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A first and simple definition

• A game engine is a (complex) software 
system designed for the creation and 
development of video games

• It abstracts the (platform dependent) 
details of doing common game-related 
tasks

• Its core functionality (may) include: a 
rendering engine, a physics engine, a 
scene graph, a sound engine …



Purpose of a game engine

• To provide a flexible and reusable software 
platform for game development

• It does so by providing all or part of the core 
functionality needed for a game

• This helps reducing:
– The complexity of game development
– The time-to-market

• Time-to-market is the length of time it takes from the 
conception of a product to its availability for sale

– The cost of development



Hardware / Platform abstraction
• Game engines usually provide platform 

abstraction (for example: game consoles and 
personal computers, Windows or Linux)

• Rendering engines are built upon graphics API 
such Direct3D or OpenGL providing a software 
abstraction to different video cards

• Input / sound engines may be built upon low 
level libraries such as DirectX or SDL providing 
software abstraction to input devices, network 
cards, or sound cards



Hardware abstraction

• Prior to hardware accelerated graphics, 
software renderers were used

• Software renderers may still be present in 
some rendering engines, e.g. to emulates 
features absent from some cards

• Physics engines may build on physics 
processing units (PPU) and their API and 
provide an abstraction of the PPU 
hardware



Component-based architecture

• Game engines are often designed with a 
component-based architecture that allows 
part of the system to be replaced with 
other components

• A component is a software package or a 
module encapsulating a set of functions 
(and / or data)

• Components communicate with each other 
through interfaces



History of game engines

• Historically games were designed from the 
ground up to make optimal use of limited 
hardware

• Early games for consoles and personal 
computers were mostly programmed in low-level 
language (assembly or C) and optimized for a 
particular hardware

• The term “game engine” gained popularity in the 
90s with games such as Doom or Quake



History of game engine

• The concept of game engine was made popular 
with first person shooting (FPS) game where 
engine (program) and assets (texture, 
characters, etc) became clearly separated

• It allowed the same engine to be re-used with 
different scenarios and assets to produce 
different games

• Popular example is the Quake engine which was 
used in Quake, Half-life, Hexen II and other



Trends in game engine

• FPS games saw lots of progress on rendering 
engines: from wireframes to 3D world, (basic) 
graphics hardware acceleration, popularization 
of GPU, lighting and pixel shaders

• Progress on physics engine as well: rigid body 
dynamics, soft body dynamics (cloth), fluid 
dynamics

• New hardware / platform targets: mobile phones
• Usage of higher-level languages: C#, Java …



Middleware
• A middleware is a software that resides between 

applications and the underlying operating systems, 
network protocol stacks, and hardware

• Middleware’s role is to functionally bridge the gap 
between lower-level and applications

• Originally game engines were developed internally for 
reuse in future game of the company

• Then some companies started to sell them to provide 
another source of income (Id Software)

• Now some companies specialize only in developing and 
selling game engines (or part of it); the term middleware 
is used in this context



Example: DMM Engine

• Middleware physics engine developed by 
Pixelux

• Simulates a large sets of physical properties by 
using Finite Element Analysis instead of the 
classical rigid body kinematics

• Based on an algorithm developed by Prof. 
James O’Brien in his PhD thesis: “Graphical 
modeling and animation of fracture” (Berkeley)



Taxonomy of game engines

• Game engines can be classified using 
different criteria: 
– The type of game that can be developed with 

(FPS, MMORPG, simulation, …)
– The functionalities that are covered (rendering, 

physics)
– The platform that are supported (Linux / 

Windows, game console / personal computer)
– Commercial / Open source



List of (Java) game engine

• List limited to: open-source game engines and 
either written in Java language or providing 
bindings to the Java language

• Written in Java:
– Ardor3D (http://www.ardor3d.com/)
– jMonkeyEngine 

(http://www.jmonkeyengine.com/home/)
– Jogre (http://jogre.sourceforge.net/main.htm)
– Lightweight Java Game Library 

(http://www.lwjgl.org/index.php)



Game engines with Java bindings

• Typically written in C++
• Third party bindings for the Java language 

are provided (typically using JNI: Java 
Native Interface)

• Irrlicht Engine 
(http://www.irrlicht3d.org/wiki/)

• Crystal space 
(http://www.crystalspace3d.org/main/Main 
_Page)



JOGRE
• Java Online Gaming Real-time Engine
• http://jogre.sourceforge.net/main.htm
• A client / server game engine allowing the 

creation of multi-player online games (ex: chess, 
go, …)

• Provide a set of packages to help developers 
with: rendering, network and communications, 
state manipulations

• Provide base abstract classes to be extended by 
developers

http://jogre.sourceforge.net/main.htm


LWJGL

• LightWeight Java Game Library
• http://www.lwjgl.org/index.php
• Provide developers access to cross- 

platform libraries for:
– Rendering (using OpenGL)
– Sound (using OpenAL and FMOD)
– Input controls (gamepad, joystick)
– Timer

http://www.lwjgl.org/index.php


LWJGL
• Low-level
• Similar to JOGL (for OpenGL) and JOAL (for 

OpenAL)
• Regroup these low-level libraries together into 

one library
• Main packages: input, OpenGL, and OpenAL
• Style is procedural (in spirit of OpenGL and 

OpenAL which are C libraries)
• Best to use as a component for other game 

engines
– For example: jMonkeyEngine or ardor3d use LWJGL 

in their rendering engine



LWJGL
• opengl.Display and opengl.DisplayMode: to 

browse available modes, select one, toggle 
between full-screen and windowed mode …

• Opengl.GL11: implementation of OpenGL 1.1 
specifications; render in 2D and 3D, texture 
mapping, transformations

• Input.Keyboard: methods to check if a key is 
pressed, key codes (similar classes for mouse 
and joysticks)

• Util.Timer to control the game speed



Spinning cube

public static void main(String args[]) {
cube cube1 = new cube();
cube1.run();

}

public void run() {
// within a try {} catch() {`}
init();
while (!done) {

keyLoop();
render();
Display.update();

}
}



private void init() throws Exception {
// 1. Init display
Display.setFullscreen(fullscreen);
…..
// Loop to find an acceptable display

displayMode = …..;
…..
Display.setDisplayMode(displayMode);
Display.create();

// 2. Init GL
GL11.glShadeModel(…);
…..

}

Spinning cube

private void keyLoop() {
…..
if(Keyboard.isKeyDown(Keyboard.KEY_RIGHT)){
angleY = 0.015f;

}
…..

}



jMonkeyEngine

• http://www.jmonkeyengine.com/home/
• jME is a Java based 3D game engine
• It provides a scene graph architecture
• It provides functionalities for sound, input, 

GUI dev., and several effects (water, 
particle system, …)

• It is mostly written in Java except for a thin 
JNI layer used to interface with audio, 
video and input device

http://www.jmonkeyengine.com/home/


Architecture
Code for your game

LWJGL Extension
For physics engine

Graphics
Effects

Audio
management

Model
importers

Collision
detection

Scene
management

Input
management

OpenGL OpenAL jInput

Operating system

ODE



jME renderer

• It uses OpenGL (LWJGL) or software 
rendering

• Responsibilities:
– Transform from world space to screen space
– Traverse the scene graph and renders visible 

portions of it



Scene graph

• A hierarchical data structure (tree) used to 
group data

• Internal nodes used to apply operations 
(geometrical transformation, lighting, …)

• Leaf nodes contain geometrical data
root

Node
With scaling

sphere

Tri mesh box



Benefits of a scene graph

• Simplify management of attributes:
– Ex: define a light applying only to a sub-tree 

• Facilitate the definition of hierarchical 
geometrical models
– In OpenGL, it would be done by using 

glPushMatrix() and glPopMatrix() on the 
ModelView matrix

• Grouping objects in a region
– Help in culling non-visible areas of the scene



jME scene graph

• Leaf nodes: geometrical data
• Internal nodes maintain spatial and semantical 

information
– Transformation: for positioning, scaling and orienting 

objects
– Bounding volumes: for culling and intersection testing
– Render state: information passed to the renderer for 

rendering object (ex: lighting state, texture state, 
material state)

– Animation state: to represent time varying node data



Example

Root

Node
With scaling

Box1 Box2
With translation

protected void simpleInitGame() {
Node n = new Node("Node1");

Box b1 = new Box("Box1", new Vector3f(0, 0, 0), 
new Vector3f(1, 1, 1));

b1.setModelBound(new BoundingBox());
b1.updateModelBound();

Box b2 = new Box("Box1", new Vector3f(0, 0, 0), 
new Vector3f(1, 1, 1));

b2.setModelBound(new BoundingBox());
b2.updateModelBound();
b2.setLocalTranslation(1.0f, 2.0f, 0.0f);

n.attachChild(b1);
n.attachChild(b2);
n.setLocalScale(2.0f);

rootNode.attachChild(n);
}



jME sound

• Sounds are defined in a similar way as the 
geometry inside the scene graph

• Sounds are rendered in 3D (using OpenAL 
– JOAL)

• Access to the audio system is performed 
by: AudioSystem audio = AudioSystem.getSystem();

• Possibility to load .ogg or .wav files to be 
played during the game



Graphics functionalities

• Loading, mapping and rendering of 
textures

• Various 3D model data loaders:
– MD2: Quake 2 model format
– ASE: 3D Studio Max Ascii format …

• Built-in primitives: point, line, sphere, box, 
triangle meshes, …

• States: lights, textures, fog, materials, 
shading, alpha



Effects

• Particles, water, terrain, shadow
• Example: Particle system

– Creation through the factory: 
ParticleMesh p = ParticleFactory.buildParticles(“particles”, 60);

– Setup properties: size, color, … 
p.setInitialVelocity(0.1f); 
p.setStartSize(3f);

– Add influences such as wind, gravity, … 
ParticleInfluence wind = 
SimpleParticleInfluenceFactory.createBasicWind(.6f, new 
Vector3f(0, 1, 0), true, true); 
p.addInfluence(wind);



Simple example of game

• Framework: 
– jME proposes some application classes:

• AbstractGame, SimpleGame, SimplePassGame, 
StandardGame

– We will use the simplest one: SimpleGame

public class TestGame extends SimpleGame {
@override
protected void simpleInitGame() { … }

}



jME application classes
• AbstractGame

– Basic API for games
– Some implementations common to all game: 

• initSystem(); 
• initGame(); 
• the game loop which calls update(float) and render(float); 
• cleanup()

• SimpleGame extends BaseSimpleGame
• BaseSimpleGame provides implementation for most of 

the needed tasks; it is only required to build a scene 
graph in simpleInitGame()

• AbstractGame -> BaseGame -> BaseSimpleGame



jME application classes

• SimplePassGame: same as 
BaseSimpleGame with multi-pass 
rendering management

• StandardGame: 
– implements basic functionalities needed in a 

game



Simple example of game

• jME’s geometrical primitive for the game 
elements:

ball = new Sphere(“Ball”, 10, 10, 1);
ball.setModelBound(new BoundingSphere());
ball.updateModelBound();

player = new Box(“Player”, new Vector3f(), 5, 5, 10);
player.setModelBound(new BoundingBox());
player.updateModelBound();
player.setLocalTranslation(110f, 0f, 0f);

// walls and bricks are similarly made of Box

rootNode.attachChild(ball);
rootNode.attachChild(player);



Input control

• Use KeyBindingManager to register 
actions and map keyboard input these 
actions

simpleInitGame() {
KeyBindingManager.getKeyBindingManager().set(“PLAYER_MOVE_LEFT”, 

KeyInput.KEY_1);
}

simpleUpdate() {
if (KeyBindingManager.getKeyBindingManager().isValidCommand(

“PLAYER_MOVE_LEFT”, true)) {
// move the position of the player to the left
player.getLocalTranslation().z -= speed * timer.getTimePerFrame();

}
}



Ball movement

• Use the ball speed and the time elapsed 
(between the last and the current call) to 
update the ball position at each update

simpleUpdate() {
ball.getLocalTranslation().x = ball.getLocalTranslation().x

+ ball_speed.x * timer.getTimePerFrame();
ball.getLocalTranslation().y = ball.getLocalTranslation().y

+ ball_speed.y * timer.getTimePerFrame();
ball.getLocalTranslation().z = ball.getLocalTranslation().z

+ ball_speed.z * timer.getTimePerFrame();
}



Collision detection

• We use the bounding volume only for 
checking collision

simpleUpdate() {
if (player.hasCollision(ball, false)) {
ball_speed.x = ball_speed.x * (-1.0f);

}

// same for the back wall

if (lateral_walls.hasCollision(ball, false)) {
ball_speed.z = ball_speed.z * (-1.0f);

}
}



Collision with the bricks

• For the bricks in addition to changing the 
ball velocity direction, we need to remove 
the brick from the scene graph

simpleUpdate() {
if (!brick_wall.isEmpty()) {

for (Brick b : brick_wall) {
if (!b._removed && b._box != null

&& ball.hasCollision(b._box, false)) {
ball_speed.x = ball_speed.x * -1.0f;
rootNode.detachChildNamed(b._name);
b._removed = true;

}
}

}
}



Simple example of game

Breakout like game



Adding sound to the game

• First obtain access to the audio system: 
AudioSystem audio = AudioSystem.getSystem();

• Setup a track in the init part: 
AudioTrack collide_sound = audio.createAudioTrack(“collision.ogg”, 
false);

• Every time a collision is detected, play the 
sound: 
collide_sound.play();

• Update the AudioSystem in the game 
loop: 
AudioSystem.getSystem().update();



More effects

• For example: add some particle system 
making some firework effect once the 
game is finished

• Add texture to the player paddle, to the 
walls, …

• Add a background music
• All of these can be quickly done using the 

jME API



Physics engine

• Collision detection is already provided
• Cloth simulation is also provided 

(jmex.effects.cloth.ClothUtils and 
jmex.effects.cloth.CollidingClothPatch)

• For doing more physically based 
simulation: possibility to add jME physics 2 
that provides access to ODE, PhysX



Summary: game engines
• Game engines are software libraries bringing 

(through API) to the developer functionalities 
needed for developing games

• As with any other software libraries, they allow 
the developer to re-use components and 
decrease its development time

• Java game engines developed in Java (with 
some JNI layers) or bindings to game engines 
(developed in other languages)

• Examples with LWJGL (low-level) and 
jMonkeyEngine (higher level) showed how game 
engines can facilitate the creation of game



Summary: Java for game 
development

• Cross platform
• Power of Java technology:

– Easy to use
– Size of the standard library
– Object oriented

• Deployment
– Applet or application
– Full-screen or windowed

• Bottlenecks can be rewritten in lower level 
languages (with default implementation in Java) 
for speed improvement (JNI, Swig)
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