
C++: Separate compilation

Pierre-Alain Fayolle

1 / 20



Table of contents

Some terminology

Introduction

Compilation of a single file

Header files

Separate compilation

Preprocessor directives

2 / 20



Some basic terminology

These terms will appear throughout the course.

I Class: a user defined data type, i.e. a set of states and
operations to transition between these states

I Object: a region of storage with associated semantics

I Instantiating an object: is the process of creating an object

I Data member: data associated to a class. Each object,
instance of a class, has its own data

I Function member or method: function associated to a class
and used to modify the state of an object

3 / 20



Introduction

I The first thing we need to learn is how to compile C++ files
to generate executable binaries (programs)

I Like in C, a compiler is used to compile each source file to a
binary object

I The binary objects are then linked together to form an
executable

4 / 20



Compilation of a single file

I Let us start by the case of a single C++ file:

// Date.cpp

#include <iostream>

class Date { public: int year; };

int main (void) {

Date d1;

d1.year = 2012;

std::cout << d1.year << std::endl;

return 0;

}

I This code defines one class named Date with one field named
year

I It instantiates a Date object named d1, sets some value to its
unique field and then prints its content

5 / 20



Compilation of a single file

I To compile Date.cpp we can either do:

$ g++ -c Date.cpp

$ g++ -o Date Date.o

which first compiles Date.cpp into Date.o and then link
Date.o with the C++ runtime.

I or in one step:

$ g++ -o Date Date.cpp

I The two methods are equivalent and produce an executable
named Date. To run it, type:

$ ./Date

6 / 20



Header files

I The general case in C++ is to separate the class interface
from its implementation

I interface: public data and prototype of the public methods
I implementation: code for methods (both public and internal)

and internal data (data used by the implementation but not
exported by the interface)

I Header files contain the exported interface
I Headers are recognized by the filename extension, which can

be: .h or .hpp or .hh or .hxx

I Implementation files contain the implementation
I Implementation files are recognized by the filename extension,

which can be: .cpp or .cc or .cxx or .C

I Interfaces are imported by including headers with the
preprocessor command #include followed by an header
filename

7 / 20



Example

// Date.h

class Date {

public:

void set(int m, int d, int y);

void print();

private:

int month, day, year;

};

8 / 20



Example

// Date.cpp

#include <iostream>

#include "Date.h"

void Date::set(int m, int d, int y) {

month = m; day = d; year = y;

}

void Date::print() {

std::cout << month << " / " << day

<< " / " << year << std::endl;

}

9 / 20



Example

// main.cpp

#include "Date.h"

int main(void) {

Date date;

date.set(1,29,2012);

date.print();

return 0;

}

10 / 20



Compilation of multiple files

I In order to generate an executable from the previous files,
type at the command prompt:

$ g++ -c Date.cpp

$ g++ -c main.cpp

$ g++ -o Date main.o Date.o

I Lines 1 and 2 create object files (Date.o and main.o); the
option -c of the compiler compiles source code to binary
object files

I The object files need to be linked together in order to create
an executable program (line 3); the option -o indicates the
name of the executable. If this option is not used, the
executable file gets a default name: a.out

11 / 20



Separate compilation

Besides for modularity reasons, why is it a good idea to have code
separated in different files that are compiled separately ?

I Suppose that we perform some modifications in Date.cpp, e.g.
we change the implementation of Date::print()

I To generate an executable, only two steps are needed:
I Recompile Date.cpp
I Link main.o and Date.o

Note that we do not need to recompile the files that did not
change (e.g. main.cpp)

I Suppose now that the project instead of containing three files
contains several thousands. The actions needed are:

I Recompile source files that were modified
I Link all object files

Which provides a significant speed improvement

12 / 20



Preprocessor directives

The C++ preprocessor is similar to the C preprocessor and
provides the same facilities:

I #include

I #define

I Compile time conditional expressions

I Macros

I and other more advanced preprocessor tricks

13 / 20



File inclusion

I Directives like #include<iostream> or #include”Date.h” are
used to import library into a program

I #include instructs the preprocessor to locate the specified file,
open it and insert its content in place of the directive (same
as a copy and paste)

I < > (angle brackets) is used for standard header files
searched in the standard library directories

I ” ” is used for user-defined header files, sought in the current
directory

I It is possible to specify the location where the preprocessor
should search for header files. With the GNU C++ compiler,
this is done with the option -I. Example:

$ g++ test.cpp -I/home/students/user/include

will tell the preprocessor to search in the specified directory in
addition to the the current directory.

14 / 20



Compile time conditional expressions

Conditional directives are used to prevent multiple inclusion of an
header file. Let us look at an example first to motivate the usage
of conditional directives.

// Date.h

struct Date {

int month, day, year;

};

// main.cpp

#include "Date.h"

#include "Date.h"

int main(void) {

return 0;

}

15 / 20



Example

The previous code is transformed by the preprocessor to:

// main.cpp

struct Date {

int month, day, year;

};

struct Date { // Error

int month, day, year;

};

int main(void) {

return 0;

}

16 / 20



Compile time conditional expressions

I The previous code does not compile: the symbol Date is
defined several times

I While this example may seem artificial, it is not uncommon in
practice to have several files that include each other, resulting
in a file indirectly including the same file twice

I The solution for preventing multiple inclusion of an header file
consists in using conditional directives

17 / 20



Example

Let us rewrite Date.h by using conditional directives:

#ifndef DATE_H

#define DATE_H

struct Date {

int month, day, year;

};

#endif

18 / 20



Example
After preprocessing, main.cpp becomes

#ifndef DATE_H

#define DATE_H

struct Date {

int month, day, year;

};

#endif

#ifndef DATE_H

#define DATE_H

struct Date {

int month, day, year;

};

#endif

int main(void) {

return 0;

}
19 / 20



Example

As the preprocessor evaluates the #include statements, the first
ifndef block will be included, the constant DATE H defined and
the second ifndef block excluded as the constant DATE H is
already defined. The final code after preprocessing will be:

struct Date {

int month, day, year;

};

int main(void) {

return 0;

}

20 / 20


	Some terminology
	Introduction
	Compilation of a single file
	Header files
	Separate compilation
	Preprocessor directives

