
Java game programming

2D Graphics and animation
2010

Fayolle Pierre-Alain

Plan
• Basic remainder on graphics hardware
• Window application / applet / full-screen

application
• 2D graphics (text, shape)
• Images (type, loading and displaying)
• Animation
• Active rendering
• Double buffering, page flipping and buffer

strategy
• Simple effects

Graphics hardware

• 2 parts: monitor and graphics hardware
• Video card:

– Store the screen content in its memory
– Has functions for modifying its memory and

pushing its content to the monitor
• Monitor displays what it is told to by the

graphics card

Screen layout
• The screen is a 2D array of pixels
• A pixel (derived from picture

element) is a single point of light
displayed by the monitor

• The screen’s origin is located at
the top left corner, its width and
height define the screen resolution

• The screen resolution is hardware
dependent

• Any location in screen is accessed
by its coordinates (x, y)

Pixel color, bit depth and refresh
rate

• Pixel Color:
– Screens use RGB (Red – Green – Blue) color model to control color
– Intensity of Red, Green and Blue are combined to make a color for

display
– Ex: Yellow = Green + Blue (i.e. (0.0, 1.0, 1.0) in RGB coordinates)

• Bit depth:
– Num of colors a monitor can display depends on the bit depth
– Examples of common bit depth:

• 8-bit  256 (= 2^8) colors selected from a color palette
• 15-bit (5 bits / color)  32,768 (=2^15) colors
• 16-bit (5 for R,B, 6 for G)  65,536 colors (human eye is more sensitive to

green)
• 24-bit (8 bits / color)  16,777,216 colors (human eye can see about 10

million colors)
• 32-bit (8 bits / color, 8 bits for padding) fits into a word on 32-bit computer

• Refresh rate:
– Num of times per second that the monitor is redrawn based on the video

card memory

2D Graphics with Java
• In Java when a Component

(e.g. JFrame, Applet) is
displayed, AWT called the
Component’s paint method

• To force AWT to call paint(),
call the method repaint()

• Paint events are sent by AWT
in a separate thread (you can
use wait and notify if you want
to be notified when the
painting is finished)

public Class AComponent extends
SomeComponent {

< …..>

public void run() {
// do something
repaint(); // force a call to paint

}

public void paint(Graphics g) {
// do painting here

}

}

Graphics (and Graphics2D) object
• Graphics is an abstract base class for all graphics contexts
• It allows to draw onto components (on various devices: screen,

printer)
• Graphics2D extends Graphics and provide more sophisticated

control over geometry, coordinate transformations, color
management

• Both Graphics and Graphics2D propose several methods for
drawing text, lines, rectangles, ovals, polygons, images and so on

• (Affine) Transformations can be applied through an instance of the
class AffineTransform

• Affine transformation means transformation mapping 2D coordinate
to 2D while keeping collinearity (i.e. keep alignment of points) and
ratios of distance (i.e. a point in the middle of 2 points is still in the
middle after transformation)
– Example: rotation, translation, dilations

• Check the Java API doc for classes Graphics, Graphics2D and
AffineTransform

Full-screen exclusive mode
• Introduced in Java API 1.4
• Allows the programmer to suspend the windowing

system so that drawing can be done directly to the
screen

• Traditional GUI program:
– AWT responsible for propagating paint events from the OS

through the event dispatch thread
– By calling AWT’s Component.paint method when appropriate
– Application limited to the size and bit depth of the screen

• Full-screen mode:
– Painting is done actively by the program itself
– Program can control bit depth and size (display mode)
– Advanced techniques like page flipping and stereo buffering

(system with separate set of frames for each eye)

Switching to full-screen mode
• To invoke full-screen

graphics and change
graphics mode several
objects are needed:
– A Window object (for example

JFrame)
– A DisplayMode object to

specify what graphics mode
to change to

– A GraphicsDevice object to
inspect display properties and
change graphic modes

• See sample code for
switching to full-screen
mode

JFrame win = new JFrame();
DisplayMode dm = new DisplayMode(800, 600,
16, 75);

GraphicsEnvironment env =
GraphicsEnvironment.getLocalGraphicsEnvironment();
GraphicsDevice gd = env.getDefaultScreenDevice();

gd.setFullScreenWindow(win);
gd.setDisplayMode(dm);

Switching to full-screen mode

• Some points to notice:
– setDisplayMode() throws an

IllegalArgumentException and an
UnsupportedOperationException so the call
should be within try ….. Catch

– Restoring to the original display mode is done
by:

• gd.setFullScreenWindow(null); // where gd is an
instance of a GraphicsDevice

Example: displaying text in full-
screen

• Demo + look at source code

Some comments
• Setting the screen to full-screen mode is within a try …

finally block
• Even if something happens during setting the full-screen

mode or changing the display, then the original display
mode will be recovered

• The text displayed is anti-aliased, i.e. the pixels are
blurred on the edges to make the text looks smooth

• Antialiasing is obtained by setting appropriate rendering
hint before drawing
– Done by calling the method setRenderingHint of the class

Graphics2D
– The Graphics object passed to paint() is casted to a Graphics2D

(paint () takes in face a Graphics2D object as argument since
Java 2)

Display mode

• Finite list of display modes that can be
used in full-screen mode

• Good practice to allow the user to select a
list of possible display modes and allow
the first matching the list of display modes
available

• In Code:

Display mode
public DisplayMode findCompatDm(DisplayMode[] dm) {

DisplayMode[] allowdm = graphicsdevice.getDisplayModes();
for(int i=0; i<dm.length; i++) {
for(int j=0; j<allowdm.length; j++) {

if (dmMatch(dm[i], allowdm[j])) {
return dm[i];

}
}

}
}

public boolean dmMatch(DisplayMode a, DisplayMode b) {
if (a.getWidth() != b.getWidth() || a.getHeigth() != b.getHeight()) {
return false;

}
if (a.getBitDepth() != b.getBitDepth()) {
return false;

}
if (a.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN &&

b.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN &&
a.getRefreshRate() != b.getRefreshRate()) {

return false;
}

return true;
}

Images

• Opaque (Fast):
– Every pixel is visible

• Transparent (Fast):
– Every pixel is either visible or not

• Translucent (Slow):
– Every visible pixel can be

partially visible (obtained by
blending the pixel color and the
background color)

Is this pixel transparent or
is its color white ?

Formats
• Images can be vector or raster

– Vector
• Image described geometrically
• Example: SVG, EPS

– Raster
• Images is described as an array of pixels (like the screen)

• Java API is not supporting vector type of images
– But Apache project:

• http://xml.apache.org/batik

• Java API is however supporting various formats
of raster images such as GIF, PNG, JPEG

Raster image formats

• GIF: 8-bit color. Opaque or transparent.
• PNG: Any bit depth. Opaque, transparent,

or translucent.
• JPEG: 24-bit depth. Compressed format.

Opaque only.
• Possible to export from vector to raster

(rasterization)
• Software to create: Gimp, Inkscape

Loading images with Java
• Method 1: get an Image using Toolkit’s

getImage()
– Note: if you are developing an applet and not an

application, then getImage() is a method of the class
Applet

• The default toolkit can be accessed by the static
method of Toolkit: getDefaultToolkit()

• getImage() starts another thread to load the
image
– If you display the image before it is finished loading,

then only part of the image will appear

Toolkit tk = Toolkit.getDefaultToolkit();
Image im = tk.getImage(filename);

Loading images 2

• Possible solution is to use MediaTracker
as follow:

Image[] images;
void loadImages() {
images = new Image[3];
MediaTracker tracker = new MediaTracker(this);

for(int i=0; i<3; i++) {
images[i] = getImage(getCodeBase(),"image"+i+".gif");
tracker.addImage(images[i], 0);

}
try {

// Start downloading images. Wait until they are loaded.
tracker.waitForAll();

} catch (InterruptedException e) {}
}

Loading images 3

• But better way is to use the ImageIcon
class in swing package
– Note: it loads an image using the Toolkit and

waits for it to finish loading before return

ImageIcon icon = new ImageIcon(filename);
Image im = icon.getImage();

Image im = new ImageIcon(filename).getImage();

Example: Loading / displaying an
image

• Demo and look at source code

Hardware accelerated images
• Hardware accelerated images are stored in video

memory rather than system memory
• They can be copied faster to the screen
• Java tries to create hardware accelerated images for the

images loaded by Toolkit’s getImage()
• It is possible to force an image to be hardware

accelerated by using the VolatileImage interface
• Points to keep in mind:

– Only opaque and transparent images can be accelerated; not
translucent

– Hardware accelerated images are not supported on all systems
– An image whose contents constantly changes will not be

hardware accelerated

Animation
• An animation is a sequence of images
• Each image is displayed for a brief amount of

time
• Each image in an animation if sometimes

referred as “frame”
• Animation loop: loop that updates the animation

and displays the current frame on the screen
– Update the animation
– Draw the current frame on the screen
– Sleep for some time
– Go back to the first step

Active rendering
• In GUI applications, the question of when to paint is handled by the

OS
• The OS sends a paint event to AWT, then AWT figures out what

needs to be painted, creates a Graphics object and call paint() with
that object

• This is called passive rendering
• This incurs lots of overhead and we have no control over when

paint() is really called
• For applications requiring performance it is better to use active

rendering
• Drawing is done directly to the screen in the main thread

Graphics g = win.getGraphics();
render(g);
g.dispose();

Animation loop sample code
while (true) {
updateAnim();
Graphics g = win.getGraphics();
render(g);
g.dispose();
try {

Thread.sleep(15);
} catch (Exception ex) {}

}

Update the animation to the
current frame

Update the screen content
With the current frame

Some remarks:
•Do not put code in the paint() routine, instead put in your own method, like
render.
In window application, paint() can call render(), and full-screen, render() will go in
the rendering loop.
•Turn off all paint events dispatched by the OS, by using the method
setIgnoreRepaint(boolean) (this method is in the class Component).

Example: animation of the previous
image

• Demo and looking at code
• AnimTest:

– Contains the animation loop:
• Update the animation
• Render the current frame

• Anim:
– Contains an animation as a sequence of images

(frames)
– Allows to retrieve the current frame in the animation

• FullScreen:
– Set the window to full-screen mode
– Give handles to the full-screen window

Sprites
• 2D sprites are small bitmap graphics moving

independently within the screen
• A sprite is make of two component:

– The animation (as seen previously) that animates the object
locally

– Something that makes the object look within the screen
• In a 2D game, sprite corresponding to the hero would be

controlled by the keys while bad guys would be
controlled by the computer program

• In the following we will make the previous image moves
within the screen and bounces on the screen’s border

Sprite
• A sprite is defined by its current

location, as well as its movement in
space

• To keep the sprite movement
constant (independent of the frame
rate) we will use its speed instead
of movement

• Movement is obtained by:
– dx = vx * dt
– dy = vy * dt
– Where dt is the elapsed time

(x, y)
dx

dy

Example: a face bouncing on the
screen

• Demo and looking at the code
• The demo has some problem: the screen

is flickering

Double buffering
• In the previous demonstration, you could notice

that the animation flickered
• The reason is that the image is drawn directly on

the screen, then drawn over by the background,
then the updated image is drawn again

• To avoid this, there is a technique called:
double-buffering

• Double-buffering works as follow:
– Create an off-screen image (back buffer)
– Draw to that image using the image’s Graphics object
– Call drawImage with the target window’s Graphics

object and the off-screen image

Illustration of double-buffering

ScreenOff-screen image

Off-screen image Screen

Draw
something

Copy to
screen

Page flipping
• Double-buffering requires to copy the content of the

video memory to the screen
• There is a faster technique where only a pointer to a

zone in video memory is copied. This is called page
flipping

• Graphics cards have the notion of the video pointer (an
address in video memory)

• The pointer indicates where the graphics card should
look for the contents to be displayed during the next
refresh style

• This pointer can be manipulated for some OS and
graphic cards

Illustration of page flipping

Screen

Back buffer

Displayed buffer

Draw
something

Vide
o p

oin
ter

Illustration of page flipping

Screen

Back buffer

Displayed buffer

Video pointer

Graphics
Used to draw
something

BufferStrategy
• In Java (2 and above) you do not have to worry

about these low level details to exploit double-
buffering or page flipping

• The class java.awt.image.BufferStrategy has
been added for the convenience of dealing with
this

• A BufferStrategy has two important methods:
– getDrawGraphics(): return a Graphics object for the

drawing surface
– show(): makes the next buffer visible by copying the

memory (double-buffering) or changing the display
pointer (page flipping)

Sample code using a buffer
strategy

BufferStrategy strategy;
while (!done) {
Graphics g = strategy.getDrawGraphics();
render(g);
g.dispose();
strategy.show();

}

Example: a sprite bouncing on the
borders

• Code and demo
• Same as the previous example but using

BufferStrategy instead
• FullScreen has been modified to

incorporate a BufferStrategy
• The test class has been updated to call

getDrawGraphics() and show() from the
BufferStrategy

Adding simple effects
• It is possible to use the class AffineTransform to

add simple effect (rotation, scaling, etc) to the
objects

• To do that you can create an empty
transformation and compose it with rotation,
translation:
– AffineTransform a = new AffineTransform();

a.setTranslation(translationx, translationy);
a.rotate(Math.PI / 20.0);

• Transforming images does not use hardware
acceleration so be careful when using such
effects

Summary
• Graphics hardware
• Graphics and Graphics2D classes
• Full-screen exclusive mode
• Loading and displaying images
• Animation loop
• Active rendering
• Sprites
• Double buffering, page flipping and buffer

strategy

	Java game programming��2D Graphics and animation
	Plan
	Graphics hardware
	Screen layout
	Pixel color, bit depth and refresh rate
	2D Graphics with Java
	Graphics (and Graphics2D) object
	Full-screen exclusive mode
	Switching to full-screen mode
	Switching to full-screen mode
	Example: displaying text in full-screen
	Some comments
	Display mode
	Display mode
	Images
	Formats
	Raster image formats
	Loading images with Java
	Loading images 2
	Loading images 3
	Example: Loading / displaying an image
	Hardware accelerated images
	Animation
	Active rendering
	Animation loop sample code
	Example: animation of the previous image
	Sprites
	Sprite
	Example: a face bouncing on the screen
	Double buffering
	Illustration of double-buffering
	Page flipping
	Illustration of page flipping
	Illustration of page flipping
	BufferStrategy
	Sample code using a buffer strategy
	Example: a sprite bouncing on the borders
	Adding simple effects
	Summary

