Java game programming

2D Graphics and animation
2010

Fayolle Pierre-Alain

Plan

Basic remainder on graphics hardware

Window application / applet / full-screen
application

2D graphics (text, shape)

Images (type, loading and displaying)
Animation

Active rendering

Double buffering, page flipping and buffer
strategy

Simple effects

Graphics hardware

e 2 parts: monitor and graphics hardware

* Video card:
— Store the screen content in its memory

— Has functions for modifying its memory and
pushing its content to the monitor

e Monitor displays what it is told to by the
graphics card

Screen layout

The screen is a 2D array of pixels

A pixel (derived from picture
element) is a single point of light
displayed by the monitor

The screen’s origin is located at
the top left corner, its width and
height define the screen resolution

The screen resolution is hardware
dependent

Any location in screen is accessed
by its coordinates (X, y)

(a, o

-

(4, 0}

Pixel color, bit depth and refresh
rate

Pixel Color:
— Screens use RGB (Red — Green — Blue) color model to control color
— Idr]terllsity of Red, Green and Blue are combined to make a color for
isplay
— Ex: Yellow = Green + Blue (i.e. (0.0, 1.0, 1.0) in RGB coordinates)
Bit depth:
— Num of colors a monitor can display depends on the bit depth
— Examples of common bit depth:
» 8-bit > 256 (= 2*8) colors selected from a color palette
o 15-bit (5 bits / color) - 32,768 (=2"15) colors

» 16-bit (5 for R,B, 6 for G) - 65,536 colors (human eye is more sensitive to
green)

» 24-bit (8 bits / color) = 16,777,216 colors (human eye can see about 10
million colors)

» 32-bit (8 bits / color, 8 bits for padding) fits into a word on 32-bit computer
Refresh rate:

— Num of times per second that the monitor is redrawn based on the video
card memory

2D Graphics with Java

e |n Java when a Component

public Class AComponent extends

(eg .JFrame, Applet) |S SomeComponent {
displayed, AWT called the <>
Component’s paint method public void)
0 sometnhin
e To force AWT to call paint(), repaint(); / force a call to paint

. }
call the method repaint()
public void paint(Graphics g) {

e Paint events are sent by AWT /l do painting here
In a separate thread (you can
use wait and notify if you want
to be notified when the
painting is finished)

Graphics (and Graphics2D) object

Graphics is an abstract base class for all graphics contexts

It allows to draw onto components (on various devices: screen,
printer)

Graphics2D extends Graphics and provide more sophisticated
control over geometry, coordinate transformations, color
management

Both Graphics and Graphics2D propose several methods for
drawing text, lines, rectangles, ovals, polygons, images and so on

(Affine) Transformations can be applied through an instance of the
class AffineTransform

Affine transformation means transformation mapping 2D coordinate
to 2D while keeping collinearity (i.e. keep alignment of points) and
ratios of distance (i.e. a point in the middle of 2 points is still in the
middle after transformation)

— Example: rotation, translation, dilations

Check the Java API doc for classes Graphics, Graphics2D and
AffineTransform

Full-screen exclusive mode

Introduced in Java APl 1.4

Allows the programmer to suspend the windowing
system so that drawing can be done directly to the
screen

Traditional GUI program:

— AWT responsible for propagating paint events from the OS
through the event dispatch thread

— By calling AWT’s Component.paint method when appropriate
— Application limited to the size and bit depth of the screen

Full-screen mode:
— Painting is done actively by the program itself
— Program can control bit depth and size (display mode)

— Advanced techniques like page flipping and stereo buffering
(system with separate set of frames for each eye)

Switching to full-screen mode

e To invoke full-screen
graphics and change
graphics mode several
objects are needed:

— A Window object (for example Jrrame win =new JFrame(;.
m=n ; ,
JFrame) 1ésp?§§/ ode ew DisplayMode(
- A DIS_,pIayMode ObJ_ECt to GraphicsEnvironment env =
SpECIfy what graphICS mode GraphicsEnvironment.getLocalGraphicsEnvironment();
to Change to GraphicsDevice gd = env.getDefaultScreenDevice();
— A GraphiCSDevice ObjECt to gd.setFullScreenWindow(win);

gd.setDisplayMode(dm);

Inspect display properties and
change graphic modes
« See sample code for
switching to full-screen
mode

Switching to full-screen mode

e Some points to notice:

— setDisplayMode() throws an
lllegalArgumentException and an
UnsupportedOperationException so the call
should be within try Catch

— Restoring to the original display mode is done
by:

e gd.setFullScreenWindow(null); // where gd is an
Instance of a GraphicsDevice

Example: displaying text in full-
screen

e Demo + look at source code

Some comments

Setting the screen to full-screen mode is within a try ...
finally block

Even if something happens during setting the full-screen
mode or changing the display, then the original display
mode will be recovered

The text displayed is anti-aliased, I.e. the pixels are
blurred on the edges to make the text looks smooth

Antialiasing is obtained by setting appropriate rendering
hint before drawing

— Done by calling the method setRenderingHint of the class
Graphics2D

— The Graphics object passed to paint() is casted to a Graphics2D
(paint () takes in face a Graphics2D object as argument since
Java 2)

Display mode

* Finite list of display modes that can be
used In full-screen mode

e Good practice to allow the user to select a
list of possible display modes and allow
the first matching the list of display modes
available

e |In Code:

Display mode

public DisplayMode findCompatDm(DisplayMode[] dm) {
DisplayMode[] allowdm = graphicsdevice.getDisplayModes();
for(int i=0; i<dm.length; i++) {
for(int j=0; j<allowdm.length; j++) {
if (dmMatch(dm[i], allowdml[j])) {
return dmfi];
}
}
}
}

public boolean dmMatch(DisplayMode a, DisplayMode b) {
if (a.getWidth() !'= b.getWidth() || a.getHeigth() != b.getHeight()) {
return false;
}
if (a.getBitDepth() '= b.getBitDepth()) {
return false;
}
if (a.getRefreshRate() != DisplayMode.REFRESH RATE_UNKNOWN &&
b.getRefreshRate() != DisplayMode.REFRESH _RATE_UNKNOWN &&
a.getRefreshRate() != b.getRefreshRate()) {
return false;

}

return true;

}

Images

° Opaque (FaSt): s this pixel transparent or
: : .. IS its color white ?
— Every pixel is visible
e Transparent (Fast): /

— Every pixel is either visible or not

* Translucent (Slow):

— Every visible pixel can be
partially visible (obtained by
nlending the pixel color and the
nackground color)

/

Formats

 Images can be vector or raster

— Vector
* Image described geometrically
« Example: SVG, EPS

— Raster
* Images is described as an array of pixels (like the screen)

o Java API is not supporting vector type of images
— But Apache project:
 http://xml.apache.org/batik
o Java API is however supporting various formats
of raster images such as GIF, PNG, JPEG

Raster image formats

* GIF: 8-bit color. Opaqgue or transparent.

* PNG: Any bit depth. Opaque, transparent,
or translucent.

 JPEG: 24-bit depth. Compressed format.
Opaqgue only.

e Possible to export from vector to raster
(rasterization)

o Software to create: Gimp, Inkscape

Loading images with Java

 Method 1: get an Image using Toolkit’s
getimage()

— Note: if you are developing an applet and not an
application, then getimage() is a method of the class
Applet

 The default toolkit can be accessed by the static
method of Toolkit: getDefaultToolkit()

e getlmage() starts another thread to load the
Image

— If you display the image before it is finished loading,
then only part of the image will appear

Toolkit tk = Toolkit.getDefaultToolkit();
Image im = tk.getimage(filename);

Loading images 2

e Possible solution Is to use MediaTracker
as follow:

Image[] images;
void loadlmages() {
images = new Image|3];
MediaTracker tracker = new MediaTracker(this);

for(int i=0; i<3; i++) {
iImages[i] = getimage(getCodeBase(),"image"+i+".gif");
tracker.addlmage(imagesli], 0);

}

try {
/[Start downloading images. Wait until they are loaded.

tracker.waitForAll();
} catch (InterruptedException e) {}

}

Loading images 3

* But better way Is to use the Imagelcon
class in swing package

— Note: it loads an image using the Toolkit and
wailts for it to finish loading before return

Imagelcon icon = new Imagelcon(filename);
Image im = icon.getimage();

Image im = new Imagelcon(filename).getimage();

Example: Loading / displaying an
Image

e Demo and look at source code

Hardware accelerated images

Hardware accelerated images are stored in video
memory rather than system memory

They can be copied faster to the screen

Java tries to create hardware accelerated images for the
Images loaded by Toolkit's getimage()

It Is possible to force an image to be hardware
accelerated by using the Volatilelmage interface

Points to keep in mind:

— Only opague and transparent images can be accelerated; not
translucent

— Hardware accelerated images are not supported on all systems

— An image whose contents constantly changes will not be
hardware accelerated

Animation

An animation Is a sequence of images

Each image Is displayed for a brief amount of
time

Each image in an animation if sometimes
referred as “frame”

Animation loop: loop that updates the animation
and displays the current frame on the screen

— Update the animation

— Draw the current frame on the screen
— Sleep for some time

— Go back to the first step

Active rendering

In GUI applications, the question of when to paint is handled by the
OS

The OS sends a paint event to AWT, then AWT figures out what
needs to be painted, creates a Graphics object and call paint() with
that object

This is called passive rendering

This incurs lots of overhead and we have no control over when
paint() is really called

For applications requiring performance it is better to use active
rendering

Drawing is done directly to the screen in the main thread

Graphics g = win.getGraphics();
render(Q);
g.dispose();

Animation loop sample code

while (true) { Update the animation to the
updateAnim(); «—— | current frame
Graphics g = win.getGraphics();

render(Q);
D Update the screen content

g.dispose();)
try { With the current frame

Thread.sleep(15);
} catch (Exception ex) {}

}

Some remarks:

*Do not put code in the paint() routine, instead put in your own method, like
render.

In window application, paint() can call render(), and full-screen, render() will go in
the rendering loop.

«Turn off all paint events dispatched by the OS, by using the method
setlgnoreRepaint(boolean) (this method is in the class Component).

Example: animation of the previous
Image

« Demo and looking at code

e AnimTest:

— Contains the animation loop:
« Update the animation
* Render the current frame

e Anim:

— Contains an animation as a sequence of images
(frames)

— Allows to retrieve the current frame in the animation

e FullScreen:
— Set the window to full-screen mode
— Give handles to the full-screen window

Sprites

2D sprites are small bitmap graphics moving
Independently within the screen

A sprite iIs make of two component:

— The animation (as seen previously) that animates the object
locally

— Something that makes the object look within the screen

In a 2D game, sprite corresponding to the hero would be
controlled by the keys while bad guys would be
controlled by the computer program

In the following we will make the previous image moves
within the screen and bounces on the screen’s border

Sprite

« A sprite Is defined by its current

location, as well as its movement in
space

 To keep the sprite movement
constant (independent of the frame
rate) we will use its speed instead
of movement

« Movement Is obtained by:
— dx = vx * dt
— dy = vy * dt
— Where dt is the elapsed time

Example: a face bouncing on the
screen

« Demo and looking at the code

 The demo has some problem: the screen
Is flickering

Double buffering

In the previous demonstration, you could notice
that the animation flickered

The reason Is that the image iIs drawn directly on
the screen, then drawn over by the background,
then the updated image Is drawn again

"0 avoid this, there Is a technique called:
double-buffering

Double-buffering works as follow:
— Create an off-screen image (back buffer)

— Draw to that image using the image’s Graphics object

— Call drawlmage with the target window’s Graphics
object and the off-screen image

lllustration of double-buffering

Draw

something D
o I

Off-screen image

-
I

Off-screen image

Copy to
screen

N

Screen

-
I

Screen

Page flipping

Double-buffering requires to copy the content of the
video memory to the screen

There Is a faster technigue where only a pointer to a
zone in video memory is copied. This is called page
flipping

Graphics cards have the notion of the video pointer (an
address in video memory)

The pointer indicates where the graphics card should
look for the contents to be displayed during the next
refresh style

This pointer can be manipulated for some OS and
graphic cards

lllustration of page flipping

Draw

something D
> []

Back buffer

<
%)
Ny
Q
o)
R

Q\

Screen

Displayed buffer

lllustration of page flipping

] %,
%
’OO)
7/
%
/"
Back buffer
Used to draw

something o Screen

Displayed buffer

BufferStrategy

e |n Java (2 and above) you do not have to worry
about these low level detalls to exploit double-
buffering or page flipping

 The class java.awt.image.BufferStrategy has
bhe_en added for the convenience of dealing with
this

« A BufferStrategy has two important methods:

— getDrawGraphics(): return a Graphics object for the
drawing surface

— show(): makes the next buffer visible by copying the
memory (double-buffering) or changing the display

pointer (page flipping)

Sample code using a buffer
strategy

BufferStrategy strategy;
while (Idone) {
Graphics g = strategy.getDrawGraphics();
render(Q);
g.dispose();
strategy.show();

}

Example: a sprite bouncing on the
borders

Code and demo

Same as the previous example but using
BufferStrategy instead

FullScreen has been modified to
iIncorporate a BufferStrategy

The test class has been updated to call
getDrawGraphics() and show() from the
BufferStrategy

Adding simple effects

* Itis possible to use the class AffineTransform to
add simple effect (rotation, scaling, etc) to the
objects

* To do that you can create an empty
transformation and compose it with rotation,
translation:

— AffineTransform a = new AffineTransform();
a.setTranslation(translationx, translationy);
a.rotate(Math.P1/ 20.0);

« Transforming images does not use hardware
acceleration so be careful when using such
effects

Summary

Graphics hardware

Graphics and Graphics2D classes
Full-screen exclusive mode

Loading and displaying images
Animation loop

Active rendering

Sprites

Double buffering, page flipping and buffer
strategy

	Java game programming��2D Graphics and animation
	Plan
	Graphics hardware
	Screen layout
	Pixel color, bit depth and refresh rate
	2D Graphics with Java
	Graphics (and Graphics2D) object
	Full-screen exclusive mode
	Switching to full-screen mode
	Switching to full-screen mode
	Example: displaying text in full-screen
	Some comments
	Display mode
	Display mode
	Images
	Formats
	Raster image formats
	Loading images with Java
	Loading images 2
	Loading images 3
	Example: Loading / displaying an image
	Hardware accelerated images
	Animation
	Active rendering
	Animation loop sample code
	Example: animation of the previous image
	Sprites
	Sprite
	Example: a face bouncing on the screen
	Double buffering
	Illustration of double-buffering
	Page flipping
	Illustration of page flipping
	Illustration of page flipping
	BufferStrategy
	Sample code using a buffer strategy
	Example: a sprite bouncing on the borders
	Adding simple effects
	Summary

