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Abstract

Global interconnects are becoming the principal performance bottleneck for high

performance Systems-on-Chip (SoCs). Since the main purpose for this system is to

shrink the size of the chip as smaller as possible while seeking at the same time for

more scalability, higher bandwidth and lower latency. Conventional bus-based-systems

are no longer reliable architecture for SoC due to a lack of scalability and parallelism

integration, high latency and power dissipation, and low throughput. During this last

decade, Network-on-Chip (NoC) has been proposed as a promising solution for future

systems on chip design. It offers more scalability than the shared-bus based intercon-

nection, allows more processors to operate concurrently.

Despite the higher scalability and parallelism integration offered by the Network-

on-Chip (NoC) over the traditional shared-bus based systems, it’s still not an ideal

solution for future large scale Systems-on-Chip (SoCs), due to some limitations such

as high power consumption, high cost communication, and low throughput. Recently,

merging NoC to the third dimension (3D-NoC) has been proposed to deal with those

problems, as it was a solution offering lower power consumption and higher speed.

In this this research, a 3D-NoC named OASIS (in short 3D-ONoC) has been de-

signed to overcome the limitations of 2D-OASIS previously made in our research

group. In this report we describe the 3D OASIS-NoC architecture in a fair amount

of detail and present evaluation results and comparison between 3D and 2D OASIS.

Evaluation results show that despite the increasing hardware complexity, 3D-ONoC

reduces the number of hops by 40% and also the average stall count by 74%. As a re-

sult the execution time improved by 36%. By increasing the traffic load with the Matrix
2
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application, the execution time could be further enhanced from 36% obtained with one

matrix multiplication to more than 41% with 1, 2, 3 and 4 matrix multiplications.
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Chapter 1

Introduction

1.1 Background

Following Moore’s law, the number of transistors kept increasing along the past

few decades. That made shrinking the chip size while maintaining high performance

possible. This technology scaling has allowed Systems-on-Chip (SoCs) [1, 2] systems

to grow continuously in component count and complexity. Which significantly led to

some very challenging problems such us power dissipation, resource management etc.

In particular, the interconnection network starts to play a more and more important

role in determining the performance and also the power consumption of the entire chip

[3]. Those factors made conventional bus-based-systems and P2P no longer reliable

architectures for SoC, due to the lack of scalability and parallelism integration, high

latency and power dissipation, and low throughput.

Network-on-Chip [1, 4] was introduced as a promising method that can respond

to these issues. Based on a simple and scalable architecture platform, NoC connects

processors, memories and other custom designs together using switching packets on

a hop-by-hop basis, in order to provide a higher bandwidth and higher performance.

Figure1.1 (a) and Fig.1.1 (b) show one of the most well-known architectures which
2
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(a) (b)

(c)

Figure 1.1: SoC architecture: (a) Shred-bus (b) Point-2-Point (c) NoC

are respectively Point-to-Point (P2P) and shared bus systems. As shown in Fig.1.1 (c),

NoC architectures are based upon connecting segment (or wires) and switching blocks

to combine the benefits of the two previous architectures while reducing their disad-

vantages, such us the large numbers of long wires in P2P and the lack of scalability in

shared-bus systems.

1.2 Problems and Motivation

At the same time, future applications are getting more and more complex, demand-

ing a good architecture to ensure a sufficient bandwidth for any transaction between
3
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memories and cores as well as communication between different cores on the same

chip. All this factors made NoC not enough reliable for future systems, especially

when we talk about hundreds of cores. This limitation comes basically from the high

diameter that suffers from NoC. The network’s diameter is the number of hops that a

flit traverses in the longest possible minimal path between a (source, destination) pair.

The diameter is important for the NoC design since a large network diameter has a neg-

ative impact on the worst case routing latency in the network. For all these facts, the

seek for optimizing NoC-based architecture becomes more and more necessary, and

many researches have been conducted to achieve this goal in various approaches, such

as developing fast routers [5, 6, 7, 8] or designing new network topologies [9, 10, 11].

One of these proposed solutions was merging the Network-on-Chip to the third

dimension. In the past few years, three dimensional integrated circuits (3D-ICs) [12]

have attracted a lot of attention as a potential solution to resolve the interconnect bottle-

neck. A three dimensional chip is a stack of multiple device layers with direct vertical

interconnects tunneling through them [13, 14]. Researches made so far have shown that

3D-ICs can achieve higher packing density due to the addition of a third dimension to

the conventional two-dimensional layout; and thanks to the reduced average intercon-

nect length, 3D-ICs can achieve higher performance. Besides that, this reduction of

total wiring, a lower interconnect power consumption can be obtained [15, 16], not

forget to mention that circuitry is more immune to noise with 3D-ICs [12]. This may

offer an opportunity to continue performance improvements using CMOS technology

with smaller form factors, higher integration densities and supporting the realization
4
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of mixed-technology chips [17]. As Topol et al in [16] stated, 3D-IC can improve the

performance even in absence of scalability. Combining the NoC structure with the

benefits of the 3D integration leads us to present 3D-NoC as a new architecture. This

architecture responds to the scaling demands for future SoC, exploiting the short verti-

cal links between the adjacent layers that can clearly enhance the system performance.

This combination may provide a new horizon NoC design to satisfy the high require-

ments of future large scale applications.

One of the important design steps that should be taken care of while designing an

3D-NoC is to implement an efficient router, as it is the backbone of any NoC archi-

tecture. The router performance depends on many factors and techniques, such as the

traffic pattern, the router pipeline design and the network topology. As Feihui et al

in [18] mentioned, among these three factors we have less control over the traffic pat-

terns compared with the topology and the pipeline design. Following this logic, and

assuming the topology choice was already taken, one of the most important router en-

hancements that can be done is to improve the pipeline design, and then reducing the

router delay. By reducing the pipeline delay, not only we decrease the per-hop delay,

but also the whole network latency will be reduced.

On the other hand, the pipeline design is strongly associated with the routing al-

gorithm adopted by the design. Routing is the process of determining the path that

a flit should take between one source and one destination node. Routing algorithm

can classified into minimal or non-minimal, depending on whether flits traveling from

source to destination always use the minimal possible path or not. Minimal routing
5
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schemes are shorter and require less complex hardware, but allowing non-minimal

routes increases the path diversity and decreases the network congestion. Also the

routing algorithms can be adaptive, where routing decisions are made based on the

network congestion status and other information about network links or buffer occu-

pancy of the neighboring nodes, or alternatively are deterministic. Although there are a

large number of sophisticated adaptive routing algorithms, but they could require more

complex implementation than that of the deterministic ones. That’s why deterministic

routing schemes has been adopted for 3D-NoC designs. One of the well-known and

well used routing schemes used in 3D-NoCs is the Dimension Order Routing (DOR)

XYZ algorithm. XYZ is a simple scheme, easy to implement and free of deadlock and

lifelock. But on the other hand, it suffers from a non-efficient pipeline stage usage.

This can introduce an additional packet latency which has an important effect on the

router delay and eventually on the system overall performance. Enhancing this algo-

rithm while keeping its simplicity may improve the system performance by reducing

the packet delay.

Previously, in our research group, we proposed a 2D-NoC named OASIS [4, 19,

20]. Although 2D-OASIS-NoC has its advantages over the shared-bus based systems,

it has also some limitations such as high power consumption, high cost communication,

and low throughput.

Starting from all these facts, the main motivation of this work is to propose a

3D-NoC named 3D-OASIS-NoC which is an extension to our 2D-OASIS-NoC. 3D-

OASIS-NoC uses our proposed efficient routing scheme named Look-ahead-XYZ (LA-

XYZ). This algorithm improves the router pipeline design by parallelizing some stages
6
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while taking advantage at the same time of the simplicity of the conventional XYZ. As

a result, this routing scheme aims to enhance the router performance thereby achieving

a low-latency design.

In this report, we present a complete architecture and design of 3D-OASIS-NoC in

a fair amount of details. Evaluation results are also presented using real applications

(JPEG encoder and Matrix Multiplication). We provide more details about the differ-

ent components of 3D-OASIS-NoC including our proposed Look-ahead-XYZ routing

scheme (LA-XYZ) and its ability to optimize the router pipeline design. We show how

our design can present a better performance by reducing the congestion, decreasing

the execution time and the power consumption when compared with the previously

designed 2D-OASIS-NoC system.

1.3 Report organization

The rest of this report is organized as follow: In Chapter 2, we present some related

works. Our proposed Look-ahead-XYZ routing algorithm (LA-XYZ) is described in

Chapter 3, and then the architecture of the 3D-OASIS-NoC system is described in

details in Chapter 4. Chapter 5 presents evaluation methodology and results. Finally,

we end the report with concluding remarks and future works in Chapter 6.
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Chapter 2

Related Works

In this chapter, we present some of the related works to 3D-NoC. Starting from

those who focused on the benefits of 3D-NoC when compared with 2D designs, pass-

ing by those who investigated about the router architecture and routing algorithms

dedicated for 3D-NoC.

2.1 3D-NoC versus 2D-NoC

3D-NoC is a widely studied research topic, and many related works have been

conducted until now. Few of them focused on the benefits of the 3D-NoC architecture

over the traditional 2D-NoC design. Feero et al [21] showed that 3D-NoC has the

ability to reduce latency and the energy per packet by decreasing the number of hopes

by 40% which is a basic and important factor to evaluate the system performance [21].

Pavlidis et al [22] analyzed the zero-load latency and power consumption, and

demonstrated that a decrease of 62% and 58% in power consumption can be achieved

with 3D-NoC when compared to a traditional 2D-NoC topology for a network size of

N= 128 and N= 256 nodes, respectively, where N is the number of cores connected in

the network. This power consumption reduction can simply be related to the reduction

of number of hops, since a flit has less hops to traverse to go from one source to its
8
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destination, and that includes less buffer access, less switch arbitration, and less link

and crossbar traversal. All of these factors will eventually lead to decrease the power

consumption.

2.2 3D-NoC router architecture

Another part of the researches focused on the router architecture. For example, Li

et al [23] has modified the conventional 7x7 3D router using a shared bus as a com-

munication interface between the different layers of the router, to create a 3D NoC-Bus

Hybrid router. This kind of routers reduces in fact the number of ports in each router

from 7 to 6, but on the other hand flits wishing to travel from one layer to another

should compete the access to the shared bus, since it’s the only inter-layer communica-

tion interface. This may lead to undesirable performance degradation especially under

a heavy inter-layer traffic.

Yan et al [24], also proposed another architecture for the the 3D-router, by imple-

menting all the vertical links into a single 3D-crossbar. In this case, the router has only

5 ports since we dont need any more additional ports for the vertical connections. This

technique reduces the inter-layer distance, and makes the travel between the different

layers in one single hop possible. But this router also engenders a high router cost

besides the implementation complexity of such router, which cannot be acceptable for

some simple application that actually does not need such a complex router.

For all these facts, we adopted for our design, as most of the 3D-NoC designs use,

the conventional 7x7 3D-router, as it is the lowest cost among the other architectures

and also the simplest to implement showing several properties like regularity, concur-
9
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rent data transmission, and controlled electrical parameters [25, 26]. All the benefits

are acquired while making sure that this low cost and simple implementation does not

affect the performance of our system.

2.3 3D-NoC routing algorithms

Many routing algorithms have been proposed for MPSoC networks but most of

them focus only on 2D-network topologies. Among all the studies conducted for 3D-

NoC few of them focused on routing algorithms. Between the few proposed ones,

there are some custom routing schemes that aims to reduce the power consumption

and thermal power which is a very challenge design for 3D-NoC systems. For instance,

Ramanujam et al [27] presented an oblivious routing algorithm called randomized par-

tially minimal (RPM) that aims to load balance the traffic along the network improving

then the worst case scenario. RPM sends packets to a random layer first, then route

them along their X and Y dimensions using either XY or YX routing with equal prob-

ability. Finally packets are sent to their final destination along the Z dimension.

In a quiet similar technique, Chao et al [28] addressed the thermal power problem

in 3D-NoC, which is one of the most important issues in the 3D-NoC designs. Starting

from the fact the upper layer in the network detains the highest thermal power in the

design, they proposed a thermal aware downward routing scheme that sends first the

traffic to a downer layer, routes along the X and Y dimension before sending the pack-

ets back up to their destination layer. This technique avoids communication in upper

layers, where the thermal power is more important than the downer ones, and then may

reduce the overall thermal power in the design. Thus, ensuring thermal safety while
10
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guaranteeing less performance impact from temperature regulation.

Both of these two routing algorithms have their advantages in term of load balanc-

ing and thermal power reduction. But the routing used is not minimal, which effect in

a direct way the number of hops. By adopting a non-minimal routing, the packet delay

may increase in the system, especially when we talk about a large number of connected

nodes.

To ensure a minimal path for flits when traveling the network while making the

routing as simple as possible, the majority of the remaining 3D-NoC systems have

been using the conventional minimal Dimension Order Routing (DOR) XYZ routing

scheme. Other introduced a routing scheme based upon XYZ such as the case of Tyagi

in [29] who extended a previous routing algorithm [30] called BDOR designated for

2D-NoC. BDOR forwards packets in one of two routes (XY- or YX-orders), depending

on relative position of a source-destination pair, and that aims to improve the balance

of paths along the network also when taking into account the destination.

XYZ routing scheme, and all the routing algorithms based upon it, is presented as a

vertically balanced routing algorithm which has the best performance, since it’s simple

to implement, it is free of deadlock and lifelock, and also because packet ordering is

not required [28, 31, 32]. On the other hand, it cannot always make the best use of

each pipeline stage. For the simple reason that since the Switch Allocation stage (SA)

is always dependent on the previous Routing Calculation (RC) one. This dependency

can be explained by the fact that SA stage needs information about the desired output-

port calculated from the RC stage, where the incoming flits should go through in order

to pass to the next neighboring node. To solve this problem in 2D-NoC systems using
11
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the Dimension Order Routing (DOR) XY routing scheme, a smart pipeline design

can be adopted with the help of some advanced techniques like look-ahead routing

[29]. This kind of routing has been used to reduce the pipeline stages in the router, by

parallelizing some of these stages then reducing the router delay and then enhancing

the system performance. Look-ahead routing has indeed been used with 2D-NoC but

it hasn’t been adopted for 3D Network-on-Chip architectures before.

A second problem that can be seen with a lot of conventional router using XYZ-

based routing schemes, is in case of no-load traffic and when the input buffer is empty,

the flit entering the router should be first stored in the input buffer before advancing

the next RC stage even there is no any flit under process in the next stages. This un-

necessary stall will increase the packet latency in the router, and its associated power

consumption, adding a performance overhead to the whole system even in a light traf-

fic case where the system is supposed to have a close-to-optimal performance since

there is no congestion that may increase the latency. In order to face this problem, a

technique called no-load bypass is used [33]. This technique allows the flit to advance

to the RC stage in case where the buffer is empty. Then overlapping the unnecessary

buffer writing stage (BW) then decreasing the router delay.

Previously in [34], a part of this research has been including architecture of a

3D Network-on-Chip architecture (named 3D-OASIS-NoC) based on a previously de-

signed 2D-OASIS-NoC. The design’s performance was evaluated using a simple ap-

plication that randomly generates flits and sends them along the network. But real

application could not be evaluated due to the absence of some components in the de-

sign such us the network interface. For that reason, a network interface has been added
12
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to 3D-ONoC, the optimized version of 3D-OASIS-NoC, in order to make our system

able to be evaluated with our real selected target applications (JPEG encoder and Ma-

trix Multiplication).

Starting from all the facts already stated, in this report we present a complete archi-

tecture and design of 3D-OASIS-NoC. Also evaluation results are presented using real

applications (JPEG encoder and Matrix Multiplication). We provide more details about

the different components of 3D-OASIS-NoC including our proposed Look-ahead-XYZ

routing scheme(LA-XYZ) and its ability to take advantage of the simplicity of the con-

ventional XYZ algorithm, while improving the pipeline design of the 3D-NoC router

then enhancing the overall performance. Our lookahead routing scheme means that

each flit additionally carries one hot encoded Next-Port identifier used by the down-

stream router. The no-load bypass technique is also associated with LA-XYZ in order

to get more pipeline improvement. We show how our design can present a better per-

formance by reducing the congestion, decreasing the execution time and the power

consumption when compared with the previously designed 2D-OASIS-NoC system.

13



Chapter 3

Look Ahead XYZ routing algorithm

In this section, the proposed Look Ahead XYZ routing algorithm (LA-XYZ) adopted

for 3D-ONoC is shown. Its out-performance against the conventional Dimension Or-

der Routing (DOR) XYZ algorithm is also explained in term of optimizing the router

pipeline design that eventually leads to a performance enhancement.

Most of the 3D-NoC systems are based upon the Dimension Order Routing (DOR)

XYZ algorithm. XYZ routes flits first along the X dimension, then along the Y and

finally the flit is routed along the Z dimension to reach its destination. This process

is done by comparing the address of the processing node with the destination node’s

address to determine the Output-Port:

• if xdest is larger than xaddr then Output-Port will be EAST. In the opposite case

Output-Port will be WEST.

• if ydest is larger than yaddr then Output-Port will be NORTH, else Output-Port

will be SOUTH.

• if zdest is larger than zaddr then Output-Port will be UP, and if this condition is

not satisfied Output-Port will be DOWN.
14
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• if xdest is equal to xaddr, ydest is equal to yaddr and zdest is equal to zaddr then

Output-Port will be SELF.

Figure 3.1: Router pipeline stages: (a) conventional XYZ (b) LA-XYZ (c) LA-XYZ
with no-load bypass.

The computed Output-Port issued from XYZ is sent then to the Switch Arbiter

asking for grant to access the selected output-port. XYZ is a simple scheme, easy to

implement and free of deadlock and lifelock. But on the other hand, it suffers from a

non-efficient pipeline stage usage. Figure.3.1 (a) depicts a conventional router pipeline

design based on XYZ scheme. As we stated at the end of Section 2, Virtual Channels

are not taken into consideration for improving the performance of best-effort traffic,
15
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and also for seek of simplicity, a packet is composed of one single flit.

Taking a closer look at Fig.3.1 (a), we can see that conventional XYZ-based router

pipeline design contains 4 main pipeline stages: Buffer Writing (BW) where the in-

coming flit is stored in the input buffer, then in Routing Calculation stage (RC) desti-

nation address is fetched and decoded to determine the Output-Port direction. Infor-

mation about the selected Output-Port are sent to the next stage, Switch Arbitration

(SA), to resolve any competition between different requests from different input-ports.

Finally the Crossbar traversal stage (CT) handles the transfer of the flit to the next

neighboring node. This 4 pipelines router design increases the flit latency and its asso-

ciated power consumption, since any flit should go through all these stages at each hop

while traveling from source to destination. This can introduce a undesirable system

overall performance degradation, especially when we talk about a large network size

where the network diameter also increases, which might not satisfy the high require-

ments of some application.

In such kind of schemes, the pipeline stages are dependent on each others, and each

one of them can make its computation unless it receives information from the previous

stage. This dependency is especially seen between the (RC) and (SA) stages. To face

this dependency problem, our proposed Look Ahead XYZ (LA-XYZ) optimizes the

router pipeline design by parallelizing the (RC) and (SA) stages and then eliminating

the dependency between them. LA-XYZ pre-computes the Next-Port direction of the

downstream router and then embeds it in the flit. When arriving to the downstream

node, this hot encoded Next-Port identifier will be used by the switch arbiter directly to

ask the grant for using the selected output-port and reach the next neighboring node. At
16
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Algorithm 1: LA-XYZ 1st phase: Assign next address
// Current node address

Input: Xcur, Ycur, Zcur

// Next port identifier

Input: Next-port
// Next node address

Output: Xnext, Ynext, Znext

// Evaluate Next node x address

if (Next-port is EAST) then
Xnext ← Xcur + 1;

else
if (Next-port is WEST) then

Xnext ← Xcur − 1;
else Xnext ← Xcur;

end

// Evaluate Next node y address

if (Next-port is NORTH) then
Ynext ← Ycur + 1;

else
if (Next-port is SOUTH) then

Ynext ← Ycur − 1;
else Ynext ← Ycur;

end

// Evaluate Next node z address

if (Next-port is UP) then
Znext ← Zcur + 1;

else
if (Next-port is DOWN) then

Znext ← Zcur − 1;
else Znext ← Zcur;

end
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the same time, when the the grant is computed in (SA), the (RC) calculates in parallel

the direction of the Next-Port that will be used by the next downstream node. This

parallel process reduces the pipeline stages from 4 to 3 with LA-XYZ as it explained

in Fig.3.1 (b).

Algorithm 2: LA-XYZ 2nd phase: Define new Next-port
// Destination address

Input: Xdest, Ydest, Zdest

// Next node address

Input: Xnext, Ynext, Znext

// New next port for next node

Output: New-next-port

if (Xnext is equal to Xdest) then
if (Ynext is equal to Ydest) then

if (Znext is equal to Zdest) then
New-next-port← LOCAL;

else
if (Znext is smaller than Zdest) then

New-next-port← UP;
else New-next-port← DOWN;

end
end
else

if (Ynext is smaller than Ydest) then
New-next-port← NORTH;

else New-next-port← SOUTH;
end

end
else

if (Xnext is smaller than Xdest) then
New-next-port← EAST;

else New-next-port←WEST;
end

LA-XYZ computation goes under two steps: Assign next address and Define new

Next-port. As it illustrated in Algorithm.1, the first step fetches the Next-Port identifier

from the incoming flit. Depending on the direction of this identifier, the address of

the next downstream node can be predicted. This address is then used in the second
18
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step (shown in Algorithm.2) by comparing it with the destination address of the flit

which is also fetched from the flit head and then decoded. At the end of this process,

informations about the Next-Port is issued then embedded again in the flit to be used

as a source of information for the switch allocator in the downstream node.

For further optimization, the no-load bypass technique can be also associated with

LA-XYZ. As it is shown in Fig.3.1 (c), the number of pipeline stages can be further

minimized by overlapping the (BW) stage. In case where the input FIFO buffer is

empty, the flit doesn’t have to be stored in the input buffer but it continues its path

straight to the (RC) and (SA) where the computation of both stages are still done in

parallel. As a result, the number of pipeline stages can be further minimized from 3 to

2. Then, enhancing the system execution time, latency and power consumption, and

especially the zero-load latency.

Since LA-XYZ is based upon XYZ routing, it is still a free of deadlock and live-lock

routing algorithm. It is considered also as a minimal Dimension Order routing where

each flit from any source and destination pair traverses the minimal number of hops

from source to destination and where packet ordering is not required. As a result, LA-

XYZ improves the router design while taking advantages of the simplicity of XYZ.
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Chapter 4

3D-ONoC System Architecture

3D-ONoC is a scalable Network-on-Chip based on Mesh topology. The packets are

forwarded among the network using Wormhole-like switching policy and then routed

according to Look-Ahead-XYZ routing algorithm (LA-XYZ). As a flow control, 3D-

ONoC adopts Stall-Go mechanism and Matrix-Arbiter as a scheduling technique.

The remaining parts of this chapter explain each component of 3D-ONoC system

in a fair amount of details. We clarify also the reasons why some techniques has been

chosen to be adopted for our design.

4.1 Topology

The 3D-ONoC system is based upon Mesh topology, where x-addr, y-addr and z-

addr are attributed to each router and define its X, Y and Z coordinates respectively and

its position along the network. Many topologies exist for the implementation of NoCs,

some are regular (Torus, tree-based) and other irregular topologies are customized

for some special application. We choose the Mesh topology for this design thanks

to its several properties like regularity, concurrent data transmission, and controlled

electrical parameters [25, 26].

Figure.4.1 shows a configuration example of 4x4x4 3D-ONoC design. We can see
20
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in this figure that different layers are linked between each other via inter-layer channels.

On the other side, each layer is composed of different switches which are connected

to each other using some intra-layer links, each one of them is connected to one single

processing element.

Code.4.1 illustrates the Verilog-HDL code in the 3D-ONoC top module that defines

the mesh topology. the z-loop, y-loop and x-loop are used to define the dimensions of

3D-NoC. While the internal i-loop (line 17) is used to define the different input and

output ports for each direction. For example, i = 0 refers to the local port where, the

outputs and inputs of this port will be allocated later to the attached PE.

Taking the example of the Down port (line 31-39) , the output and input of this port

are allocated to the UP port of the router situated just below the current router, which

means the one in the the downer layer.

As it will be explained later, the unused ports should eliminated in order to reduce

the area and power consumption. Continuing with the same DOWN port, it should be

disabled when the router is located at the bottom of the topology, which means when

z-pos=0. In this case, ad as it is illustrated in Code.4.1 (line 32-35), net-data-in and

net-stop-in are assigned to 0.

Code 4.1: Verilog-HDL code defining the topology
1 generate

2 //z loop

3 for (z_pos=0; z_pos<Z_WIDTH; z_pos=z_pos+1) begin:z_loop

4

5 //y loop

6 for (y_pos=0; y_pos<Y_WIDTH; y_pos=y_pos+1) begin:y_loop

7

8 //x loop

9 for (x_pos=0; x_pos<X_WIDTH; x_pos=x_pos+1) begin:x_loop

10

11 router #(NOUT, FIFO_DEPTH , FIFO_LOG2D , FIFO_FULL_LVL) rtr(.clk(clk), .reset(

reset),

12 .data_in(net_data_in[x_pos][y_pos][z_pos]), .data_out(net_data_out[x_pos][

y_pos][z_pos]),

13 .stop_in(net_stop_in[x_pos][y_pos][z_pos]), .stop_out(net_stop_out[x_pos][

y_pos][z_pos]),
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14 .xaddr(x_pos[‘L2NET_SIZE -1:0]), .yaddr(y_pos[‘L2NET_SIZE -1:0]), .zaddr(z_pos

[‘L2NET_SIZE -1:0]));

15

16 //set up inter-router connections with correct boundary conditions

17 for (i=0; i<NOUT; i=i+1) begin:i0

18

19 //tile interface of router

20 if(i==0) begin

21 assign net_data_in[x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] = data_in[(‘

WIDTH*X_WIDTH*z_pos*Y_WIDTH)+(‘WIDTH*X_WIDTH*y_pos)+ (‘WIDTH*(x_pos+1))-1:

(‘WIDTH*X_WIDTH*z_pos*Y_WIDTH)+(‘WIDTH*X_WIDTH*y_pos)+(‘WIDTH*x_pos)];

22 assign data_out[(‘WIDTH* X_WIDTH*z_pos*Y_WIDTH)+(‘WIDTH*X_WIDTH*y_pos)+(‘WIDTH

*(x_pos+1))-1: (‘WIDTH*X_WIDTH*z_pos*Y_WIDTH) +(‘WIDTH*X_WIDTH*y_pos)+ (‘

WIDTH*x_pos)] = net_data_out[x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i];

23

24 assign net_stop_in[x_pos][y_pos][z_pos][i] = stop_in[(X_WIDTH* z_pos * Y_WIDTH

)+(X_WIDTH*y_pos)+x_pos];

25 assign stop_out[(X_WIDTH* z_pos * Y_WIDTH)+(X_WIDTH*y_pos)+x_pos] =

net_stop_out[x_pos][y_pos][z_pos][i];

26 end

27 ...

28 ...

29

30 //down edge of router

31 if(i==6) begin

32 if(z_pos==0) begin

33 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] = 0;

34 assign net_stop_in [x_pos][y_pos][z_pos][i] = 1’b1;

35 end else begin

36 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] =

net_data_out[x_pos][y_pos][z_pos -1][‘WIDTH*(5+1)-1:‘WIDTH*5];

37 assign net_stop_in [x_pos][y_pos][z_pos][i] = net_stop_out[x_pos][y_pos][

z_pos -1][5];

38 end

39 end

40

41 end // for (i=0; i<NOUT-1; i=i+1)

42 end // block: x_loop

43 end // block: y_loop

44 end // block: z_loop

4.2 Switching policy

Considered as a very important choice for any NoC design, switching establishes

the type of connection between any upstream and downstream node. It is important

to deploy an efficient switching policy to ensure less blocking communication while

trying to minimize the system complexity.

When it is related to packet switching, three main switching policies have been

mostly used for NoC: Store and Forward (SAF), Virtual Cut Through (VCT) and Worm-

hole (WH) [35].
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Figure 4.1: Configuration example of a 4x4x4 3D-ONoC mesh topology.
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Code 4.2: Verilog-HDL code defining the flit structure
1 // Flit structure

2 ‘define DATA 37:0

3 ‘define TAIL 0

4 ‘define NEXT_PORT 7:1

5 ‘define XDEST 10:8

6 ‘define YDEST 13:11

7 ‘define ZDEST 16:14

8 ‘define DATA 37:17

3D-ONoC adopts Wormhole-like switching and Virtual-Cut-Through forwarding

method. The forwarding method which is chosen in a given instance depends on the

level of packet fragmentation. For instance, each router in 3D-ONoC has input buffers

which can store up to four flits by default. When a packet is divided into more than four

flits, 3D-ONoC chooses Virtual-Cut-Through switching. When packets are divided

into less than four flits, the system chooses Wormhole. In other words, when buffer

size is greater than or equal to the number of flits, Virtual-Cut-Through is used, but

when buffer size is less than or equal to the number of flits, Wormhole switching is

employed. By combining the benefits of both switching techniques, packet forwarding

can be executed in an efficient way while guaranteeing a small buffer size. As a result

the system performance is enhanced while maintaining a reasonable area utilization

and power consumption.

Figure 4.2 demonstrates the 3D-ONoC 81 bits flit format. The first bit indicates the

tail bit informing the end of the packet. The next seven bits are dedicated to indicate

the Next-Port that will be used by the Look-Ahead-XYZ routing algorithm to define the

direction of the next downstream neighboring node where the flit will be sent to. Then,

three bits are used to store destination information of each xdest, ydest and zdest. Hav-

ing three bits for each destination field allows the network to have a maximum size of

8x8x8 3D-ONoC. But if the network size needs to be extended, the addresses fields
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may also be increased to accommodate a larger network size. Finally the remaining 64

bits are dedicated to store the payload. Since 3D-ONoC is targeted for various appli-

cations, the payload size can be easily modified in order to respect the requirements of

some specific applications. Code.4.2 shows the definition of the 3D-ONoC flit format.

In addition, as we previously stated, the architecture does not provide for a separate

head flit and every flit therefore identifies its destination X, Y, and Z addresses and

carries an additional single bit to indicate whether its a tail flit or not.

Tail Next_Port X-dest Y-dest Payload

0 1 8 11 14 81

1 Bit 7 Bit 3 Bit 3 Bit 64 Bit

Z-dest

17

3 Bit

Figure 4.2: 3D-ONOC flit format.

4.3 Router architecture

The router is considered as the back-bone element in the whole 3D-ONoC design.

The 3D-ONoC router architecture is based upon the 5x5 2D-ONoC router where, as

shown in Fig.4.1, each switch has a maximum number of 7-input by 7-output port,

where 4 ports are dedicated to connect to the neighboring routers in north, east, south

and west direction using the intra-layer links. One port is used to connect the router

to the local computation tile where the packet can be injected into or ejected from the

network. The remaining two ports are added to connect the switch to the upper and

downer layers to ensure the inter-layer communication. As a matter of fact, and as

we previously stated, the number of ports depends on the position of the switch in

the design, since we have to eliminate any unused links that have no connections with
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Figure 4.3: 3D-ONoC pipeline stages: Buffer writing (BW), Routing Calculation and
Switch Allocation (RC/SA) and Crossbar Traversal stage (CT).

other switches in order to reduce power consumption. For example, as it is depicted

in Fig.4.1, switch-000 have only four connected ports (north, east, up and local) and

the remaining three ports (south, west and down) have been disabled since there are no

connections to any neighboring routers along those directions.

Figure.4.3 represents 3D-ONoC switch architecture and that the routing process at

each router can be defined by three main pipeline stages: Buffer writing (BW), Routing

Calculation and Switch Allocation (RC/SA) and finally the Crossbar Traversal stage

(CT).

Observing the Verilog HDL code for the Router module depicted in Code.4.3, 3D-

ONoC contains seven Input-port modules for each direction represented in input-port

module in line 4. This seven modules allocation are defined by the i-loop in line 2,

where each value of i refers to the seven direction (Local, North, East, South, West,
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Up, Down), and NOUT parameter in line 2 refers to the number of ports. The outputted

sw-req signal defining the input port asking the grant and the output port requested

defined by the port-req signal are sent from the seven input port to be an input port for

the Switch allocator as it shown at line 19 and 20 of Code.4.3.

In addition to the Switch-Allocator, the Crossbar module is also defined (line 22-

25). The crossbar circuit takes as input the sw-cntrl from the the switch allocator and

data-in coming from the seven input ports.

Code 4.3: Verilog-HDL Code for Router
1 //instantiate input ports

2 for (i=0; i<NOUT; i=i+1) begin:il

3

4 input_port #(NOUT, FIFO_DEPTH , FIFO_LOG2D , FIFO_FULL_LVL) ip

5 (.clk(clk), .reset(reset),

6 .data_in(data_in[‘WIDTH*(i+1)-1:‘WIDTH*i]),

7 .data_out(cbar_data_in[‘WIDTH*(i+1)-1:‘WIDTH*i]),

8 .sw_req(sw_req[i]), .port_req(port_req[NOUT*(i+1)-1:NOUT*i]),

9 .sw_grant(sw_grant[i]), .stop_out(stop_out[i]),

10 .xaddr(xaddr), .yaddr(yaddr), .zaddr(zaddr));

11

12 assign data_sent[i] = |data_out[‘WIDTH*i+‘NEXT_PORT_END:‘WIDTH*i+‘NEXT_PORT_START

];

13 assign tail_sent[i] = data_out[‘WIDTH*i];

14

15 end

16 endgenerate

17

18 sw_alloc #(NOUT) sw_allc(.clk(clk), .reset(reset),

19 .sw_req(sw_req), .stop_in(stop_in), .data_sent(data_sent), .tail_sent(tail_sent),

20 .port_req(port_req), .grant_out(sw_grant), .sw_cntrl(sw_cntrl));

21

22 crossbar #(NOUT, NOUT, ‘WIDTH) cbar(.clk(clk), .reset(reset),

23 .cntrl(sw_cntrl),

24 .data_in(cbar_data_in),

25 .data_out(data_out));

Now we analyze each component of the switch separately. Starting with the Input-port,

the Switch-Allocator and finally Crossbar module.

4.3.1 Input Port

Starting with the Input-port module represented in Fig.4.4 (and where the Verilog

code is represented in Code.4.4), each one of the seven modules is composed of two

main elements: Input buffer and the Route module.
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Figure 4.4: Input-port module architecture.

Code 4.4: Verilog-HDL Code for Input-port
1 //instantiate FIFO

2 fifo #(NOUT, FIFO_DEPTH , FIFO_LOG2D , FIFO_FULL_LVL) ff

3 (.data_in(data_in), .data_out(fifo_data_out),

4 .second_item_nextport(second_fifo_nextport),

5 .enqueue(enqueue), .dequeue(sw_grant),

6 .stop_out(stop_out), .nearly_empty(fifo_nearly_empty),

7 .empty(fifo_empty),

8 .clk(clk), .reset(reset));

9

10 //instantiate lookahead routing module

11 route #(NOUT) rr

12 (.xdest(fifo_data_out[‘XDEST]), .ydest(fifo_data_out[‘YDEST]),.zdest(

fifo_data_out[‘ZDEST]),

13 .xaddr(xaddr), .yaddr(yaddr), .zaddr(zaddr),

14 .nextport(fifo_data_out[‘NEXT_PORT]), .new_nextport(lookahead_route));

Incoming 81 bits flits data-in from different neighboring switches, or from the con-

nected computation tile, are first stored in the Input buffer and waiting to be processed.

This step is considered as the first pipeline stage of the flit’s life-cycle (BW). As it is

illustrated in Code.4.5, arbitration between different flits is managed using FIFO queue

technique. Each input buffer has by default four as depth, which means that it can host

up to four 81 bits flits. Buffers occupy a significant portion of router area but can imply

also increase in overall performance.
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Code 4.5: Verilog-HDL Code for Input-FIFO-buffer
1 always @(posedge clk) begin

2 if (!reset) begin //If out of reset

3 if (enqueue) begin //Write a flit to the buffer

4 fifo[tail_ptr] <= data_in;

5 tail_ptr <= tail_ptr + 1;

6 end

7 if (dequeue) begin //Read a flit from the buffer

8 head_ptr <= head_ptr + 1;

9 end

10 //nearly full signal = stop_out,

11 if (((tail_ptr + FULL_LVL[LOG2D -1:0] + 1’b1)==head_ptr) && enqueue && !dequeue)

begin

12 stop_out <= 1’b1;

13 end

14 if (((tail_ptr + FULL_LVL[LOG2D -1:0])==(head_ptr+1’b1)) && !enqueue && dequeue)

begin

15 stop_out <= 1’b1;

16 end

17 if ((tail_ptr + FULL_LVL[LOG2D -1:0])==head_ptr)begin

18 if ((enqueue && !dequeue) || (!enqueue && dequeue))begin

19 stop_out <= 1’b0;

20 end

21 ...

After being stored, the flit is fetched form the FIFO buffer and advanced to the next

pipeline stage (RC/SA). The destination addresses (xdest, ydest and zdest) are then

decoded in order to extract the information about the destination address in addition

to the Next-Port pre-calculated in the previous upstream node. Those values are then

sent to the Route circuit where La-XYZ routing scheme is executed to determine the

New-next-Port direction for the next downstream node. At the same time the Next-Port

identifier is also used to generate the request for the Switch-Allocator asking for grant

to use the selected output port via sw-req and port req signals.

As we stated in Section.3, 3D-ONoC uses lookahead routing scheme LA-XYZ for

fast routing. This scheme is based upon the dimension order (DOR) X-Y-Z static

routing algorithm, where the X,Y and Z coordinates are satisfied in order. X-Y-Z

routing is presented as the vertically balanced routing algorithm which has the best

performance, since it’s simple to implement, it is free of deadlock and live-lock, and

also because packet ordering is not required. In addition to that each flit additionally
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carries one hot encoded Next-Port identifier used by the downstream router. Since LA-

XYZ is based upon XYZ routing, it is considered also as a minimal routing where each

flit from any source and destination pair traverses the minimal number of hops.

To understand better how the Next-Port is decided, we designed the Verilog HDL

code depicted in Code.4.6. As it is shown in this Code (line 1-12), the routing decision

starts first by finding the next node’s address. It is done by evaluating the actual Next-

Port fetched from the flit, which gives a hint about which neighboring node the flit

is going to be routed to and eventually knowing its exact address by incrementing

xaddr or yaddr or zaddr. Depending on the resulted next address from the later step,

the new Next-Port can be determined. As demonstrated between line 15 and 31 in

Code.4.6, LA-XYZ compares the resulted next node’s address (next-xaddr, next-yaddr

and next-zaddr) and the destination addresses (xdest, ydest and zdest). At the end of the

execution of this comparison, the new Next-Port (defined by route in Code.4.6) can be

determined then embedded in the flit back again to be sent to the next node as Fig.4.4

illustrates.

Code 4.6: Verilog HDL implementation of LA-XYZ routing algorithm.
1 //assign next addresses

2 if (nextport == ‘EAST) next_xaddr = xaddr + 1’b1;

3 else if (nextport == ‘WEST) next_xaddr = xaddr - 1’b1;

4 else next_xaddr = xaddr;

5

6 if (nextport == ‘NORTH) next_yaddr = yaddr + 1’b1;

7 else if (nextport == ‘SOUTH) next_yaddr = yaddr - 1’b1;

8 else next_yaddr = yaddr;

9

10 if (nextport == ‘UP) next_zaddr = zaddr + 1’b1;

11 else if (nextport == ‘DOWN) next_zaddr = zaddr - 1’b1;

12 else next_zaddr = zaddr;

13

14 //evaluate next port

15 if (next_xaddr == xdest)

16 begin if (next_yaddr == ydest)

17 begin if (next_zaddr == zdest) route = ‘SELF;

18 else begin if(next_zaddr < zdest) route = ‘UP;

19 else route = ‘DOWN;

20 end

21 end

22 else begin
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23 if(next_yaddr < ydest) route = ‘NORTH;

24 else route = ‘SOUTH;

25 end

26 end

27 else begin

28 if (next_xaddr < xdest) route = ‘EAST;

29 else route = ‘WEST;

30 end

31 end

If we take a look at Fig.4.1, and assume for example that a flit coming from switch-

200 enters switch-201 (where the xaddr, yaddr and zaddr addresses are defined by 001,

000 and 001 respectively) trying to reach its destination node switch-313 (where the

xdest, ydest and zdest addresses are defined by 011, 001 and 011 respectively). This

flit caries ”EAST” as a nextport identifier pre-calculated in the previous node (switch-

200). According to the he first phase of the LA-XYZ algorithm, next-xaddr= xaddr+1

which is the x-address of switch-202. In the second phase of the algorithm, next-xaddr

is then compared with xdest. The comparison result will determine ”EAST” as route

(the new Next-Port for switch-202) which will be re-updated in the flit.

In order to enable the bypass technique, two signals are issued from the buffer to

give information about the buffer occupancy status. These two signals are fifo-empty

and fifo-nearly-empty. When the fifo-empty signal is issued, it means that the input

buffer is empty and when an incoming flit arrives to the input port, it doesn’t need to

be stored in the buffer. Then overlapping the buffering stage and advancing to the next

stage (RC and SA).

4.3.2 Switch Allocator

The sw-req and port req signals issued from each Input-port module, and giv-

ing information about the desired output-port, are transmitted to the Switch-Allocator

module to perform the arbitration between the different requests. When more than two
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Figure 4.5: Switch allocator circuit.

input flits from different input-ports are requesting the same output-port at the same

time, the Switch-Allocator manages to decide which output-port should be granted to

which input-port, and when this grant should be allocated. This process is done in

parallel with the routing computation done in Input-port to form the second pipeline

stage.

As indicated in Fig.4.5, the switch allocator circuit has two output signals: one is

sw-cntrl and the second one is grant-out. sw-cntrl contains all the information needed

by the crossbar circuit about the scheduling result as it is explained later. On the

other hand, the grant-out is sent back to the Input-port module and gives the grant

to the appropriate input-port to send its data to the crossbar before reaching its next

neighboring node. Figure4.5 shows that the switch allocator module is composed of

two main components: Stall-Go flow control and Matrix-Arbiter Scheduling.
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Stall-Go flow control module: Like the other flow control schemes, Stall-Go mod-

ule manages the case of the buffer overflow. When the buffer exceeds its limitation

on hosting flits (if the number of flits waiting for process are greater than the depth

of the buffer), a flow control has to be considered to prevent from buffer overflow and

eventually from packet dropping. Thus, allocating available resources to packets as

they progress along their route. We chose Stall-Go flow control since it proves to be

a low-overhead efficient design choice showing remarkable performance comparing

to the other flow control schemes such us ACK-NACK or Credit based flow control.

Like the other flow control schemes, Stall-Go module manages the case of the buffer

Figure 4.6: Stall-Go flow control mechanism.

overflow. When the buffer exceeds its limitation on hosting flits (if the number of

flits waiting for process are greater than the depth of the buffer), a flow control has to

be considered to prevent from buffer overflow and eventually from packet dropping.

Thus, allocating available resources to packets as they progress along their route. We

chose Stall-Go flow control since it proves to be a low-overhead efficient design choice

showing remarkable performance comparing to the other flow control schemes such us

ACK-NACK or Credit based flow control [36].
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Figure 4.7: Stall-Go flow control State machine.

Code 4.7: Verilog HDL of the state machine decision
1 always @(posedge clk) begin

2

3 if (!reset) begin

4 if ((state==‘GO) && stop_in && data_sent)

5 state <= ‘SENT1;

6 if (state==‘SENT1) begin

7 if (stop_in && !data_sent)

8 state <= ‘GO;

9 if (!stop_in && data_sent)

10 state <= ‘STOP;

11 end

12

13 if ((state==‘STOP) && stop_in) // stop_in = nearly_full

14 state <= ‘GO;

15 end else

16 state <= ‘GO;

17 end

18

19 assign blocked = ( ((state==‘STOP) && !stop_in) || ((state==‘SENT1) && !stop_in &&

data_sent) );

Stall-Go module, where the mechanism is represented in Fig.4.6, uses two control

signals: nearly-full and data-sent. nearly-full signal is sent to the upstream node in-

dicating that the input-buffer is almost full and only one slot is still available to host

one last flit. After receiving this signal, the FIFO buffers suspend sending flits. The

data-sent signal is issued when the flit is transmitted. Figure.4.7 represents the Stall-

Go flow control state machine which aims to generate the nearly-full and data-sent

signals. State GO indicates that the buffer is still able to host two or more flits. State
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SENT indicates that the buffer can host only one more flit, and finally when we move

to state STOP, it means that the buffer can not store anymore flits. The state machine

is generated as indicated in Code.4.7 that shows the Verilog-HDL code explaining the

main state transitions using nearly-full and data-sent signals.

Matrix-Arbiter scheduling module: The second component is the scheduling mod-

ule. As shown in Fig.6, the input signals sw-req and port-req indicate the input-ports

demanding the access, and which output-ports are they requesting respectively. De-

pending on these requests, the arbiter allocates the convenient output-port to its de-

mander. Since 3D-ONoC transmits only one flit in every clock cycle, then when two

input-ports or more are competing for the same output-port, the presence of a schedul-

ing scheme is required in order to prevent from any possible conflict. The switch

allocator in our design employs a least recently served priority scheme via the packet

transmit layer. Thus, it can treat each communication as a partially fixed transmission

latency [37], [38]. Matrix arbiter is used for a least recently served priority scheme.

In order to adopt Matrix arbiter scheduling for 3D-ONoC, we implemented a 6x6

scheduling-matrix. The scheduling module accepts all the requests from the different

connected input-ports and their requested output-ports. Then it assigns priority for each

request. In order to give the grant to the convenient input-port, the scheduling module

verifies the scheduling-matrix, compares the priorities of the input-ports competing for

the same output-port, and gives the grant to the one possessing the highest priority in

the matrix. Following this basis, the scheduling module should make the input-port,

which got the last grant to use the competed output-port, the lowest priority for the next

round of arbitration, and then increases the priority of the rest of the remaining ports.
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When there are no requests, the priority is unchanged. Based on these assumptions,

we are sure that every input-port will be served and get the grant to use the output-port

in a fair way.

Figure 4.8: Scheduling-Matrix priority assignment.

Code 4.8: Matrix Arbiter code
1 generate

2 for (i=0; i<SIZE; i=i+1) begin:ol1

3 for (j=0; j<SIZE; j=j+1) begin:il1

4 if (j==i)

5 assign pri[i][j]=request[i];

6 else

7 if (j>i)

8 assign pri[i][j]=!(request[j]&&state[j*SIZE+i]);

9 else

10 assign pri[i][j]=!(request[j]&&!state[i*SIZE+j]);

11 end

12 assign grant[i]=&pri[i];

13 end

14 endgenerate

15

16 generate

17 for (i=0; i<SIZE; i=i+1) begin:ol2

18 for (j=0; j<SIZE; j=j+1) begin:il2

19 assign new_state[j*SIZE+i]=(success&&((state[j*SIZE+i]&&!grant[j])||(grant[i

])))||(!success&&state[j*SIZE+i]);

20 end

21 end

22 endgenerate

23

24 always@(posedge clk) begin

25 if (reset) state <=-1;

26 else begin

27 if (|request) state<=new_state;

28 end

29 end

Figure.4.8 illustrates a simple example of how our scheduling mechanism works.

Each row of the matrix represents the competing input requests and their priorities.

The scheduling-module starts by examining the priorities of each input-port request.
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After the highest priority input is served, the arbiter updates the scheduling-matrix by

making the request which got the last grant, the lowest priority for the next round of

arbitration, by inversing its row and column.

The matrix shown in Fig.4.8 (a) illustrates the initial scheduling-matrix where

North, Up and Down input-ports are asking the grant to eject their flits to the Local

port. Observing this figure, the North request (highlighted in red) has higher priori-

ties compared with the remaining two requests. As a result the Arbiter gives the grant

to the North request. Then North becomes the lowest priority (as it is underlined by

a green line) and the remaining two requests priorities are incremented. In the next

round (Figure.4.8 (b)), Down seems to have a higher priority than the Up request. The

arbiter then gives the grant to Down and make its priority the lowest. Finally, as it

is shown in Fig.4.8 (c), the Up request having the highest priority among the others,

is giving the grant to eject its data to the requested output port. Code.4.8 depicts the

Verilog HDL code for the implementation for the Matrix arbiter.

4.3.3 Crossbar

The switch allocator, sends the issued control signal to the crossbar circuit to com-

plete the third and final Crossbar Traversal pipeline stage (CT), where information

about the selected input port and the Next-Port are embedded, and then stored in the

sw-cntrl-reg register as it is shown in Fig.4.9. After that, the crossbar fetches these

information, receives the data from the FIFO buffer of the selected input-port. Then,

it allocates the appropriate channel for transmission to the decoded Next-Port. Finally,

the crossbar sends the flit to its destination as illustrated in Fig.4.9.

When all the flits are transmitted, the tail bit informs the switch allocator via a
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Figure 4.9: Crossbar circuit.

Code 4.9: Code for Crossbar circuit
1 //crossbar.v

2 generate

3 for (i=0;i<NOUT;i=i+1) begin:output_loop

4 mux_out #(NIN, WIDTH) cbar_mux(.cntrl(cntrl_reg[NIN*(i+1)-1:NIN*i]), .data_in(

data_in), .data_out(data_out[WIDTH*(i+1)-1:WIDTH*i]));

5 end

6 endgenerate

7

8 //mux_out

9 generate

10 //loop over each bit of data

11 for (i=0;i<WIDTH;i=i+1) begin:bit_loop

12 assign data_out[i] = mux(cntrl, data_bits[i]);

13 //loop over each input channel

14 for (j=0;j<n_in;j=j+1) begin:input_loop

15 assign data_bits[i][j] = data_in[WIDTH*j+i];

16 end

17 end

18 endgenerate

19

20 function mux;

21 input [n_in -1:0] cntrl;

22 input [n_in -1:0] data_in;

23 integer i;

24

25 begin

26 mux = 0;

27 for (i=0; i<n_in; i=i+1) begin

28 if(cntrl[i] == 1’b1) mux = data_in[i];

29 end

30 end

31 endfunction // mux

tail-sent signal that the packet transmission is completed and can free the used channel
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so it can be exploited by another packet. Code.7.7 depicts the Verilog HDL code for

the implementation for the Crossbar circuit.

4.4 Network interface

(a)

(b)

Figure 4.10: Network Interface Architecture: (a) Transmitter (b) Receiver

In order to enable real applications to be run on 3D-ONoC, we added a Network
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Interface (NI) to every router as a medium interface between the different PEs (Proces-

sor, memory, I/O etc...) that can be connected, and our network. In this research, we

tested 3D-ONoC using JPEG encoder application [39]. For that reason, we designed

both Transmitter and Receiver NI in every switch of our network. We set the packet

size to 99 bits which includes three 33 bits flits. Each flit contains 17 bits defining the

routing information (xdst, ydst, zdst, Next-Port and tail) and the remaining 16 bits are

dedicated for the payload.

Figure.4.10(a) shows the architecture of the Transmitter-NI. It receives a 32 bits

data from the JPEG module that will be divided into two portions representing the

payload of the two first flits of the packet. The payload of the third flit contains the

10 bits control signal from the JPEG module, and the remaining six bits are unused.

As shown in Fig.4.10 (a) , a Control Module manages the fits generation. It adds the

convenient destination addresses and Next-Port direction to each flit, and marks the end

of the packet by adding the (tail bit to the third final flit. The generated flits are then

injected into the network. The Verilog HDL implementation of the Transmitter-NI is

depicted in Code.4.10.

Code 4.10: Verilog-HDL sample code for the sending NI
1 module NI_02_send (clk, rst, enable, data_in, flit);

2 input clk, rst;

3 input enable;

4 input [23:0] data_in;

5

6 output reg [32:0] flit;

7

8 always @(state)begin

9 case(state)

10

11 ‘f0:begin

12 if(cntrl) begin

13 next_state <= ‘f1;

14 flit <= 33’hz;

15 end

16 else next_state <= ‘f1;

17 end

18

19 ‘f1:begin
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20 next_state <= ‘f3;

21 flit[0] <= ‘header;

22 flit[7:1] <= ‘EAST;

23 flit[16:8] <= ‘dest_03;

24 flit[32:17] <= data_in[23:8];

25 end

26

27 ‘f2:begin

28 if(cntrl) begin

29 next_state <= ‘f3;

30 flit[0] <= ‘header;

31 flit[7:1] <= ‘EAST;

32 flit[16:8] <= ‘dest_03;

33 flit[32:17] <= data_in[23:8];

34 end

35 else next_state <= ‘f2;

36 end

37

38 ‘f3:begin

39 next_state <= ‘f4;

40 flit[0] <= ‘header;

41 flit[7:1] <= ‘EAST;

42 flit[11:8] <= ‘dest_03;

43 flit[24:17] <= data_in[7:0];

44 flit[32:25] <= 0;

45

46 end

47 ‘f4:begin

48 next_state <= ‘f2;

49 flit[0] <= ‘tail;

50 flit[7:1] <= ‘EAST;

51 flit[16:8] <= ‘dest_03;

52 flit[17] <= enable;

53 flit[32:18] <= 0;

54

55 end

56 default:next_state <= ‘f0;

57 endcase

58 end

On the other side, the Receiver-NI receives the incoming three flits of each packet

ejected from the network, and then stores them into three temporary registers. After

that, as it is shown in Fig.4.10 (b), the 16 bits payload of the first and second flit are

fetched form the temporary registers, reassembled together and finally stored in the

Data-reg register.

Controlled by another Control Module, the complete 32 bits resulted Data and the

10 bits control signals, are fetched the sent to their attached JPEG module after the

complete packet is received. The Verilog HDL implementation of the Transmitter-NI

is depicted in Code.4.11
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Code 4.11: Verilog-HDL sample code for the receiving NI

1 module NI_03_rec (clk, rst, flit, data_out, enable);

2

3 //input output

4 input clk, rst;

5 input [32:0] flit;

6 output reg [23:0] data_out;

7 output reg enable;

8 //reg

9 reg [15:0] data_high;

10 reg [7:0] data_low;

11 reg ena;

12

13 reg [1:0] state;

14 reg [1:0] next_state;

15 reg [32:0] preflit;

16

17 reg [23:0] pre_data_out;

18 //state

19 always @(posedge clk)begin

20 if(rst==1)state <= ‘f0;

21 else begin

22 preflit <= flit;

23 state <= next_state;

24 end

25 end

26

27 //state

28 always @(state or flit)begin

29 case(state)

30

31 ‘f0:begin

32 if(flit!=preflit)begin

33 next_state <= ‘f1;

34 data_high <= 0;

35 data_low <= 0;

36 end

37 else next_state <= ‘f1;

38 end

39 ‘f1:begin

40 if(flit!=preflit)begin

41 next_state <= ‘f2;

42 data_high <= flit[32:17];

43 end

44 else next_state <= ‘f1;

45 end

46 ‘f2:begin

47 if(flit!=preflit)begin

48 next_state <= ‘f3;

49 data_low <= flit[24:17];

50 end

51 else next_state <= ‘f2;

52 end

53 ‘f3:begin

54 if(flit!=preflit)begin

55 next_state <= ‘f1;

56 ena <= flit[17];

57 pre_data_out <= {data_high , data_low};

58 end

59 else next_state <= ‘f3;

60 end

61 default:next_state <= ‘f0;

62 endcase

63 end
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Based on this network interface, another one has been designed to satisfy the require-

ments of another application that we used for evaluating 3D-ONoC, which is Matrix-

Multiplication. We chose the matrix multiplication as one of our evaluating target,

since it is wildly used in scientific application. Due to its large multi-dimensional data

array, it is extremely demanding in computation power and meanwhile it is potential to

achieve its best performance in a parallel architecture and doesnt involve synchroniza-

tion [40]. All of these reasons make the Matrix-Multiplication a very suitable applica-

tion to evaluate 3D-ONoC and show its outperforming performance against 2D-ONoC.

Figure 4.11: Chip floor plan for a 2x2x2 3D-ONoC.

By the end of this chapter, we presented the main components of our Mesh based

3D-ONoC system. We explained how the packets are forwarded among the network

using Wormhole-like switching and Virtual-Cut-Through switching policies. We also
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give more details about the router components including the hardware implementation

of our proposed Look-Ahead-XYZ routing algorithm (LA-XYZ). For the flow control,

we demonstrated that 3D-ONoC adopts Stall-Go mechanism in the Switch Allocator

and how this flow control efficiently avoids dropping packets. Examples about the

Matrix-Arbiter scheduling technique are also provided to show its ability to serve all

the request in a fair way. Figure.4.11 shows the chip floor plan for a 2x2x2 3D-ONoC

for the Altera Stratix III EP3SL150F1152C2 chip, and Figure.4.12 shows the RTL

view of the same 2x2x2 3D-ONoC system. Both of these figures are generated using

the QUARTUS II tool after succeeding the correct compilation of the system.
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Chapter 5

Evaluation

Using the JPEG encoder and the Matrix-multiplication applications, in this chapter

we evaluate the hardware complexity of 3D-ONoC in term of area utilization, power

consumption (static and dynamic) and clock frequency. The performance evaluation

is also done by analyzing the execution time, the number of hops and also the number

of stall after the execution of the both of the application. All the results obtained are

analyzed and compared with 2D-ONoC.

5.1 Evaluation methodology

5.1.1 JPEG encoder

Starting with the JPEG encoder application, which is a well-known application that

is widely used application by many researchers. Including some parallel processing,

JPEG might be a good application to evaluate the performance of NoC.

For instance, we took into consideration the task implementation shown in Fig.5.1.For

additional analysis, we made further divisions to the Y:d-q-h, Cb:d-q-h, Cr:d-q-h and

FIFO modules, and the resulted task graph is illustrated in Fig.5.2. This extension aims

to increase the network size and deploy more parallel execution of the different mod-

ules of the application, and then can take advantage of the scalability and the reduced
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Figure 5.1: Task graph of the JPEG encoder

number of hops offered by our design.

As we analyze the modified task graph represented in Fig.5.2, we noticed that

the communication bandwidth between DCT, Quantization and Huffman modules are

very high (640 bits) compared with those found between the different other modules

of the application (8, 24 and 32 bits). This bandwidth gap will cause unbalanced traffic

distribution especially when implemented on hardware, since we will increase the link

size in addition to the size and number of flits in the packet format, causing higher

latency and thermal power problem. All these factors, will eventually decrease the

overall performance of our system, instead of enhancing it.

For all the reasons previously stated, we will implement the first task graph rep-

resented in Fig.5.1 and we randomly mapped the tasks into 2D-ONoC (2x4) and 3D-

ONoC (2x2x2) as shown in Fig.5.3 (a) and Fig.5.3 (b) respectively.
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Figure 5.2: Extended task graph of the JPEG encoder
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(a) (b)

Figure 5.3: JPEG encoder mapped onto: (a) 2x4 2D-ONoC (b) 2x2x2 3D-ONoC

5.1.2 Matrix multiplication

Figure 5.4: Matrix multiplication example: The multiplication of an ixk matrix A by a
kxj matrix B results in an ixj matrix R.

First we assume that an ixk matrix A has i rows and k columns, where Aik is an

element of A at the i-th row and k-th column. As it demonstrated in Fig.5.4, an ixk

matrix A can be multiplied by a kxj matrix B to obtain an ixj matrix R. Figure.5.5

presents how the matrix R can be obtained according to Formula 4.1.

Ri, j =

k−1∑
n=0

Ai,n.Bn,k (5.1)

When implemented onto 3D-ONoC, and for seek of convenience or without loss in

generality, we can assume that all the matrices are square and having nxn size. In

3D-ONoC, each element of the three matrices is assigned to a computation module

which is connected to one router. As a result the number of routers connected to the

network is the sum of all the elements of three matrices which is equal to 3n2. Each
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Figure 5.5: Simple example demonstrating the Matrix multiplication calculation.

element of the matrix B receives n flits from n different elements of the matrix A in

order to make the multiplication. Then, each element of the matrix B sends n flits to n

different elements of the matrix R where all the received values are summed then the

final resulted value is outputted. In total 2n3 flits travel the network for a nxn square

matrix multiplication.

As we previously stated at the beginning of this chapter, we want to evaluate the

number of hops traversed by all the flits generated by the Matrix application. For this

matter we define:

3D Hopsi = |x desti − x srci| + |y desti − y srci| + |z desti − z srci| (5.2)

Where 3D Hopsi is the number of hops consumed for one single flit i ∈ {0,1,2,....,2n3-

1} (the set of all flits), traveling from one source node (where the address is defined by

x dest, y dest and z dest) to its destination node (x src, y src and z src). As a result,

we can say that the number of hops consumed by an nxn square matrix multiplication

can be defined by:

3D Total Hops =
2n3−1∑
k=0

3D Hopsk (5.3)
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According to Formula 4.2 and 4.3, the number of hops for 2D-ONoC can be then

extracted and defined as follow:

2D Hopsi = |x desti − x srci| + |y desti − y srci| (5.4)

2D Total Hops =
2n3−1∑
k=0

2D Hopsk (5.5)

For the evaluation, we took the case of 3x3, 4x4 and finally a 6x6 matrix multi-

plication. For each one of these three cases, two mapping approaches has been taken

into consideration. For instance, we take the example of 3x3 matrix multiplication.

We randomly mapped the elements of the three matrices into 2D-ONoC (3x9) and

3D-ONoC (3x3x3) using an optimistic mapping approach as presented in Fig.5.6 (a).

In this mapping we tried to make the communication distance as close as possible, in

order to reduce the number of hops which eventually will lead to decrease the latency.

Figure.5.6 (b), on the other hand, illustrates a pessimistic task mapping approach. The

second approach tries to increase the communication path of the different flits travers-

ing the network.
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In order to obtain an easier and more accurate evaluation both of 3D-ONC is im-

plemented in Verilog HDL. We evaluated and compared the hardware complexity in

terms of area, power consumption (static and dynamic) and clock frequency and also

the performance in term execution time, the number of hops, and also we counted the

number of stop-signal generated from our Stall-Go flow control mechanism. All the

evaluation results obtained for 3D-ONoC are than compared to 2D-ONoC system.

We chose the Stratix III FPGA as a target device and then the synthesis was done

by the Quartus II software, which both are provided by Altera inc.. We used PowerPlay

Power Analyzer tool in QuartusII in order to evaluate the power consumption gener-

ated. This design approach results in more accurate speed, area and power consump-

tion evaluation. The use of FPGA is a very convenient choice for our design, thanks to

its simplicity and the ability of reconfigurability. In addition to that, it provides faster

simulation than the traditional software emulation while maintaining a cheaper cost

than implementing with real processors. Table.5.1 presents the parameters used for the

synthesis of 3D-ONoC design

5.2 Evaluation results

5.2.1 Hardware complexity evaluation

As we previously stated, the goal of this section is to provide a hardware evalua-

tion for our 3D-ONoC including area, power consumption, and clock frequency when

simulated with both JPEG encoder and Matrix multiplication applications.

Table.5.2 illustrates the hardware evaluation results obtained. The results show that

the logic utilization of 3D-ONoC is increased by an average of 37% compared to the

2D design. The increased number of ALUTs can be explained by the fact that the
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Table 5.1: Simulation parameters.

Parameters 2D-ONoC 3D-ONoC

Network Size
JPEG 2x4 2x2x2

(Mesh)
Matrix (3x3) 3x9 3x3x3
Matrix (4x4) 6x8 4x4x3
Matrix (6x6) 9x12 6x6x3

Packet size
JPEG 3 flits 3 flits
Matrix 1 flit 1 flit

Flit size
JPEG 30 bits 33 bits
Matrix 35 bits 30 bits

Header size
JPEG 12 bits 17 bits
Matrix 14 bits 17 bits

Payload size
JPEG 16 bits 16 bits
Matrix 21 bits 21 bits

Buffer Depth 4 4
Switching Wormhole-like Wormhole-like

Flow control Stall-Go Stall-Go
Scheduling Matrix-Arbiter Matrix-Arbiter

Routing LA-XY LA-XYZ
Target Device Altera Stratix III Altera Stratix III

3D-ONoC router has two additional ports and a larger crossbar than 2D-ONoC. The

additional number of ports incurs additional buffers, which is costly in term of area.

In term of clock speed 3D ONoC under-performs the 2D-ONoC architecture by

16% on average due to the increased hardware complexity. While the power static

consumption is increased with 3D-ONoC with almost 14% for the same additional

hardware reasons, the dynamic power on the other hands is decreased in average of

16% while executing JPEG and the two mapping approaches foe each of the three

matrix multiplications. As a conclusion, the total power consumption is decreased

with nearly 1.4%.

Many factors affect the dynamic power in FPGA, such us capacitance charging,

supply voltage and clock frequency. Since the first two factors are the same for both
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Table 5.2: 3D-ONoC hardware complexity compared with 2D-ONoC.
Application Area (ALUTs) Power(mW) Speed(MHz)

2D 3D 2D 3D 2D 3D
Static Dynamic Total Static Dynamic Total

JPEG 28.401 30.382 811.63 4.27 815.9 769.13 4.01 773.14 193.8 160.72
Matrix 3x3 18.012 30.954 969.84 332 1301.84 1032.14 260 1292.14 158.73 130.01
Matrix 4x4 36.393 61.157 1073.52 495.2 1568.72 1055.65 410 1452.65 146.56 101.41
Matrix 6x6 89.576 144.987 1113.29 580 1693.29 1051.06 450.2 1501.26 98.85 98.1

3D and 2D ONoC designs, and only the clock frequency is different between them,

we can say that the reduction of the clock frequency had an impact on the reduction

of the dynamic power. Besides that the clock frequency reduction, we believe that the

reduction of number of hops (that will be explained in the next section) also plays an

important role in the reduction of dynamic power. In fact, when the number of hops is

reduced it means that the flit has less hops, shorter path which eventually means less

buffering, routing and scheduling. All these factors lead to reduce the dynamic power

when using 3D-ONoC when compared with 2D system.

5.2.2 Performance analysis evaluation

For the performance evaluation, we run each of the four applications. Then we

evaluated the execution time, the number of hops and the number of stop-signal of

each one of them after verifying the correctness of the resulted data.

Starting with the execution time, we run each of the four applications on 3D-ONoC

and 2D-ONoC. Figure.5.7 demonstrates the execution time results. Taking a closer

look at the JPEG application results, we may see that there is a slight improvement of

1.4% with 3D-ONoC when compared with the 2D architecture. This slight improve-

ment can be explained by many reasons.

First, JPEG is a small application which we could map into only eight nodes. That
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is a quiet small number to exploit the benefits of a 3D-NoC. Seconds, when observing

the task graph of JPEG (previously shown in Fig.5.1), JPEG has indeed some tasks

working in parallel(Y:d-q-h, Cb:d-q-h and Cr:d-q-h), but at the same time we can see

that FIFO module is dependent of those three tasks. Another reason is, the JPEG

computation modules involve heavy computation. This leads to decrease the clock

frequency of the entire system in a very inconvenient way for 3D-ONoC. The perfor-

mance of 3D-ONoC is then hided and can’t be taken advantage of. All of those reasons

have an important impact on the performance of the 3D-ONoC. JPEG might be a very

appropriate application to show the out performance of NoC over the traditional inter-

connect systems (such us bus-based system or P2P), but when we talk about 3D-ONoC

that is targeted for hundreds of cores which is dedicated to a large number of cores with

higher parallelism tasks.

Figure 5.7: Execution time comparison between 3D and 2D ONoC.

On the other part, when evaluated with the Matrix multiplication application, 3D-

ONoC shows a greater performance and decreases the execution time for about 35%,
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33% and 41% for each of 3x3, 4x4 and 6x6 matrix respectively. In total 3D-ONoC

reduces the execution time for one single Matrix multiplication to up to 36% when

compared with 2D-ONoC. As we stated previously, due to the fact that the Matrix

multiplication has a larger data array, higher number of parallel tasks with less de-

pendency between them, Matrix multiplication shows greater performance than JPEG.

While the JPEG is mapped onto 8 nodes only, the matrix multiplication can reach the

108 nodes for the 6x6 matrix size. These factors are very suitable to show the per-

formance enhancement when adopting 3D-ONoC. This enhancement can be related to

the reduction of number of hops that offers 3D-ONoC.

Code 5.1: Verilog-HDL code for hops number count
1 for (i=1;i<=3;i=i+1)begin

2 for (j=1;j<=3;j=j+1)begin

3 for (k=1;k<=3;k=k+1)begin

4 #200000

5 // ***************Hop count from A to B***************

6 if ((A_adress [i][j][2:0])>(B_adress [j][k][2:0]))

7 Total_hops= Total_hops+ ((A_adress [i][j][2:0])-(B_adress [j][k][2:0]));

8 else

9 Total_hops= Total_hops+ ((B_adress [j][k][2:0])-(A_adress [i][j][2:0]));

10

11 if ((A_adress [i][j][5:3])>(B_adress [j][k][5:3]))

12 Total_hops= Total_hops+ ((A_adress [i][j][5:3])-(B_adress [j][k][5:3]));

13 else

14 Total_hops= Total_hops+ ((B_adress [j][k][5:3])-(A_adress [i][j][5:3]));

15

16 if ((A_adress [i][j][8:6])>(B_adress [j][k][8:6]))

17 Total_hops= Total_hops+ ((A_adress [i][j][8:6])-(B_adress [j][k][8:6]));

18 else

19 Total_hops= Total_hops+ ((B_adress [j][k][8:6])-(A_adress [i][j][8:6]));

20

21 // ***************Hop count from B to R***************

22 if ((B_adress [i][j][2:0])>(R_adress [k][j][2:0]))

23 Total_hops= Total_hops+ ((B_adress [i][j][2:0])-(R_adress [k][j][2:0]));

24 else

25 Total_hops= Total_hops+ ((R_adress [k][j][2:0])-(B_adress [i][j][2:0]));

26

27 if ((B_adress [i][j][5:3])>(R_adress [k][j][5:3]))

28 Total_hops= Total_hops+ ((B_adress [i][j][5:3])-(R_adress [k][j][5:3]));

29 else

30 Total_hops= Total_hops+ ((R_adress [k][j][5:3])-(B_adress [i][j][5:3]));

31

32 if ((B_adress [i][j][8:6])>(R_adress [k][j][8:6]))

33 Total_hops= Total_hops+ ((B_adress [i][j][8:6])-(R_adress [k][j][8:6]));

34 else

35 Total_hops= Total_hops+ ((R_adress [k][j][8:6])-(B_adress [i][j][8:6]));

36 end

37 end

38 end
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Figure.5.8 show the variation of the number of hops between 3D-ONoc and 2D-ONoC

with 3x3, 4x4 and 6x6 matrix multiplication using pessimistic and optimistic mapping.

The number of hops can be calculated using the Verilog code depicted in Code.5.1.

This portion of code is added to the test bench that performs the calculation.

When we analyze this figure, we may see that 3D-ONoC reduces the number of

hops compared with the 2D system with an average percentage of 42%, 31% and 47%

3x3, 4x4 and 6x6 matrices respectively having a total number of hops reduction of

40% over the 2D architecture. This can significantly reduce the execution time, since

flits have fewer hops to traverse to reach their destination.

Another reason contributing on the performance of 3D-ONoC is the reduction of

the traffic congestion. This can be seen by observing the Stall-Go flow control and

the number of stop-signal generated by each Matrix Multiplication. To execute this

calculation, we added a small portion of code (Code.5.2) at the end at the end of the

3D-ONoC module, that uses the net-stop-out signal issued from the flow control and

calculates the total stall count.

Code 5.2: Verilog-HDL code defining the flit structure
1 // 3D-ONoC top module: network.v

2

3 ...

4 ...

5 always @(reset) begin

6 if (reset) count <= 0;

7 end

8

9

10 always @(net_stop_out)

11 begin : stop

12 for (j=0;j<Y_WIDTH;j=j+1)begin

13 for (k=0;k<X_WIDTH;k=k+1)begin

14 for (l=0;l<NOUT;l=l+1)begin

15 if (net_stop_out[k][j][l]) count = count+1;

16 end

17 end

18 end

19 end
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Figure 5.9: Stall average count comparison between 3D and 2D ONoC.

As a matter of fact when observing Fig.5.9, we can see that the stall count increase

linearly when we increase the matrix which is related to the number of flits traveling

the network. Even 3D-ONoC can reach up to 77% of stall count reduction over the

2D design with 6x6 Matrix multiplication, the stall count impact cannot be clearly

seen with 3x3 and 4x4 calculation. This can simply explained by the fact that we are

calculating a single matrix multiplication which generates only 54 and 128 flits for

3x3 and 4x4 matrix size respectively. This small number of flits was not enough to

cause any trafiic congestions in 3D-ONoC. For that reason, we decide to extend the

evaluation to calculate not only one Matrix multiplication but also to calculate 2, 3 and

4 different matrices at the same. This aims to increase the number of flits traveling the

network at the same time to cause congestion. Then we evaluate again the average stall

count.

Figure.5.10, depicts the average stall count of both 3D and 2D ONoC when imple-
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mented with 1, 2, 3 and 4 matrix multiplications. When analyzing this figure, the stall

count has been dramatically decreased to 94%, 67% and 59% in average for 3x3, 4x4

and 6x6 matrix Multiplication respectively. In total 3D-ONoC reduces the stall count

to up to 74%.

Figure 5.10: Stall average count comparison between 3D and 2D ONoC with different
traffic loads.

After calculating the stall number, we want to see the impact of increasing the

traffic congestion on the execution time. So evaluate again the execution time of each

Matrix size when performing 1, 2, 3 and 4 matrix multiplications. The result obtained

are shown in Fig.5.11 reduces the execution time to 36%, 39% and 47% for 3x3, 4x4

and 6x6 matrix Multiplication respectively. Then improving the total execution time

reduction from 36%, obtained in the first experience with one matrix multiplication, to

more than 41% when evaluated with heavier traffic load.

As the results mentioned above, 3D-ONoC take advantage of its ability to reduce
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Figure 5.11: Execution time comparison between 3D and 2D ONoC with different
traffic loads.

the number of hops to enhance the performance. In addition, since 3D-ONoC router

has two additional input-output ports, flits traveling the network have better routing

choices which eventually will decrease the congestion that can be caused when using

2D-ONoC, having an important impact on the overall performance of the system. Not

forget to mention, this will improve the traffic balance along the whole network which

plays a very crucial role on the thermal power dissipated from the design.
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Chapter 6

Conclusion and Future Work

3D-ONoC is a natural extension of the 2D-ONoC design previously developed

by our group. In this report we present a hardware design for 3D-OASIS Network-

on-Chip (3D-ONoC) including complete details about the main components of the

design. We also present a preliminary hardware and performance evaluation results

using JPEG encoder Matrix multiplication applications.

Evaluation results show that in term of speed 3D-ONoC under-performs 2D-ONoC

architecture with 16% observing a 37% area utilization penalty and a slight improve-

ment of 1.4% in total power consumption. Despite the increasing hardware complexity,

3D ONoC shows an improvement in term of execution time by reducing the delay to

28% in overall compared to the 2D architecture.

We explained that by the fact that 3D-ONoC decreases the number of hops by 40%

and also the average stall count to 74%. In a second experience we proved that by

increasing the traffic load with the Matrix application, we can enhance the execution

time reduction from 36% obtained with one matrix multiplication to more than 41%

with 1, 2, 3 and 4 matrix multiplications.
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As a future work, we will try to optimize the routing algorithm in order to enhance

the performance of our design. We will try also to optimize the router architecture,

especially the input buffers which is one of the most important reason of the area

penalty. This aims to obtain an enhanced design of 3D-ONoC that increase the per-

formance while keeping the hardware cost balanced and reasonable. Also, a thermal

power study should be done to observe how 3D-ONoC deals with such important per-

formance requirement.
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Chapter 7

3D-OASIS Network-on-Chip with
JPEG encoder and Matrix
Multiplication Verilog-HDL code

3D-OASIS Network-on-Chip with JPEG encoder and Matrix multiplication is im-
plemented in the VerilogHDL code. This appendix includes:

• 2x2x2 3D-ONoC top module network.v, that represents the system topology.

• 3D-ONoC implemented with JPEG encoder. This code includes 3D-ONoC topol-
ogy connected with the different modules of JPEG encoder via the appropriate
transmitter and receiver Network Interfaces.

• 3D-ONoC implemented with 3x3 Matrix multiplication (AxB=R) including:

– One element of Matrix A that sends its own value to three different ele-
ments of Matrix B by adding a tag to each flit to be distinguished later in
Matrix B.

– One element of Matrix B that receives three different values from three
different elements from Matrix A and perform the multiplication with its
own value. Then depending on the tag received with the flit, this Matrix B
element sends its the multiplied value to three different elements of Matrix
R.

– One element of Matrix R that receives three different values from three
different elements from Matrix B and perform the addition before issuing
the final resulted value.

– The system top module that handles connecting the different matrices ele-
ments with 3D-ONoC system.

– The test-bench file that initialize the different control signals, calculates the
number of hops and that receives the resulted Matrix R.
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Code 7.1: Code for 3D-OASIS-NoC Top Module
1 /*

2 *

3 * Top level network - Instantiates X_WIDTH x Y_WIDTH x Z_WIDTH

4 * wormhole routers and interconnects them appropriately

5 *

6 */

7

8 ‘ifndef VCS

9 ‘include "defines.v"

10 ‘endif

11

12 module network(clk, reset,

13 data_in, data_out,

14 stop_in, stop_out);

15

16 //network size

17 parameter X_WIDTH = 2;

18 parameter Y_WIDTH = 2;

19 parameter Z_WIDTH = 2;

20

21 //router parameters

22 parameter NOUT = 7;

23 parameter FIFO_DEPTH = 4;

24 parameter FIFO_LOG2D = 2;

25 parameter FIFO_FULL_LVL = 2;

26

27

28 input clk, reset;

29

30 input [X_WIDTH*Y_WIDTH*Z_WIDTH*‘WIDTH -1:0] data_in;

31 input [X_WIDTH*Y_WIDTH*Z_WIDTH -1:0] stop_in;

32

33 output [X_WIDTH*Y_WIDTH*Z_WIDTH*‘WIDTH -1:0] data_out;

34 output [X_WIDTH*Y_WIDTH*Z_WIDTH -1:0] stop_out;

35

36

37 wire [(‘WIDTH*NOUT)-1:0] net_data_out [X_WIDTH -1:0][Y_WIDTH -1:0][Z_WIDTH

-1:0];

38 wire [(‘WIDTH*NOUT)-1:0] net_data_in [X_WIDTH -1:0][Y_WIDTH -1:0][Z_WIDTH

-1:0];

39 wire [NOUT -1:0] net_stop_out [X_WIDTH -1:0][Y_WIDTH -1:0][Z_WIDTH -1:0];

40 wire [NOUT -1:0] net_stop_in [X_WIDTH -1:0][Y_WIDTH -1:0][Z_WIDTH -1:0];

41

42

43 genvar i, x_pos, y_pos, z_pos;

44

45

46 generate

47

48 //z loop

49 for (z_pos=0; z_pos<Z_WIDTH; z_pos=z_pos+1) begin:z_loop

50

51 //y loop

52 for (y_pos=0; y_pos<Y_WIDTH; y_pos=y_pos+1) begin:y_loop

53

54 //x loop

55 for (x_pos=0; x_pos<X_WIDTH; x_pos=x_pos+1) begin:x_loop

56

57

58

59

60 router #(NOUT, FIFO_DEPTH , FIFO_LOG2D , FIFO_FULL_LVL) rtr(.clk(clk), .reset(

reset),

61 .data_in(net_data_in[x_pos][y_pos][z_pos]), .data_out(net_data_out[x_pos][

y_pos][z_pos]),

62 .stop_in(net_stop_in[x_pos][y_pos][z_pos]), .stop_out(net_stop_out[x_pos][

y_pos][z_pos]),
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63 .xaddr(x_pos[‘L2NET_SIZE -1:0]), .yaddr(y_pos[‘L2NET_SIZE -1:0]), .zaddr(z_pos

[‘L2NET_SIZE -1:0]));

64

65

66 //set up inter-router connections with correct boundary conditions

67 for (i=0; i<NOUT; i=i+1) begin:i0

68

69 //tile interface of router

70 if(i==0) begin

71 assign net_data_in[x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] = data_in[(‘

WIDTH*X_WIDTH*z_pos)+(‘WIDTH*Y_WIDTH*z_pos)+(‘WIDTH*X_WIDTH*y_pos)+(‘WIDTH

*(x_pos+1))-1:(‘WIDTH*X_WIDTH*z_pos)+(‘WIDTH*Y_WIDTH*z_pos)+(‘WIDTH*X_WIDTH

*y_pos)+(‘WIDTH*x_pos)];

72 assign data_out[(‘WIDTH*X_WIDTH*z_pos)+(‘WIDTH*Y_WIDTH*z_pos)+(‘WIDTH*X_WIDTH*

y_pos)+(‘WIDTH*(x_pos+1))-1:(‘WIDTH*X_WIDTH*z_pos)+(‘WIDTH*Y_WIDTH*z_pos

)+(‘WIDTH*X_WIDTH*y_pos)+(‘WIDTH*x_pos)] = net_data_out[x_pos][y_pos][z_pos

][‘WIDTH*(i+1)-1:‘WIDTH*i];

73

74 assign net_stop_in[x_pos][y_pos][z_pos][i] = stop_in[(X_WIDTH*z_pos)+(Y_WIDTH*

z_pos)+(X_WIDTH*y_pos)+x_pos];

75 assign stop_out[(X_WIDTH*z_pos)+(Y_WIDTH*z_pos)+(X_WIDTH*y_pos)+x_pos] =

net_stop_out[x_pos][y_pos][z_pos][i];

76 end

77

78 //north edge of router

79 if(i==1) begin

80 if(y_pos==Y_WIDTH -1) begin

81 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] = 0;

82 assign net_stop_in [x_pos][y_pos][z_pos][i] = 1’b1;

83 end else begin

84 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] =

net_data_out[x_pos][y_pos+1][z_pos][‘WIDTH*(3+1)-1:‘WIDTH*3];

85 assign net_stop_in [x_pos][y_pos][z_pos][i] = net_stop_out[x_pos][y_pos+1][

z_pos][3];

86 end

87 end

88

89 //east edge of router

90 if(i==2) begin

91 if(x_pos==X_WIDTH -1) begin

92 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] = 0;

93 assign net_stop_in [x_pos][y_pos][z_pos][i] = 1’b1;

94 end else begin

95 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] =

net_data_out[x_pos+1][y_pos][z_pos][‘WIDTH*(4+1)-1:‘WIDTH*4];

96 assign net_stop_in [x_pos][y_pos][z_pos][i] = net_stop_out[x_pos+1][y_pos][

z_pos][4];

97 end

98 end

99

100 //south edge of router

101 if(i==3) begin

102 if(y_pos==0) begin

103 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] = 0;

104 assign net_stop_in [x_pos][y_pos][z_pos][i] = 1’b1;

105 end else begin

106 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] =

net_data_out[x_pos][y_pos -1][z_pos][‘WIDTH*(1+1)-1:‘WIDTH*1];

107 assign net_stop_in [x_pos][y_pos][z_pos][i] = net_stop_out[x_pos][y_pos -1][

z_pos][1];

108 end

109 end

110

111 //west edge of router

112 if(i==4) begin

113 if(x_pos==0) begin

114 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] = 0;

115 assign net_stop_in [x_pos][y_pos][z_pos][i] = 1’b1;
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116 end else begin

117 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] =

net_data_out[x_pos -1][y_pos][z_pos][‘WIDTH*(2+1)-1:‘WIDTH*2];

118 assign net_stop_in [x_pos][y_pos][z_pos][i] = net_stop_out[x_pos -1][y_pos][

z_pos][2];

119 end

120 end

121 //up edge of router

122 if(i==5) begin

123 if(z_pos==Z_WIDTH -1) begin

124 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] = 0;

125 assign net_stop_in [x_pos][y_pos][z_pos][i] = 1’b1;

126 end else begin

127 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] =

net_data_out[x_pos][y_pos][z_pos+1][‘WIDTH*(6+1)-1:‘WIDTH*6];

128 assign net_stop_in [x_pos][y_pos][z_pos][i] = net_stop_out[x_pos][y_pos][

z_pos+1][6];

129 end

130 end

131

132 //down edge of router

133

134

135 if(i==6) begin

136 if(z_pos==0) begin

137 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] = 0;

138 assign net_stop_in [x_pos][y_pos][z_pos][i] = 1’b1;

139 end else begin

140 assign net_data_in [x_pos][y_pos][z_pos][‘WIDTH*(i+1)-1:‘WIDTH*i] =

net_data_out[x_pos][y_pos][z_pos -1][‘WIDTH*(5+1)-1:‘WIDTH*5];

141 assign net_stop_in [x_pos][y_pos][z_pos][i] = net_stop_out[x_pos][y_pos][

z_pos -1][5];

142 end

143 end

144

145 end // for (i=0; i<NOUT-1; i=i+1)

146

147 end // block: x_loop

148

149 end // block: y_loop

150

151 end // block: z_loop

152

153 endgenerate

154

155 endmodule // network
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7.1 3D-ONoC with JPEG encoder

Code 7.2: 3D-OASIS Network-on-Chip with JPEG encoder top module
1 ‘ifndef VCS

2 ‘include "defines.v"

3 ‘endif

4

5 module 3D-NoC-JPEG (clk,clk1,reset,

6 RGB_stream , enb_in,

7 end_of_file_signal ,

8 JPEG_bitstream , data_ready ,

9 end_of_file_bitstream_count ,

10 eof_data_partial_ready);

11

12 // input and output

13 input clk; // For NoC and NI

14 input clk1; // For JPEG modules

15 input reset;

16 input [23:0] RGB_stream;

17 input enb_in;

18 input end_of_file_signal;

19

20 output [31:0] JPEG_bitstream;

21 output data_ready;

22 output [4:0] end_of_file_bitstream_count;

23 output eof_data_partial_ready;

24

25 // clock registers

26

27 reg [3:0] i;

28

29

30 // ***********************************

31 // ***************Wires***************

32 // ***********************************

33

34 // Network

35 wire [32:0] data_in_13 ,data_in_12 ,data_in_11 ,data_in_10 ,data_in_03 ,data_in_02

,data_in_01 ,data_in_00;

36 wire [32:0] w_13,w_12,w_11,w_10,w_03,w_02,w_01,w_00;

37

38 wire [7:0] stop_out_N;

39 wire [7:0] stop_in_N;

40

41 // RGBtoYCrCb module

42 wire [23:0] RGB2YCBCR_in;

43 wire enable_in;

44

45 wire [23:0] RGB2YCBCR_out;

46 wire enable_out;

47

48 // Y d_q_h module

49 wire [7:0] data_Y;

50 wire enb_Y;

51

52 wire [31:0] JPEG_Y;

53 wire ready_Y;

54 wire [4:0] orc_Y;

55 wire eobo_Y;

56 wire eobe_Y;

57

58 // Cr d_q_h module

59 wire [7:0] data_Cr;

60 wire enb_Cr;

61

62 wire [31:0] JPEG_Cr;
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63 wire ready_Cr;

64 wire [4:0] orc_Cr;

65 wire eobe_Cr;

66

67 // Cb d_q_h module

68 wire [7:0] data_Cb;

69 wire enb_Cb;

70

71 wire [31:0] JPEG_Cb;

72 wire ready_Cb;

73 wire [4:0] orc_Cb;

74 wire eobe_Cb;

75

76 // output to Y

77 wire [31:0] y_data_in;

78 wire y_data_ready;

79 wire [4:0] y_orc;

80 wire y_eof_output;

81 wire y_eof_empty;

82

83 // output to Cb

84 wire [31:0] Cb_data_in;

85 wire Cb_data_ready;

86 wire [4:0] Cb_orc;

87 wire Cb_eof_empty;

88

89 // output to Y

90 wire [31:0] Cr_data_in;

91 wire Cr_data_ready;

92 wire [4:0] Cr_orc;

93 wire Cr_eof_empty;

94

95 // output from FIFO

96 wire [31:0] JPEG_out;

97 wire data_ready_out;

98 wire [4:0] orc_reg_out;

99

100 // output to Checker

101 wire [31:0] Che_JPEG_data;

102 wire Che_data_ready;

103 wire [4:0] Che_orc;

104

105 wire [31:0] che_JPEG_bitstream1;

106 wire che_data_ready_1;

107 wire [4:0] che_end_of_file_bitstream_count;

108 wire che_ff_eof_data_partial_ready;

109

110

111 network network (.clk(clk),

112 .reset(reset),

113 .data_in({data_in_13 ,data_in_12 ,data_in_11 ,data_in_10 ,data_in_03 ,

data_in_02 ,data_in_01 ,data_in_00}),

114 .data_out({w_13,w_12,w_11,w_10,w_03,w_02,w_01,w_00}),

115 .stop_in(stop_in_N),

116 .stop_out(stop_out_N)

117 );

118

119 // RGB stream sending to RGB2YCBCR

120 NI_02_send NIsend02(.clk(clk),

121 .rst(reset),

122 .enable(enb_in),

123 .data_in(RGB_stream),

124 .flit(data_in_02)

125 );

126

127 // RGB2YCBCR receiving from RGB stream

128 NI_03_rec NIrec03 (.clk(clk),

129 .rst(reset),
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130 .flit(w_03),

131 .data_out(RGB2YCBCR_in),

132 .enable(enable_in)

133 );

134

135 // RGB2YCBCR module

136 RGB2YCBCR RGB (.clk(clk1),

137 .rst(reset),

138 .enable(enable_in),

139 .data_in(RGB2YCBCR_in),

140 .data_out(RGB2YCBCR_out),

141 .enable_out(enable_out)

142 );

143

144 // RGB2YCBCR sending to Y, Cr, and Cb

145 NI_03_send NIsend03(.clk(clk),

146 .rst(reset),

147 .enable(enable_out),

148 .data_in(RGB2YCBCR_out),

149 .flit(data_in_03)

150 );

151

152 // Y receiving from RGB2YCBCR

153 NI_00_rec NIrec00 (.clk(clk),

154 .rst(reset),

155 .flit(w_00),

156 .data_out(data_Y),

157 .enable(enb_Y)

158 );

159 // Y_dqh module

160 yd_q_h Y_dqh (.clk(clk1),

161 .rst(reset),

162 .enable(enb_Y),

163 .data_in(data_Y),

164 .JPEG_bitstream(JPEG_Y),

165 .data_ready(ready_Y),

166 .y_orc(orc_Y),

167 .end_of_block_output(eobo_Y),

168 .end_of_block_empty(eobe_Y)

169 );

170

171 // Y sending to FIFO

172 NI_00_send NIsend00(.clk(clk),

173 .rst(reset),

174 .y_data_in(JPEG_Y),

175 .y_data_ready(ready_Y),

176 .y_orc(orc_Y),

177 .y_eof_output(eobo_Y),

178 .y_eof_empty(eobe_Y),

179 .flit(data_in_00)

180 );

181

182 // Cb receiving from RGB2YCBCR

183 NI_11_rec NIrec11 (.clk(clk),

184 .rst(reset),

185 .flit(w_11),

186 .data_out(data_Cb),

187 .enable(enb_Cb)

188 );

189

190 // Cb_dqh module

191 cbd_q_h Cb_dqh (.clk(clk1),

192 .rst(reset),

193 .enable(enb_Cb),

194 .data_in(data_Cb),

195 .JPEG_bitstream(JPEG_Cb),

196 .data_ready(ready_Cb),

197 .cb_orc(orc_Cb),
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198 .end_of_block_empty(eobe_Cb)

199 );

200

201 // Cb sending to FIFO

202 NI_11_send NIsend11(.clk(clk),

203 .rst(reset),

204 .Cb_data_in(JPEG_Cb),

205 .Cb_data_ready(ready_Cb),

206 .Cb_orc(orc_Cb),

207 .Cb_eof_empty(eobe_Cb),

208 .flit(data_in_11)

209 );

210

211 // Cr receiving from RGB2YCBCR

212 NI_01_rec NIrec01 (.clk(clk),

213 .rst(reset),

214 .flit(w_01),

215 .data_out(data_Cr),

216 .enable(enb_Cr)

217 );

218

219 // Cr_dqh module

220 crd_q_h Cr_dqh (.clk(clk1),

221 .rst(reset),

222 .enable(enb_Cr),

223 .data_in(data_Cr),

224 .JPEG_bitstream(JPEG_Cr),

225 .data_ready(ready_Cr),

226 .cr_orc(orc_Cr),

227 .end_of_block_empty(eobe_Cr)

228 );

229

230 // Cr sending to FIFO

231 NI_01_send NIsend01(.clk(clk),

232 .rst(reset),

233 .Cr_data_in(JPEG_Cr),

234 .Cr_data_ready(ready_Cr),

235 .Cr_orc(orc_Cr),

236 .Cr_eof_empty(eobe_Cr),

237 .flit(data_in_01)

238 );

239

240 // FIFO receiving from Y, Cb, Cr

241 NI_10_rec NIrec10 (.clk(clk),

242 .rst(reset),

243 .flit(w_10),

244 .y_data_in(y_data_in), .y_data_ready(y_data_ready), .y_orc(y_orc), .

y_eof_output(y_eof_output), .y_eof_empty(y_eof_empty),

245 .Cb_data_in(Cb_data_in), .Cb_data_ready(Cb_data_ready), .Cb_orc(Cb_orc),

.Cb_eof_empty(Cb_eof_empty),

246 .Cr_data_in(Cr_data_in), .Cr_data_ready(Cr_data_ready), .Cr_orc(Cr_orc),

.Cr_eof_empty(Cr_eof_empty)

247 );

248

249 // FIFO receiving from Y, Cb, Cr

250 fifo_out FIFO (.clk(clk1),

251 .rst(reset),

252 .cb_JPEG_bitstream(Cb_data_in), .cr_JPEG_bitstream(Cr_data_in), .

y_JPEG_bitstream(y_data_in),

253 .cb_orc(Cb_orc), .cr_orc(Cr_orc), .y_orc(y_orc),

254 .cb_data_ready(Cb_data_ready), .cr_data_ready(Cr_data_ready), .

y_data_ready(y_data_ready),

255 .end_of_block_output(y_eof_output),

256 .cb_eob_empty(Cb_eof_empty), .cr_eob_empty(Cr_eof_empty), .y_eob_empty(

y_eof_empty),

257 .JPEG_bitstream(JPEG_out), .data_ready(data_ready_out), .orc_reg(

orc_reg_out));

258
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259

260 // FIFO sending to Checker

261 NI_10_send NIsend10(.clk(clk),

262 .rst(reset),

263 .JPEG_data(JPEG_out),

264 .data_ready(data_ready_out),

265 .orc(orc_reg_out),

266 .flit(data_in_10)

267 );

268

269 // Checker receiving from FIFO

270 NI_12_rec NIrec12 (.clk(clk),

271 .rst(reset),

272 .flit(w_12),

273 .JPEG_data(Che_JPEG_data),

274 .data_ready(Che_data_ready),

275 .orc(Che_orc)

276 );

277 // FF_checker module

278

279 ff_checker ff_check (.clk(clk1),

280 .rst(reset),

281 .end_of_file_signal(end_of_file_signal),

282 .JPEG_in(Che_JPEG_data),

283 .data_ready_in(Che_data_ready),

284 .orc_reg_in(Che_orc),

285 .JPEG_bitstream_1(che_JPEG_bitstream1),

286 .data_ready_1(che_data_ready1),

287 .orc_reg(che_end_of_file_bitstream_count),

288 .eof_data_partial_ready(che_eof_data_partial_ready));

289

290

291 // Checker sending to JPEG_bitstream

292 NI_12_send NIsend12(.clk(clk),

293 .rst(reset),

294 .JPEG_data(che_JPEG_bitstream1),

295 .data_ready(che_data_ready1),

296 .orc(che_end_of_file_bitstream_count),

297 .eof_data_partial_ready(che_eof_data_partial_ready),

298 .flit(data_in_12)

299 );

300

301 // JPEG_bitstream receiving from Checker

302 NI_13_rec NIrec13 (.clk(clk),

303 .rst(reset),

304 .flit(w_13),

305 .JPEG_data(JPEG_bitstream),

306 .data_ready(data_ready),

307 .orc(end_of_file_bitstream_count),

308 .eofr(eof_data_partial_ready)

309 );

310 endmodule
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7.2 3D-ONoC with 3x3 Matrix Multiplication

Code 7.3: Verilog-HDL sample code For Matrix A
1

2 //**** This module represents one element of the first Matrix A ****//

3 //**** It sends 3 different flits to 3 different elements of Matrix B ****//

4

5 ‘ifndef VCS

6 ‘include "defines.v"

7 ‘endif

8

9 module Matrix (clk, reset,

10 Matrix_value_A ,

11 next_port1 ,dest1,

12 next_port2 ,dest2,

13 next_port3 ,dest3,

14 tag,

15 data_out);

16

17 input clk, reset;

18 input [‘Matrix_WIDTH -1:0] Matrix_value_A;

19 input [6:0] next_port1 ,next_port2 ,next_port3;

20 input [8:0] dest1,dest2,dest3;

21 input [2:0] tag;

22 output reg [‘WIDTH -1:0] data_out;

23

24 reg [3:0] state;

25

26 always @(posedge clk)begin

27 if(reset==1)

28 state <= ‘f1;

29 else begin

30 if (state==4’b0100) data_out <= 0;

31 else state <= state+1;

32 end

33

34 case(state)

35

36 ‘f1:begin

37 if(reset==0)

38 begin

39 data_out[0] <= 1’b1;

40 data_out[‘NEXT_PORT] <= next_port1;

41 data_out[‘DEST] <= dest1;

42 data_out[‘DATA_Mat] <= Matrix_value_A;

43 data_out[‘TAG] <= tag;

44 end

45 else state <= ‘f1;

46 end

47

48 ‘f2:begin

49 data_out[0] <= 1’b1;

50 data_out[‘NEXT_PORT] <= next_port2;

51 data_out[‘DEST] <= dest2;

52 data_out[‘DATA_Mat] <= Matrix_value_A;

53 data_out[‘TAG] <= tag;

54 end

55

56 ‘f3:begin

57 data_out[0] <= 1’b1;

58 data_out[‘NEXT_PORT] <= next_port3;

59 data_out[‘DEST] <= dest3;

60 data_out[‘DATA_Mat] <= Matrix_value_A;

61 data_out[‘TAG] <= tag;

62 end

63
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64 ‘f4:begin

65 data_out <= 0;

66 end

67 default:state <= ‘f4;

68

69 endcase

70

71 end

72 endmodule
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Code 7.4: Verilog-HDL sample code For Matrix B
1

2 //**** This module represents one element of the second Matrix B ****//

3 //**** It receives 3 different flits to 3 different elements of Matrix A ****//

4 //**** verifies the tag, make the multiplication****//

5 //**** sends the resulted multiplication to 3 different elements of Matrix R

****//

6

7 ‘ifndef VCS

8 ‘include "defines.v"

9 ‘endif

10

11 module Matrix3 (clk, reset,

12 Matrix_value_B , data_in,

13 next_port1 ,dest1,

14 next_port2 ,dest2,

15 next_port3 ,dest3,

16 data_out);

17

18 input clk, reset;

19 input [‘Matrix_WIDTH -1:0] Matrix_value_B;

20 input [‘WIDTH -1:0] data_in;

21 input [6:0] next_port1 ,next_port2 ,next_port3;

22 input [8:0] dest1,dest2,dest3;

23

24 output reg [‘WIDTH -1:0] data_out;

25

26

27 always @(data_in)begin

28 if(!data_in) data_out <= 0;

29 else begin

30 if(data_in[‘TAG]==3’b000) begin

31 data_out[0] <= 1’b1;

32 data_out[‘NEXT_PORT] <= next_port1;

33 data_out[‘DEST] <= dest1;

34 data_out[‘DATA_Mat] <= Matrix_value_B*data_in[‘DATA_Mat];

35 data_out[‘TAG] <= data_in[‘TAG];

36 end

37 else begin

38 if(data_in[‘TAG]==3’b001) begin

39 data_out[0] <= 1’b1;

40 data_out[‘NEXT_PORT] <= next_port2;

41 data_out[‘DEST] <= dest2;

42 data_out[‘DATA_Mat] <= Matrix_value_B*data_in[‘DATA_Mat];

43 data_out[‘TAG] <= data_in[‘TAG];

44 end

45 else begin

46 data_out[0] <= 1’b1;

47 data_out[‘NEXT_PORT] <= next_port3;

48 data_out[‘DEST] <= dest3;

49 data_out[‘DATA_Mat] <= Matrix_value_B*data_in[‘DATA_Mat];

50 data_out[‘TAG] <= data_in[‘TAG];

51 end

52 end

53 end

54 end

55 endmodule
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Code 7.5: Verilog-HDL sample code For Matrix R
1

2 //**** This module represents one element of the resulted Matrix R ****//

3 //**** It receives 3 different flits to 3 different elements of Matrix B ****//

4 //**** verifies the tag, make the final addition****//

5

6 ‘ifndef VCS

7 ‘include "defines.v"

8 ‘endif

9

10 module Matrix2 (clk, reset,

11 data_in,

12 Matrix_value_R);

13

14 input clk, reset;

15 input [‘WIDTH -1:0] data_in;

16

17 output reg [‘Matrix_WIDTH -1:0] Matrix_value_R;

18

19

20 always @(posedge clk)begin

21 if(reset==1) Matrix_value_R <= 0;

22 else

23 if (data_in) begin

24 Matrix_value_R <= Matrix_value_R+data_in[‘DATA_Mat];

25 end

26 end

27 endmodule
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Code 7.6: 3D-OASIS Network-on-Chip with 3x3 Matrix Multiplication top module
1

2

3 ‘ifndef VCS

4 ‘include "defines.v"

5 ‘endif

6

7 module System (clk,reset,

8 val_R11,val_R12,val_R13,

9 val_R21,val_R22,val_R23,

10 val_R31,val_R32,val_R33);

11

12 input clk, reset;

13 output [‘Matrix_WIDTH -1:0] val_R11,val_R12,val_R13,val_R21,val_R22,val_R23,val_R31

,val_R32,val_R33;

14

15

16 wire [(‘WIDTH -1):0] w_00,w_01,w_02,w_03,w_04,w_05,w_06,w_07,w_08;

17 wire [(‘WIDTH -1):0] w_10,w_11,w_12,w_13,w_14,w_15,w_16,w_17,w_18;

18 wire [(‘WIDTH -1):0] w_20,w_21,w_22,w_23,w_24,w_25,w_26,w_27,w_28;

19

20 wire [(‘WIDTH -1):0] data_in_08 ,data_in_07 ,data_in_06 ,data_in_05 ,data_in_04 ,

data_in_03 ,data_in_02 ,data_in_01 ,data_in_00;

21 wire [(‘WIDTH -1):0] data_in_18 ,data_in_17 ,data_in_16 ,data_in_15 ,data_in_14 ,

data_in_13 ,data_in_12 ,data_in_11 ,data_in_10;

22 wire [(‘WIDTH -1):0] data_in_28 ,data_in_27 ,data_in_26 ,data_in_25 ,data_in_24 ,

data_in_23 ,data_in_22 ,data_in_21 ,data_in_20;

23

24 wire [‘X_WIDTH*‘Y_WIDTH*‘Z_WIDTH -1:0] stop_out;

25 wire [‘X_WIDTH*‘Y_WIDTH*‘Z_WIDTH -1:0] stop_in;

26

27 network network( .clk(clk),

28 .reset(reset),

29 .data_in({data_in_28 ,data_in_27 ,data_in_26 ,data_in_25 ,data_in_24 ,

data_in_23 ,data_in_22 ,data_in_21 ,data_in_20 ,

30 data_in_18 ,data_in_17 ,data_in_16 ,data_in_15 ,data_in_14 ,data_in_13 ,

data_in_12 ,data_in_11 ,data_in_10 ,

31 data_in_08 ,data_in_07 ,data_in_06 ,data_in_05 ,data_in_04 ,data_in_03 ,

data_in_02 ,data_in_01 ,data_in_00}),

32 .data_out({w_28,w_27,w_26,w_25,w_24,w_23,w_22,w_21,w_20,

33 w_18,w_17,w_16,w_15,w_14,w_13,w_12,w_11,w_10,

34 w_08,w_07,w_06,w_05,w_04,w_03,w_02,w_01,w_00}),

35 .stop_in(stop_in),

36 .stop_out(stop_out));

37

38 // ************************************************

39 // ***************Matrix_1 Layer_1***************

40 // ************************************************

41

42 Matrix A11 (.clk(clk),

43 .reset(reset),

44 .Matrix_value_A(‘val_A11*(!reset)),

45 .next_port1(‘UP),.dest1(‘dest_B11),

46 .next_port2(‘EAST),.dest2(‘dest_B12),

47 .next_port3(‘EAST),.dest3(‘dest_B13),

48 .tag(3’b000),

49 .data_out(data_in_06));

50

51 Matrix A12 (.clk(clk),

52 .reset(reset),

53 .Matrix_value_A(‘val_A12*(!reset)),

54 .next_port1(‘WEST),.dest1(‘dest_B21),

55 .next_port2(‘SOUTH),.dest2(‘dest_B22),

56 .next_port3(‘EAST),.dest3(‘dest_B23),

57 .tag(3’b000),

58 .data_out(data_in_07));

59

60
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61 Matrix A13 (.clk(clk),

62 .reset(reset),

63 .Matrix_value_A(‘val_A13*(!reset)),

64 .next_port1(‘WEST),.dest1(‘dest_B31),

65 .next_port2(‘WEST),.dest2(‘dest_B32),

66 .next_port3(‘SOUTH),.dest3(‘dest_B33),

67 .tag(3’b000),

68 .data_out(data_in_08));

69

70

71 Matrix A21 (.clk(clk),

72 .reset(reset),

73 .Matrix_value_A(‘val_A21*(!reset)),

74 .next_port1(‘NORTH),.dest1(‘dest_B11),

75 .next_port2(‘EAST),.dest2(‘dest_B12),

76 .next_port3(‘EAST),.dest3(‘dest_B13),

77 .tag(3’b001),

78 .data_out(data_in_03));

79

80

81 Matrix A22 (.clk(clk),

82 .reset(reset),

83 .Matrix_value_A(‘val_A22*(!reset)),

84 .next_port1(‘WEST),.dest1(‘dest_B21),

85 .next_port2(‘UP),.dest2(‘dest_B22),

86 .next_port3(‘EAST),.dest3(‘dest_B23),

87 .tag(3’b001),

88 .data_out(data_in_04));

89

90 Matrix A23 (.clk(clk),

91 .reset(reset),

92 .Matrix_value_A(‘val_A23*(!reset)),

93 .next_port1(‘WEST),.dest1(‘dest_B31),

94 .next_port2(‘WEST),.dest2(‘dest_B32),

95 .next_port3(‘SOUTH),.dest3(‘dest_B33),

96 .tag(3’b001),

97 .data_out(data_in_05));

98

99

100 Matrix A31 (.clk(clk),

101 .reset(reset),

102 .Matrix_value_A(‘val_A31*(!reset)),

103 .next_port1(‘NORTH),.dest1(‘dest_B11),

104 .next_port2(‘EAST),.dest2(‘dest_B12),

105 .next_port3(‘EAST),.dest3(‘dest_B13),

106 .tag(3’b010),

107 .data_out(data_in_00));

108

109

110 Matrix A32 (.clk(clk),

111 .reset(reset),

112 .Matrix_value_A(‘val_A32*(!reset)),

113 .next_port1(‘WEST),.dest1(‘dest_B21),

114 .next_port2(‘NORTH),.dest2(‘dest_B22),

115 .next_port3(‘EAST),.dest3(‘dest_B23),

116 .tag(3’b010),

117 .data_out(data_in_01));

118

119

120 Matrix A33 (.clk(clk),

121 .reset(reset),

122 .Matrix_value_A(‘val_A33*(!reset)),

123 .next_port1(‘WEST),.dest1(‘dest_B31),

124 .next_port2(‘WEST),.dest2(‘dest_B32),

125 .next_port3(‘UP),.dest3(‘dest_B33),

126 .tag(3’b010),

127 .data_out(data_in_02));

128
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129

130 // ************************************************

131 // ***************Matrix_2 Layer_2***************

132 // ************************************************

133

134 Matrix2 R11 (.clk(clk),

135 .reset(reset),

136 .data_in(w_16),

137 .Matrix_value_R(val_R11));

138

139 Matrix2 R12 (.clk(clk),

140 .reset(reset),

141 .data_in(w_17),

142 .Matrix_value_R(val_R12));

143

144

145 Matrix2 R13 (.clk(clk),

146 .reset(reset),

147 .data_in(w_18),

148 .Matrix_value_R(val_R13));

149

150

151 Matrix2 R21 (.clk(clk),

152 .reset(reset),

153 .data_in(w_13),

154 .Matrix_value_R(val_R21));

155

156

157 Matrix2 R22 (.clk(clk),

158 .reset(reset),

159 .data_in(w_14),

160 .Matrix_value_R(val_R22));

161

162

163 Matrix2 R23 (.clk(clk),

164 .reset(reset),

165 .data_in(w_15),

166 .Matrix_value_R(val_R23));

167

168

169 Matrix2 R31 (.clk(clk),

170 .reset(reset),

171 .data_in(w_10),

172 .Matrix_value_R(val_R31));

173

174

175 Matrix2 R32 (.clk(clk),

176 .reset(reset),

177 .data_in(w_11),

178 .Matrix_value_R(val_R32));

179

180

181 Matrix2 R33 (.clk(clk),

182 .reset(reset),

183 .data_in(w_12),

184 .Matrix_value_R(val_R33));

185

186 // ************************************************

187 // ***************Matrix_3 Layer_3***************

188 // ************************************************

189

190 Matrix3 B11 (.clk(clk),

191 .reset(reset),

192 .Matrix_value_B(‘val_B11*(!reset)),

193 .data_in(w_26),

194 .next_port1(‘DOWN),.dest1(‘dest_R11),

195 .next_port2(‘SOUTH),.dest2(‘dest_R21),

196 .next_port3(‘SOUTH),.dest3(‘dest_R31),
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197 .data_out(data_in_26));

198

199 Matrix3 B12 (.clk(clk),

200 .reset(reset),

201 .Matrix_value_B(‘val_B12*(!reset)),

202 .data_in(w_27),

203 .next_port1(‘EAST),.dest1(‘dest_R12),

204 .next_port2(‘EAST),.dest2(‘dest_R22),

205 .next_port3(‘EAST),.dest3(‘dest_R32),

206 .data_out(data_in_27));

207

208

209 Matrix3 B13 (.clk(clk),

210 .reset(reset),

211 .Matrix_value_B(‘val_B13*(!reset)),

212 .data_in(w_28),

213 .next_port1(‘DOWN),.dest1(‘dest_R13),

214 .next_port2(‘SOUTH),.dest2(‘dest_R23),

215 .next_port3(‘SOUTH),.dest3(‘dest_R33),

216 .data_out(data_in_28));

217

218

219 Matrix3 B21 (.clk(clk),

220 .reset(reset),

221 .Matrix_value_B(‘val_B21*(!reset)),

222 .data_in(w_23),

223 .next_port1(‘NORTH),.dest1(‘dest_R11),

224 .next_port2(‘DOWN),.dest2(‘dest_R21),

225 .next_port3(‘SOUTH),.dest3(‘dest_R31),

226 .data_out(data_in_23));

227

228

229 Matrix3 B22 (.clk(clk),

230 .reset(reset),

231 .Matrix_value_B(‘val_B22*(!reset)),

232 .data_in(w_24),

233 .next_port1(‘NORTH),.dest1(‘dest_R12),

234 .next_port2(‘DOWN),.dest2(‘dest_R22),

235 .next_port3(‘SOUTH),.dest3(‘dest_R32),

236 .data_out(data_in_24));

237

238

239 Matrix3 B23 (.clk(clk),

240 .reset(reset),

241 .Matrix_value_B(‘val_B23*(!reset)),

242 .data_in(w_25),

243 .next_port1(‘NORTH),.dest1(‘dest_R13),

244 .next_port2(‘DOWN),.dest2(‘dest_R23),

245 .next_port3(‘SOUTH),.dest3(‘dest_R33),

246 .data_out(data_in_25));

247

248

249 Matrix3 B31 (.clk(clk),

250 .reset(reset),

251 .Matrix_value_B(‘val_B31*(!reset)),

252 .data_in(w_20),

253 .next_port1(‘NORTH),.dest1(‘dest_R11),

254 .next_port2(‘NORTH),.dest2(‘dest_R21),

255 .next_port3(‘DOWN),.dest3(‘dest_R31),

256 .data_out(data_in_20));

257

258

259 Matrix3 B32 (.clk(clk),

260 .reset(reset),

261 .Matrix_value_B(‘val_B32*(!reset)),

262 .data_in(w_21),

263 .next_port1(‘NORTH),.dest1(‘dest_R12),

264 .next_port2(‘NORTH),.dest2(‘dest_R22),
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265 .next_port3(‘DOWN),.dest3(‘dest_R32),

266 .data_out(data_in_21));

267

268

269 Matrix3 B33 (.clk(clk),

270 .reset(reset),

271 .Matrix_value_B(‘val_B33*(!reset)),

272 .data_in(w_22),

273 .next_port1(‘NORTH),.dest1(‘dest_R13),

274 .next_port2(‘NORTH),.dest2(‘dest_R23),

275 .next_port3(‘DOWN),.dest3(‘dest_R33),

276 .data_out(data_in_22));

277

278

279 endmodule // TOP_test
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Code 7.7: Test-bench for 3x3 Matrix multiplication
1

2

3 ‘ifndef VCS

4 ‘include "defines.v"

5 ‘endif

6

7

8 module Test;

9

10 wire [‘Matrix_WIDTH -1:0] val_R11,val_R12,val_R13;

11 wire [‘Matrix_WIDTH -1:0] val_R21,val_R22,val_R23;

12 wire [‘Matrix_WIDTH -1:0] val_R31,val_R32,val_R33;

13

14 reg clk;

15 reg reset;

16

17 reg [8:0] A_adress [3:1][3:1];

18 reg [8:0] B_adress [3:1][3:1];

19 reg [8:0] R_adress [3:1][3:1];

20

21 reg [9:0] Total_hops;

22

23 integer i,j,k;

24 System sys (.clk(clk),

25 .reset(reset),

26 .val_R11(val_R11),.val_R12(val_R12),.val_R13(val_R13),

27 .val_R21(val_R21),.val_R22(val_R22),.val_R23(val_R23),

28 .val_R31(val_R31),.val_R32(val_R32),.val_R33(val_R33));

29

30 always #100000 clk = ˜clk;

31

32 initial begin

33 #0

34 clk = 0;

35 reset = 1’b1;

36

37 Total_hops <= 0;

38 // ************************************************

39 // ***************Matrix_1 Layer_1***************

40 // ************************************************

41 A_adress [1][1] =‘dest_A11 ;

42 A_adress [1][2] =‘dest_A12 ;

43 A_adress [1][3] =‘dest_A13 ;

44 A_adress [2][1] =‘dest_A21 ;

45 A_adress [2][2] =‘dest_A22 ;

46 A_adress [2][3] =‘dest_A23 ;

47 A_adress [3][1] =‘dest_A31 ;

48 A_adress [3][2] =‘dest_A32 ;

49 A_adress [3][3] =‘dest_A33 ;

50 // ************************************************

51 // ***************Matrix_2 Layer_2***************

52 // ************************************************

53 R_adress [1][1] =‘dest_R11 ;

54 R_adress [1][2] =‘dest_R12 ;

55 R_adress [1][3] =‘dest_R13 ;

56 R_adress [2][1] =‘dest_R21 ;

57 R_adress [2][2] =‘dest_R22 ;

58 R_adress [2][3] =‘dest_R23 ;

59 R_adress [3][1] =‘dest_R31 ;

60 R_adress [3][2] =‘dest_R32 ;

61 R_adress [3][3] =‘dest_R33 ;

62

63 // ************************************************

64 // ***************Matrix_3 Layer_3***************

65 // ************************************************

66 B_adress [1][1] =‘dest_B11 ;

67 B_adress [1][2] =‘dest_B12 ;
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68 B_adress [1][3] =‘dest_B13 ;

69 B_adress [2][1] =‘dest_B21 ;

70 B_adress [2][2] =‘dest_B22 ;

71 B_adress [2][3] =‘dest_B23 ;

72 B_adress [3][1] =‘dest_B31 ;

73 B_adress [3][2] =‘dest_B32 ;

74 B_adress [3][3] =‘dest_B33 ;

75

76

77 #2000000

78 reset = 1’b0;

79

80

81 for (i=1;i<=3;i=i+1)begin

82 for (j=1;j<=3;j=j+1)begin

83 for (k=1;k<=3;k=k+1)begin

84 #200000

85 // ***************Hop count from A to B***************

86 if ((A_adress [i][j][2:0])>(B_adress [j][k][2:0]))

87 Total_hops= Total_hops+ ((A_adress [i][j][2:0])-(B_adress [j][k][2:0]));

88 else

89 Total_hops= Total_hops+ ((B_adress [j][k][2:0])-(A_adress [i][j][2:0]));

90

91 if ((A_adress [i][j][5:3])>(B_adress [j][k][5:3]))

92 Total_hops= Total_hops+ ((A_adress [i][j][5:3])-(B_adress [j][k][5:3]));

93 else

94 Total_hops= Total_hops+ ((B_adress [j][k][5:3])-(A_adress [i][j][5:3]));

95

96 if ((A_adress [i][j][8:6])>(B_adress [j][k][8:6]))

97 Total_hops= Total_hops+ ((A_adress [i][j][8:6])-(B_adress [j][k][8:6]));

98 else

99 Total_hops= Total_hops+ ((B_adress [j][k][8:6])-(A_adress [i][j][8:6]));

100

101 // ***************Hop count from B to R***************

102 if ((B_adress [i][j][2:0])>(R_adress [k][j][2:0]))

103 Total_hops= Total_hops+ ((B_adress [i][j][2:0])-(R_adress [k][j][2:0]));

104 else

105 Total_hops= Total_hops+ ((R_adress [k][j][2:0])-(B_adress [i][j][2:0]));

106

107 if ((B_adress [i][j][5:3])>(R_adress [k][j][5:3]))

108 Total_hops= Total_hops+ ((B_adress [i][j][5:3])-(R_adress [k][j][5:3]));

109 else

110 Total_hops= Total_hops+ ((R_adress [k][j][5:3])-(B_adress [i][j][5:3]));

111

112 if ((B_adress [i][j][8:6])>(R_adress [k][j][8:6]))

113 Total_hops= Total_hops+ ((B_adress [i][j][8:6])-(R_adress [k][j][8:6]));

114 else

115 Total_hops= Total_hops+ ((R_adress [k][j][8:6])-(B_adress [i][j][8:6]));

116 end

117 end

118 end

119

120 #20000000

121 finish;

122

123 end // initial begin

124 endmodule // TOP_test
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