures, and learning based on tree structures. We do not intend to cover all aspects of machine learning in this single course. Instead, we will focus on several most well-known and well-applied approaches. We suppose that, before taking this course, the students have already studied some fundamental courses related to machine learning, say, “Artificial intelligence” for undergraduate school, “Introduction to neural networks” for graduate school, and so on. To know more about machine learning or AI in general, we recommend the students to take other related courses. For example, in the graduate school, the students may also take courses related to big-data analysis; ontology and semantic web; information retrieval; meta-heuristics; and so on. |
授業の目的と到達目標 /Objectives and attainment goals |
The main goal of this course is to study and understand the basic concepts and mechanisms of several well-known and well-applied machine learning approaches, including for example, k-means, self-organization; Naïve Bayes classification; support vector machine; convolutional neural network; deep auto-encoder; deep Boltzmann machine; Bayesian network; decision tree, AdaBoost, random forest, etc. To reinforce the learned knowledge, students will do some team projects in groups. Through these projects, students will solve some real-life or synthesized problems using some of the learned methods. |
授業スケジュール /Class schedule |
1 History of machine learning and artificial intelligence - Case studies - Learn how to classify patterns - Learn how to make a decision - Learn how to estimate/predict the future - Learn how to solve a problem efficiently/effectively 2. Pattern recognition: a brief review - Feature space representation of patterns - Feature extraction and feature selection - Distance-based classification - NNC and k-NNC; Voronoi diagram - Various distance measures - Cluster analysis - k-means, self-organization, and vector quantization 3. Fundamentals of machine learning - Formulation of machine learning - Ill-posed problem and regularization - Classification and regression - Taxonomy of learning algorithms - Supervised, semi-supervised, and unsupervised learning - Parametric and non-parametric learning - Deterministic and statistical learning - Online and off line learning - Evolutionary learning - Reinforcement learning 4. Statistical learning methods-1 - Naïve Bayes classification - Parzen widow 5. Statistical learning methods-2 - Bayesian network 6. Project I: - Try one of the methods studied in the previous lectures. - Using at least two public datasets to verify the performance of the methods. - Try to evaluate the performance using k-fold cross validation (k>5). 7. Presentation of Project I - Each team makes a 10 minutes presentation - Evaluation will be based on the correctness, novelty, and understandability. 8. Learning based on layered structures-1 - Multilayer perceptron - Support vector machine 9. Learning based on layered structures-2 - Convolutional neural network 10. Learning based on layered structures-3 - Deep auto-encoder - Restricted Boltzmann machine 11. Learning based on tree structures-1 - Decision trees - Multi-variate decision trees 12. Learning based on tree structures-1 - Random forest - AdaBoost 13. Project II: - Try one of the methods studied in lectures 9-13 for finding a “pattern classifier”. - Using at least two public datasets to verify the performance of the method. - Try to evaluate the performance using k-fold cross validation (k=3 or 5). 14. Presentation of Project II - Each team makes a 10 minutes presentation - Evaluation will be based on the correctness, novelty, and understandability. IMPORTANT: Because the number of students in this class is relatively big, we will conduct all lectures online, to avoid spreading of coronavirus. The ID and PW for each lecture will be sent to the students before the lecture. Please do not forward them to anyone not related to this course. REMARK: You can come to the class room to attend the face-to-face lecture ONLY IF you have difficulty to attend the online lectures. |
教科書 /Textbook(s) |
There is no textbook. We will distribute reading materials in the classes. |
成績評価の方法・基準 /Grading method/criteria |
- Quiz: 20 points - Project presentations and reports: 80 points - Active Participation will also be considered in evaluation |
履修上の留意点 /Note for course registration |
The following courses are useful for this course: - Probability and statistics (undergraduate course) - Algorithms and data structures (undergraduate course) - Artificial intelligence (undergraduate course) All classes will be conducted online. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
1. Machine learning, Tom M. Mitchell, McGraw-Hill, 1997. 2. Machine learning: a probabilistic perspective, Kevin P. Murphy, The MIT Press, 2012. 3. Machine learning and deep learning, Tomohiro Odaka, Ohmsha, 2016. (in Japanese) 4. Introduction to Bayesian network, Kazuo Shigemasu, Maomi Ueno, and Yoichi Motomura, Baifukan, 2007. |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
朱 欣 |
担当教員名 /Instructor |
朱 欣, 陳 文西 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/09/15 |
---|---|
授業の概要 /Course outline |
Combination of face-to-face classes and remote classes Bioinformatics is to implement information technology to the research of molecular biology for the analysis of DNA, RNA, protein, and metabolism. Recent applications have been extended to system biology, drug design, and personalized medicine of cancer therapy. Due to the huge exponentially increasing number of DNA sequence data, it is urgent to train experts and engineers, who are familar with the basic knowledge, analysis methods, and software tools of bioinformatics. In this course, students will learn the mathematical and biological basis of bioinformatics, genetic analysis and database search, gene discovery, and applications of informatics. |
授業の目的と到達目標 /Objectives and attainment goals |
The goal is to train students to master the mathematical and biological basis of bioinformatics, the basic algorithms for nucleotide and protein sequence analysis, genetic database search and analysis, and the commonly used software and internet tools of bioinformatics. This year, we will perform an implementation study on 2019-nCoV using the skills learned in this course. |
授業スケジュール /Class schedule |
1. Biological basis: Cell structure and function, DNA, RNA, and protein 2. Basis of probability and statistics: Probability basis, Bayes’ theorem, probability distribution, histogram, regression, correlation coefficient, t test, and etc 3. Basis of Pattern recognition: Linear classification, Bayes classification, principal component analysis, Hidden Markov models and support vector machine 4. Basis of Data mining: Data preprocessing, mining frequent patterns, associations, and correlations, classification and prediction, and cluster analysis 5. Molecular biology database: DNA/Protein database, Genome database, motif-domain database, data retrieval, and data search 6. Sequence and genetic analysis: Pairwise alignment, multiple alignment, and BLAST/PSI-BLAST, FASTA 7. Gene discovery and data analysis: Microarray, cluster analysis 8. Genome analysis and genome medicine: Molecular phylogenetic tree: algorithm and application 9. Protein structure and prediction: 1st~4th Protein structure, PDB data, homologous protein 10. Computational chemistry: Molecular dynamics, force field, computer software, and etc 11. Special lecture by outside specialist 12. System biology and medicine: Application of genome research in genetic diseases: diagnosis and therapy |
教科書 /Textbook(s) |
はじめてのバイオインフォマティクス 編者: 藤博幸 講談社 Handout will be distributed in class. |
成績評価の方法・基準 /Grading method/criteria |
Homework 60% Project 40% |
履修上の留意点 /Note for course registration |
Probability and statistics Physics and chemistry Database and network |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
東京大学 バイオインフォマティクス集中講義 監修: 高木 利久 バイオインフォマティクス事典 日本バイオインフォマティクス学会編集 日本バイオインフォマティクス学会 (http://www.jsbi.org/) バイオインフォマティクス技術者認定試験(http://www.jsbi.org/nintei/) The course instructor Xin Zhu has practical working experiences. He had performed research in biomedical engineering at Tianjin University for 7 years, and has performed related research at the University of Aizu for 15 years with the financial support from universities and JSPS. He has also received a certificate in online bioinformatics lectures. Based on his experiences, he can teach the basics of bioinformatics. |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
陳 文西 |
担当教員名 /Instructor |
陳 文西, 朱 欣 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/09/15 |
---|---|
授業の概要 /Course outline |
Combination of face-to-face classes and remote classes Biosignals cover a wide spectrum of physiological information in time and frequency domains. Various modalities using diversified physical and chemical principles are applied in biosignal detection. This course will provide introductory knowledge on the methodologies for detecting various physiological information, mention some aspects in biomedical instrumentation that differ from industrial measurement, and introduce application of IoT, AI, big data analytics and the latest advancements in seamless healthcare monitoring briefly. |
授業の目的と到達目標 /Objectives and attainment goals |
1. To understand fundamental knowledge on various physiological information. 2. To understand application of fundamental physical and chemical principles in detecting various physiological information. 3. To understand the reasons and requirements in biosignal detection that differ from industrial measurements in some aspects. 4. To understand application of IoT, AI, big data analytics and the latest advancements in seamless healthcare monitoring. |
授業スケジュール /Class schedule |
1. Introduction 2. Motion & Force 3. Direct Pressure 4. Indirect Pressure 5. Direct Flow 6. Indirect Flow 7. Respiration 8. Temperature 9. Bioelectricity 10. Biomagnetism 11. Biochemistry-1 12. Biochemistry-2 13. Biochemistry-3 14. Seamless Monitoring |
教科書 /Textbook(s) |
Biomedical Sensors and Instruments, 2nd edition, Tatsuo Togawa et al., CRC Press, ISBN: 9781420090789, Publication Date: March 22, 2011 https://www.crcpress.com/Biomedical-Sensors-and-Instruments/Tagawa-Tamura-Oberg/p/book/9781420090789 Seamless Healthcare Monitoring - Advancements in Wearable, Attachable, and Invisible Devices, Editors: Tamura, Toshiyo, Chen, Wenxi, Springer International Publishing, 2018, DOI 10.1007/978-3-319-69362-0, eBook ISBN 978-3-319-69362-0, Hardcover ISBN 978-3-319-69361-3 https://www.springer.com/us/book/9783319693613 |
成績評価の方法・基準 /Grading method/criteria |
Paper survey and research report, 100% |
履修上の留意点 /Note for course registration |
Physics and chemistry Electricity and electronics |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
The course instructor has practical working experience and has worked for 5 years at Nihon Kohden Industrial Corp., a professional manufacturer of world famous medical equipment, and has been engaged in R & D for bioinstrumentation, signal processing and data analysis. Based on this experience, he will teach the basic knowledge and latest technology in “Introduction to Biosignal Detection”. Website http://i-health.u-aizu.ac.jp/IBSD/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
平田 成 |
担当教員名 /Instructor |
出村 裕英, 平田 成 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/29 |
---|---|
授業の概要 /Course outline |
リモートセンシングとは,広義には対象物の状態を遠隔から測定する手法のことを指す.多くの場合,光を含む電磁波が計測手段として用いられる.また,狭義には人工衛星などの宇宙機や航空機を,センサを搭載するプラットフォームとして,地球や他の天体を観測することを指す. 本科目では,まずリモートセンシング技術の多様な側面について概要を述べる.次いで,宇宙機によるリモートセンシングを題材として,データの取得から解析,解釈に至る過程を段階を追って詳説する.科学的に有用な測定のためには,その背景となる数学的知識や物理学的現象の理解も重要となるため,これらについても本科目で取り扱う. |
授業の目的と到達目標 /Objectives and attainment goals |
リモートセンシングの概念,特徴,有用性を理解する. リモートセンシングデータの取得,解析,解釈に関わるコンピュータ理工学の知識・技術を習得する. また,関連する数学・物理学の知識を得る. |
授業スケジュール /Class schedule |
1 ガイダンス 2 リモートセンシング概論 3-4 リモートセンシングに関わる光学,電磁気学的背景 5-6 リモートセンシングプラットフォームとセンサ 7-8 リモートセンシングデータの特徴 9 リモートセンシングデータの放射量補正 10 リモートセンシングデータの幾何補正 11 マルチバンド画像解析 12 地理情報システム 13 合成開口レーダー 14 測位システム(GPS) |
教科書 /Textbook(s) |
N/A |
成績評価の方法・基準 /Grading method/criteria |
レポート,実習課題,授業中の質疑内容等により評価を行う レポート・実習課題:80% 授業中の質疑内容等:20% |
履修上の留意点 /Note for course registration |
以下の内容を理解,習熟していることが望ましい. 基礎物理,微積分,線形代数,画像処理, コンピュータグラフィックス. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
基礎からわかるリモートセンシング, 日本リモートセンシング学会(編), 2011 https://www.amazon.co.jp/dp/4844607790 Image Processing and GIS for Remote Sensing: Techniques and Applications, Liu and Mason, 2016 https://www.amazon.co.jp/dp/1118724208/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 2学期 /Second Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
平田 成 |
担当教員名 /Instructor |
平田 成, 大竹 真紀子, 出村 裕英, JAXA/NAOJ講師 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/29 |
---|---|
授業の概要 /Course outline |
月惑星探査によって取得されたデータの解析にあたって基礎となる知識について学ぶ.探査機の科学観測データを取り扱う際には,探査機位置・姿勢情報等を含む補助データについての理解も必要不可欠となる.このため,まず補助データの利用方法について講義と実習を行う.なお,一部の講義は宇宙航空研究開発機構,国立天文台より招聘した外部講師による遠隔講義で実施する. |
授業の目的と到達目標 /Objectives and attainment goals |
本講義の履修により,月惑星探査ミッションにおけるデータの解析手法を学び,それを実現するためのソフトウエア開発の基礎を習得する.また,NASAが開発したSPICE toolkitを用いた補助データの取り扱いを理解する |
授業スケジュール /Class schedule |
- 第一週 - イントロダクション - 第二週 - 補助データとSPICE toolkitの概要 - 時刻情報 - 第三週 - 座標系 - 軌道・位置情報 - 第四週 - 座標系の変換 - 第五週 - 探査機の姿勢情報 - 第六週 - 天体の形状モデル - 第七週 - 天文暦とSPICE toolkit |
教科書 /Textbook(s) |
N/A |
成績評価の方法・基準 /Grading method/criteria |
レポート,実習課題,授業中の質疑内容等により評価を行う レポート・実習課題:80% 授業中の質疑内容等:20% |
履修上の留意点 /Note for course registration |
リモートセンシングの基礎知識(ITC08Aで取り扱う)を理解していることが望ましい. ITC10A Practical Data Analysis with Lunar and Planetary Database は本コースの内容と強い関連を持つ.ITC10Aでは実践的な探査データの解析に関するトピックを取り上げるため,先にITC09Aを履修したのち,ITC10Aを履修することが望ましい. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
SPICE toolkit: http://naif.jpl.nasa.gov/naif/ Planetary Data System: http://pds.jpl.nasa.gov/ SELENE (Kaguya) Data archive: http://l2db.selene.darts.isas.jaxa.jp/ Hayabusa project science data archive: http://darts.isas.jaxa.jp/planet/project/hayabusa/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 3学期 /Third Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
出村 裕英 |
担当教員名 /Instructor |
出村 裕英, 平田 成, 小川 佳子, 本田 親寿, 北里 宏平, JAXA/NAOJ講師 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/09/04 |
---|---|
授業の概要 /Course outline |
Combination of face-to-face classes and remote classes This course is a combination of advanced lectures and exercises according to practical data analysis and tool-development in lunar and planetary explorations based on the antecedent course "Fundamental Data Analysis in Lunar and Planetary Explorations". This course follows an omnibus form given by ARC-Space professors and invited lecturers (teleclasses) from JAXA, NAOJ, etc. |
授業の目的と到達目標 /Objectives and attainment goals |
To learn data analysis and making tools for the analysis from a viewpoint of remote sensing in lunar and planetary explorations To learn basic knowledge in space developments as topics of computer science and engineering. |
授業スケジュール /Class schedule |
#1 Demura (UoA) Guidance and Hapke Photometric Function #2-7 Omnibus Style by... Honda (UoA) Performance Test of imaging sensors Kitazato (UoA) Spectroscopic Analysis for asteroids Ohtake (UoA) Kaguya Data Analysis of the moon for multi band images Ogawa (UoA) Spectroscopic Analysis for lunar and planets Matsumoto (NAOJ) Gravity field of the Moon Morota (Nagoya Univ.) Crater Chronology |
教科書 /Textbook(s) |
N/A |
成績評価の方法・基準 /Grading method/criteria |
Comprehensive evaluation based on class activities (presentations, Q&A) and reports for each professor |
履修上の留意点 /Note for course registration |
Related courses: ITC08A "Remote Sensing" ITC09A "Fundamental Data Analysis in Lunar and Planetary Explorations" ITA19 "Reliable System for Lunar and Planetary Explorations" SEA11 "Software Engineering for Space Programs" |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
The course instructors has working experiences: Instructors are familiar with JAXA Space Development Projects. |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 2学期 /Second Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
西村 憲 |
担当教員名 /Instructor |
西村 憲, 高橋 成雄 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/30 |
---|---|
授業の概要 /Course outline |
This course provides fundamentals of 3D Computer Graphics (CG) and its hardware implementation, which is followed by the recent advancement of CG rendering techniques with GPUs. |
授業の目的と到達目標 /Objectives and attainment goals |
Through this course, students are expected to acquire fundamental knowledge about rendering algorithms and their parallelization techniques. Students will also be able to obtain basic skills of GPU programming with the OpenGL Shading Language. |
授業スケジュール /Class schedule |
1. Introduction 2. Shape Modeling 3. Geometry Calculation 4. Rasterization 5. Lighting and Shading 6. Texture Mapping and Shadowing 7. Exercise: Fundamentals of Shader Programming 8. Exercise: GPU-based Texture Mapping 9. Advanced Rendering Techniques 10. Volume Rendering 11. Exercise: GPU-based Lighting and Shading 12. Exercise: GPU-based Normal Mapping 13. Exercise: GPU-based Shadowing 14. Assignment Presentation |
教科書 /Textbook(s) |
* J. D. Foley, A. van Dam, Computer Graphics, 2nd edition, 1995. * T. Sagishima, T. Nishizawa, and S. Asahara, Parallel Processing for Computer Graphics (in Japanese), Corona Publishing, 1991. * OpenGL Tutorial (http://www.opengl-tutorial.org/) * Handouts * Selected journal/conference papers |
成績評価の方法・基準 /Grading method/criteria |
Presentation (75%), Reports (25%) |
履修上の留意点 /Note for course registration |
Prerequisites in the case when undergraduate students take this course: IT02: Computer Graphics |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
http://web-int.u-aizu.ac.jp/~nisim/cg_gpu/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
白 寅天 |
担当教員名 /Instructor |
白 寅天, 大藤 建太 |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/27 |
---|---|
授業の概要 /Course outline |
Recently, there have been very large and complex data sets from nature, sensors, social networks, enterprises increasingly based on high speed computers and networks together. Big data is the term for a collection of the data sets that it becomes difficult to process using on-hand database management tools or traditional data processing applications. Data science is a novel term that is often used interchangeably with competitive intelligence or business analytics, and it seeks to use all available and relevant data to effectively tell a story that can be easily understood by non-practitioners. Data science based on the big data is expected to provide very potent prediction and analysis for information and knowledge of various fields of researches and businesses from the new data set. Main objective of this course is to build up business viewpoints and target to use the big data, to learn technologies and skills to accomplish the business target. Business targeting and modeling, decision making, data science process, database for big data, statistical analysis, data mining, and how to use the technologies to achieve the business goal will be studied in detail. |
授業の目的と到達目標 /Objectives and attainment goals |
In this course, introductory knowledge and skill for big data analysis process and technology will be covered. In detail, CRISP-DM for data analysis process, Hadoop and Spark platform for big data infrastructure, statistical analysis and several machine learning techniques for data analysis, and deep learning with Tensorflow will be studied by lecture and exercise. Students can have broad and necessary knowledge and technique for data analysis on big data infrastructure. 1. Business Intelligence |
授業スケジュール /Class schedule |
1. Business Intelligence 2. Data Science Process 3. A Scenario of Business Analysis With Data Science Process (Ex: Market Analysis By Twitter) 4. Distributed File System, SQL and NoSQL, Hadoop Architecture, MapReduce Programming 5. Hadoop Exercise: Map-Reduce Programming for Word Count or TF-IDF Calculation 6. Hadoop Eco System (Hive and Mahout) and Motivation of Statistical Analysis and Data Mining 7. Statistical Analysis I: Summarization and Correlation, Multivariate Analysis I 8. Statistical Analysis II: Multi-Variant Analysis II and Regression Analysis Model 9. Case Study: Statistical Analysis By R 10. Data Mining I (Shallow Learning) 11. Data Mining II (Deep Learning) 12. Deep Learning Architecutres: MPN, CNN, RNN, Reinforcement Learning 13. Deep Learning Exercise by Tensorflow 14. Term Project and/or Examination |
教科書 /Textbook(s) |
Lecture Slide: Will be provided on the lecture Web site |
成績評価の方法・基準 /Grading method/criteria |
Examination ----- 50 % Exercise LAB (Including Term Project, Attendance) ----------------- 50 % |
履修上の留意点 /Note for course registration |
* Prerequisites: For exercise, students should have skill and basic knowledge for the below: - JAVA Programming - Python - Data Mining |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
Reference: 1. Tom White, Hadoop, OREILLLY, 2011 2. Srinath Perera, Thilina Gunarathne, Hadoop Map-Reduce Programming, Packt Publishing, 2013 3. J.H Jeong, Biginning Hadoop Programming: Development and Operations, Wiki Books, 2012 4. Tan, Steinbach & Kumar,Introduction to data mining", Pearson Intrnational Edition, 2006 5. Tensorflow, https://www.tensorflow.org/ |
科目一覧へ戻る |
開講学期 /Semester |
2020年度/Academic Year 1学期 /First Quarter |
---|---|
対象学年 /Course for; |
1年 , 2年 |
単位数 /Credits |
2.0 |
責任者 /Coordinator |
バーラ サバシュ |
担当教員名 /Instructor |
バーラ サバシュ |
推奨トラック /Recommended track |
- |
履修規程上の先修条件 /Prerequisites |
- |
使用言語 /Language |
- |
更新日/Last updated on | 2020/01/31 |
---|---|
授業の概要 /Course outline |
Database Systems are very common. There are new Organic Databases in Healthcare and Geographic data. This course considers DBMS architectures for all kind of decision support systems. It is based on practical exercises and examples. Lectures depend on recent research developments from research papers - from conferences, journals and advanced text books. |
授業の目的と到達目標 /Objectives and attainment goals |
Implementation details for new applications wilL be discussed. The course considers the application side. The topics include Data Modeling, Advanced features of query :languages. Transactions and Recovery systems. |
授業スケジュール /Class schedule |
1 Entity-Relationship Model 2 Relational Model 3 Advanced features in SQL 4 Object-Oriented Databases 5 Object-Relational Databases 6 Web Data and XML,Architectures 7 Distributed Databases 8 Decision Support Systems |
教科書 /Textbook(s) |
Database Systems Concepts, by Korth, H.A., Silberschatz, A., and Sudershan, S., 7th edition, McGrawHill Book Co., 2019 - Various materials prepared by the instructor. |
成績評価の方法・基準 /Grading method/criteria |
Grade (100) : Quiz 1 - 3 (20,30,30 each), Class assignments (10), Study project (10). |
履修上の留意点 /Note for course registration |
Prior study and Knowledge of Database management Systems Course and computer networks course, is useful. |
参考(授業ホームページ、図書など) /Reference (course website, literature, etc.) |
Course directory for course handouts and exercise sheets. Study material and notes will be recommended by the instructor(s). |