
Java game programming 

Game engines

2010
Fayolle Pierre-Alain



Plan

• Some definitions
• List of (Java) game engines
• Examples of game engines and their use



A first and simple definition

• A game engine is a (complex) software 
system designed for the creation and 
development of video games

• It abstracts the (platform dependent) 
details of doing common game-related 
tasks

• Its core functionality (may) include: a 
rendering engine, a physics engine, a 
scene graph, a sound engine …



Purpose of a game engine

• To provide a flexible and reusable software 
platform for game development

• It does so by providing all or part of the core 
functionality needed for a game

• This helps reducing:
– The complexity of game development
– The time-to-market

• Time-to-market is the length of time it takes from the 
conception of a product to its availability for sale

– The cost of development



Hardware / Platform abstraction
• Game engines usually provide platform 

abstraction (for example: game consoles and 
personal computers, Windows or Linux)

• Rendering engines are built upon graphics API 
such Direct3D or OpenGL providing a software 
abstraction to different video cards

• Input / sound engines may be built upon low 
level libraries such as DirectX or SDL providing 
software abstraction to input devices, network 
cards, or sound cards



Hardware abstraction

• Prior to hardware accelerated graphics, 
software renderers were used

• Software renderers may still be present in 
some rendering engines, e.g. to emulates 
features absent from some cards

• Physics engines may build on physics 
processing units (PPU) and their API and 
provide an abstraction of the PPU 
hardware



Component-based architecture

• Game engines are often designed with a 
component-based architecture that allows 
part of the system to be replaced with 
other components

• A component is a software package or a 
module encapsulating a set of functions 
(and / or data)

• Components communicate with each other 
through interfaces



History of game engines

• Historically games were designed from the 
ground up to make optimal use of limited 
hardware

• Early games for consoles and personal 
computers were mostly programmed in low-level 
language (assembly or C) and optimized for a 
particular hardware

• The term “game engine” gained popularity in the 
90s with games such as Doom or Quake



History of game engine

• The concept of game engine was made popular 
with first person shooting (FPS) game where 
engine (program) and assets (texture, 
characters, etc) became clearly separated

• It allowed the same engine to be re-used with 
different scenarios and assets to produce 
different games

• Popular example is the Quake engine which was 
used in Quake, Half-life, Hexen II and other



Trends in game engine

• FPS games saw lots of progress on rendering 
engines: from wireframes to 3D world, (basic) 
graphics hardware acceleration, popularization 
of GPU, lighting and pixel shaders

• Progress on physics engine as well: rigid body 
dynamics, soft body dynamics (cloth), fluid 
dynamics

• New hardware / platform targets: mobile phones
• Usage of higher-level languages: C#, Java …



Middleware
• A middleware is a software that resides between 

applications and the underlying operating systems, 
network protocol stacks, and hardware

• Middleware’s role is to functionally bridge the gap 
between lower-level and applications

• Originally game engines were developed internally for 
reuse in future game of the company

• Then some companies started to sell them to provide 
another source of income (Id Software)

• Now some companies specialize only in developing and 
selling game engines (or part of it); the term middleware 
is used in this context



Example: DMM Engine

• Middleware physics engine developed by 
Pixelux

• Simulates a large sets of physical properties by 
using Finite Element Analysis instead of the 
classical rigid body kinematics

• Based on an algorithm developed by Prof. 
James O’Brien in his PhD thesis: “Graphical 
modeling and animation of fracture” (Berkeley)



Taxonomy of game engines

• Game engines can be classified using 
different criteria: 
– The type of game that can be developed with 

(FPS, MMORPG, simulation, …)
– The functionalities that are covered (rendering, 

physics)
– The platform that are supported (Linux / 

Windows, game console / personal computer)
– Commercial / Open source



List of (Java) game engine

• List limited to: open-source game engines and 
either written in Java language or providing 
bindings to the Java language

• Written in Java:
– Ardor3D (http://www.ardor3d.com/)
– jMonkeyEngine 

(http://www.jmonkeyengine.com/home/)
– Jogre (http://jogre.sourceforge.net/main.htm)
– Lightweight Java Game Library 

(http://www.lwjgl.org/index.php)



Game engines with Java bindings

• Typically written in C++
• Third party bindings for the Java language 

are provided (typically using JNI: Java 
Native Interface)

• Irrlicht Engine 
(http://www.irrlicht3d.org/wiki/)

• Crystal space 
(http://www.crystalspace3d.org/main/Main 
_Page)



JOGRE
• Java Online Gaming Real-time Engine
• http://jogre.sourceforge.net/main.htm
• A client / server game engine allowing the 

creation of multi-player online games (ex: chess, 
go, …)

• Provide a set of packages to help developers 
with: rendering, network and communications, 
state manipulations

• Provide base abstract classes to be extended by 
developers

http://jogre.sourceforge.net/main.htm


LWJGL

• LightWeight Java Game Library
• http://www.lwjgl.org/index.php
• Provide developers access to cross- 

platform libraries for:
– Rendering (using OpenGL)
– Sound (using OpenAL and FMOD)
– Input controls (gamepad, joystick)
– Timer

http://www.lwjgl.org/index.php


LWJGL
• Low-level
• Similar to JOGL (for OpenGL) and JOAL (for 

OpenAL)
• Regroup these low-level libraries together into 

one library
• Main packages: input, OpenGL, and OpenAL
• Style is procedural (in spirit of OpenGL and 

OpenAL which are C libraries)
• Best to use as a component for other game 

engines
– For example: jMonkeyEngine or ardor3d use LWJGL 

in their rendering engine



LWJGL
• opengl.Display and opengl.DisplayMode: to 

browse available modes, select one, toggle 
between full-screen and windowed mode …

• Opengl.GL11: implementation of OpenGL 1.1 
specifications; render in 2D and 3D, texture 
mapping, transformations

• Input.Keyboard: methods to check if a key is 
pressed, key codes (similar classes for mouse 
and joysticks)

• Util.Timer to control the game speed



Spinning cube

public static void main(String args[]) {
cube cube1 = new cube();
cube1.run();

}

public void run() {
// within a try {} catch() {`}
init();
while (!done) {

keyLoop();
render();
Display.update();

}
}



private void init() throws Exception {
// 1. Init display
Display.setFullscreen(fullscreen);
…..
// Loop to find an acceptable display

displayMode = …..;
…..
Display.setDisplayMode(displayMode);
Display.create();

// 2. Init GL
GL11.glShadeModel(…);
…..

}

Spinning cube

private void keyLoop() {
…..
if(Keyboard.isKeyDown(Keyboard.KEY_RIGHT)){
angleY = 0.015f;

}
…..

}



jMonkeyEngine

• http://www.jmonkeyengine.com/home/
• jME is a Java based 3D game engine
• It provides a scene graph architecture
• It provides functionalities for sound, input, 

GUI dev., and several effects (water, 
particle system, …)

• It is mostly written in Java except for a thin 
JNI layer used to interface with audio, 
video and input device

http://www.jmonkeyengine.com/home/


Architecture
Code for your game

LWJGL Extension
For physics engine

Graphics
Effects

Audio
management

Model
importers

Collision
detection

Scene
management

Input
management

OpenGL OpenAL jInput

Operating system

ODE



jME renderer

• It uses OpenGL (LWJGL) or software 
rendering

• Responsibilities:
– Transform from world space to screen space
– Traverse the scene graph and renders visible 

portions of it



Scene graph

• A hierarchical data structure (tree) used to 
group data

• Internal nodes used to apply operations 
(geometrical transformation, lighting, …)

• Leaf nodes contain geometrical data
root

Node
With scaling

sphere

Tri mesh box



Benefits of a scene graph

• Simplify management of attributes:
– Ex: define a light applying only to a sub-tree 

• Facilitate the definition of hierarchical 
geometrical models
– In OpenGL, it would be done by using 

glPushMatrix() and glPopMatrix() on the 
ModelView matrix

• Grouping objects in a region
– Help in culling non-visible areas of the scene



jME scene graph

• Leaf nodes: geometrical data
• Internal nodes maintain spatial and semantical 

information
– Transformation: for positioning, scaling and orienting 

objects
– Bounding volumes: for culling and intersection testing
– Render state: information passed to the renderer for 

rendering object (ex: lighting state, texture state, 
material state)

– Animation state: to represent time varying node data



Example

Root

Node
With scaling

Box1 Box2
With translation

protected void simpleInitGame() {
Node n = new Node("Node1");

Box b1 = new Box("Box1", new Vector3f(0, 0, 0), 
new Vector3f(1, 1, 1));

b1.setModelBound(new BoundingBox());
b1.updateModelBound();

Box b2 = new Box("Box1", new Vector3f(0, 0, 0), 
new Vector3f(1, 1, 1));

b2.setModelBound(new BoundingBox());
b2.updateModelBound();
b2.setLocalTranslation(1.0f, 2.0f, 0.0f);

n.attachChild(b1);
n.attachChild(b2);
n.setLocalScale(2.0f);

rootNode.attachChild(n);
}



jME sound

• Sounds are defined in a similar way as the 
geometry inside the scene graph

• Sounds are rendered in 3D (using OpenAL 
– JOAL)

• Access to the audio system is performed 
by: AudioSystem audio = AudioSystem.getSystem();

• Possibility to load .ogg or .wav files to be 
played during the game



Graphics functionalities

• Loading, mapping and rendering of 
textures

• Various 3D model data loaders:
– MD2: Quake 2 model format
– ASE: 3D Studio Max Ascii format …

• Built-in primitives: point, line, sphere, box, 
triangle meshes, …

• States: lights, textures, fog, materials, 
shading, alpha



Effects

• Particles, water, terrain, shadow
• Example: Particle system

– Creation through the factory: 
ParticleMesh p = ParticleFactory.buildParticles(“particles”, 60);

– Setup properties: size, color, … 
p.setInitialVelocity(0.1f); 
p.setStartSize(3f);

– Add influences such as wind, gravity, … 
ParticleInfluence wind = 
SimpleParticleInfluenceFactory.createBasicWind(.6f, new 
Vector3f(0, 1, 0), true, true); 
p.addInfluence(wind);



Simple example of game

• Framework: 
– jME proposes some application classes:

• AbstractGame, SimpleGame, SimplePassGame, 
StandardGame

– We will use the simplest one: SimpleGame

public class TestGame extends SimpleGame {
@override
protected void simpleInitGame() { … }

}



jME application classes
• AbstractGame

– Basic API for games
– Some implementations common to all game: 

• initSystem(); 
• initGame(); 
• the game loop which calls update(float) and render(float); 
• cleanup()

• SimpleGame extends BaseSimpleGame
• BaseSimpleGame provides implementation for most of 

the needed tasks; it is only required to build a scene 
graph in simpleInitGame()

• AbstractGame -> BaseGame -> BaseSimpleGame



jME application classes

• SimplePassGame: same as 
BaseSimpleGame with multi-pass 
rendering management

• StandardGame: 
– implements basic functionalities needed in a 

game



Simple example of game

• jME’s geometrical primitive for the game 
elements:

ball = new Sphere(“Ball”, 10, 10, 1);
ball.setModelBound(new BoundingSphere());
ball.updateModelBound();

player = new Box(“Player”, new Vector3f(), 5, 5, 10);
player.setModelBound(new BoundingBox());
player.updateModelBound();
player.setLocalTranslation(110f, 0f, 0f);

// walls and bricks are similarly made of Box

rootNode.attachChild(ball);
rootNode.attachChild(player);



Input control

• Use KeyBindingManager to register 
actions and map keyboard input these 
actions

simpleInitGame() {
KeyBindingManager.getKeyBindingManager().set(“PLAYER_MOVE_LEFT”, 

KeyInput.KEY_1);
}

simpleUpdate() {
if (KeyBindingManager.getKeyBindingManager().isValidCommand(

“PLAYER_MOVE_LEFT”, true)) {
// move the position of the player to the left
player.getLocalTranslation().z -= speed * timer.getTimePerFrame();

}
}



Ball movement

• Use the ball speed and the time elapsed 
(between the last and the current call) to 
update the ball position at each update

simpleUpdate() {
ball.getLocalTranslation().x = ball.getLocalTranslation().x

+ ball_speed.x * timer.getTimePerFrame();
ball.getLocalTranslation().y = ball.getLocalTranslation().y

+ ball_speed.y * timer.getTimePerFrame();
ball.getLocalTranslation().z = ball.getLocalTranslation().z

+ ball_speed.z * timer.getTimePerFrame();
}



Collision detection

• We use the bounding volume only for 
checking collision

simpleUpdate() {
if (player.hasCollision(ball, false)) {
ball_speed.x = ball_speed.x * (-1.0f);

}

// same for the back wall

if (lateral_walls.hasCollision(ball, false)) {
ball_speed.z = ball_speed.z * (-1.0f);

}
}



Collision with the bricks

• For the bricks in addition to changing the 
ball velocity direction, we need to remove 
the brick from the scene graph

simpleUpdate() {
if (!brick_wall.isEmpty()) {

for (Brick b : brick_wall) {
if (!b._removed && b._box != null

&& ball.hasCollision(b._box, false)) {
ball_speed.x = ball_speed.x * -1.0f;
rootNode.detachChildNamed(b._name);
b._removed = true;

}
}

}
}



Simple example of game

Breakout like game



Adding sound to the game

• First obtain access to the audio system: 
AudioSystem audio = AudioSystem.getSystem();

• Setup a track in the init part: 
AudioTrack collide_sound = audio.createAudioTrack(“collision.ogg”, 
false);

• Every time a collision is detected, play the 
sound: 
collide_sound.play();

• Update the AudioSystem in the game 
loop: 
AudioSystem.getSystem().update();



More effects

• For example: add some particle system 
making some firework effect once the 
game is finished

• Add texture to the player paddle, to the 
walls, …

• Add a background music
• All of these can be quickly done using the 

jME API



Physics engine

• Collision detection is already provided
• Cloth simulation is also provided 

(jmex.effects.cloth.ClothUtils and 
jmex.effects.cloth.CollidingClothPatch)

• For doing more physically based 
simulation: possibility to add jME physics 2 
that provides access to ODE, PhysX



Summary: game engines
• Game engines are software libraries bringing 

(through API) to the developer functionalities 
needed for developing games

• As with any other software libraries, they allow 
the developer to re-use components and 
decrease its development time

• Java game engines developed in Java (with 
some JNI layers) or bindings to game engines 
(developed in other languages)

• Examples with LWJGL (low-level) and 
jMonkeyEngine (higher level) showed how game 
engines can facilitate the creation of game



Summary: Java for game 
development

• Cross platform
• Power of Java technology:

– Easy to use
– Size of the standard library
– Object oriented

• Deployment
– Applet or application
– Full-screen or windowed

• Bottlenecks can be rewritten in lower level 
languages (with default implementation in Java) 
for speed improvement (JNI, Swig)


	Java game programming��Game engines
	Plan
	A first and simple definition
	Purpose of a game engine
	Hardware / Platform abstraction
	Hardware abstraction
	Component-based architecture
	History of game engines
	History of game engine
	Trends in game engine
	Middleware
	Example: DMM Engine
	Taxonomy of game engines
	List of (Java) game engine
	Game engines with Java bindings
	JOGRE
	LWJGL
	LWJGL
	LWJGL
	Spinning cube
	Spinning cube
	jMonkeyEngine
	Architecture
	jME renderer
	Scene graph
	Benefits of a scene graph
	jME scene graph
	Example
	jME sound
	Graphics functionalities
	Effects
	Simple example of game
	jME application classes
	jME application classes
	Simple example of game
	Input control
	Ball movement
	Collision detection
	Collision with the bricks
	Simple example of game
	Adding sound to the game
	More effects
	Physics engine
	Summary: game engines
	Summary: Java for game development

