
1

1

Recognition of strings in a 
language

CFG: Parsing

2

•Generative aspect of CFG: By now it should be clear how, 
from a CFG G, you can derive strings w∈L(G).

•Analytical aspect: Given a CFG G and strings w, how do 
you decide if w∈L(G) and –if so– how do you determine 
the derivation tree or the sequence of production rules 
that produce w? This is called the problem of parsing.

CFG: Parsing

3

• Parser
A program that determines if a string 
by constructing a derivation. Equivalently, 
it searches the graph of G.

– Top-down parsers
• Constructs the derivation tree from root to 

leaves.
• Leftmost derivation.

– Bottom-up parsers
• Constructs the derivation tree from leaves to 

root.
• Rightmost derivation in reverse.

)(GL∈ω

CFG: Parsing

4

Tree nodes represent symbols of the 
grammar (nonterminals or terminals) and 
tree edges represent derivation steps.

Parse trees (=Derivation Tree)
A parse tree is a graphical representation 

of a derivation sequence of a sentential form.

CFG: Parsing

5

E → E + E | E ∗ E | ( E ) | - E | id

Given the following grammar:

Is the string -(id + id) a sentence in this grammar?

Yes because there is the following derivation:

E ⇒ -E ⇒ -(E) ⇒ -(E + E) ⇒ -(id + id)

Parse Tree: Example

CFG: Parsing

6

E → E + E | E ∗ E | ( E ) | - E | id

Lets examine this derivation:
E ⇒ -E ⇒ -(E) ⇒ -(E + E) ⇒ -(id + id)

E E

E-

E

E-

E( )

E

E-

E( )

+E E

E

E-

E( )

+E E

id id
This is a top-down derivation
because we start building the
parse tree at the top parse tree

Parse Tree: Example 1

CFG: Parsing



2

7

)(

||

SLab

baSSS

∈

→

S

S S

S
S

S S
a

S

S S
a b

Leftmost 
derivation abaSSSS ⇒⇒⇒

Derivation
Trees

CFG: Parsing

Parse Tree: Example 2

8

S

S S

S S

S S
b

S

S S

S

S

S S

a

a b

b
Rightmost
Derivation
in Reverse

abSbSSS ⇒⇒⇒Rightmost 
derivation

Derivation
Trees

S S

CFG: Parsing

Parse Tree: Example 2

9

)(|
|

AbT
TATA

AS

→
+→

→

CFG: Parsing

Example 3 Consider the CFG grammar G

Show that (b)+b ∈∈ L(L(GG)?)?

S S

A

S

A T

+

A

S

A T

+

A

T

S

A T

+

A

T

A

( )

S

A T

+

A

T

A

( )
T

S

A T

+

A

T

A

( )
T
b b

S

A T

+

A

T

A

( )
T
b 10

Practical Parsers
• Language/Grammar designed to enable deterministic (directed 

and backtrack-free) searches.

– Top-down parsers : LL(k) languages
• E.g., Pascal, Ada, etc.
• Better error diagnosis and recovery.

– Bottom-up parsers : LALR(1), LR(k) languages
• E.g., C/C++, Java, etc.
• Handles left recursion in the grammar.

– Backtracking parsers
• E.g., Prolog interpreter.

CFG: Parsing

1111

nnExhaustive parsingExhaustive parsing is a form of is a form of toptop--downdown parsing where parsing where 
you start with S and systematically go through all possible (sayyou start with S and systematically go through all possible (say
leftmost) derivations until you produce the string w.leftmost) derivations until you produce the string w.
nn(You can remove sentential forms that will not work.)(You can remove sentential forms that will not work.)

nnExample:Example: Can the CFG S Can the CFG S ?? SS | SS | aSbaSb | | bSabSa | | ?? produce the produce the 
string w = string w = aabbaabb, and how?, and how?
nnAfter one step: S After one step: S ⇒⇒ SS or SS or aSbaSb or or bSabSa or or ??..
nnAfter two steps: S After two steps: S ⇒⇒ SSS or SSS or aSbSaSbS or or bSaSbSaS or S,or S,
or S or S ⇒⇒ aSSbaSSb or or aaSbbaaSbb or or abSababSab or or abab. . 
nnAfter three steps we see that: S After three steps we see that: S ⇒⇒ aSbaSb ⇒⇒ aaSbbaaSbb ⇒⇒ aabbaabb..

CFG: Parsing

Top-down Exhaustive Parsing

1212

nnObvious flaw: it will take a long time and a lot of memory Obvious flaw: it will take a long time and a lot of memory 
for moderately long strings w: It is inefficient.for moderately long strings w: It is inefficient.

nnFor cases For cases ww∉∉L(GL(G) exhaustive parsing may never end.) exhaustive parsing may never end.
This will especially happen if we have rules like AThis will especially happen if we have rules like A?? ?? that make that make 
the sentential forms the sentential forms ‘‘shrinkshrink’’ so that we will never know if we so that we will never know if we 
went went ‘‘too fartoo far’’ with our parsing attempts.with our parsing attempts.
nnSimilar problems occur if the parsing can get in a loop accordinSimilar problems occur if the parsing can get in a loop according g 
to A to A ⇒⇒ B B ⇒⇒ A A ⇒⇒ BB……
nnFortunately, it is always possible to remove problematic rules Fortunately, it is always possible to remove problematic rules 
like Alike A?? ?? and Aand A?? B from a CFG G.B from a CFG G.

CFG: Parsing

Flaws of Top-down Exhaustive Parsing



3

13

Definition: a string is derived ambiguously
in a context-free grammar if it has two or 
more different parse trees

Definition: a grammar is ambiguous if it 
generates some string ambiguously

Grammar Ambiguity

Definition

1414

A string w∈L(G) is derived ambiguously if it has 
more than one derivation tree (or equivalently: if it has
more than one leftmost derivation (or rightmost)).

A grammar is ambiguous if some strings are derived 
ambiguously.

Typical example: rule S → 0 | 1 | S+S | S×S 

S ⇒ S+S ⇒ S×S+S ⇒ 0×S+S ⇒ 0×1+S ⇒ 0×1+1
versus 

S ⇒ S×S ⇒ 0×S ⇒ 0×S+S ⇒ 0×1+S ⇒ 0×1+1

Grammar Ambiguity

1515

The ambiguity of  0×1+1 is shown by the two
different parse trees:

S

+S

× S

1

S

0

S

1

S

× S

+ S

1

S

1

S

0

Grammar Ambiguity

1616

Note that the two different derivations:
S ⇒ S+S ⇒ 0+S ⇒ 0+1
and 
S ⇒ S+S ⇒ S+1 ⇒ 0+1 
do not constitute an ambiguous string 
0+1 as have the same parse tree:

S

+0 1

Ambiguity causes troubles when trying to interpret strings 
like: “She likes men who love women who don't smoke.”

Solutions: Use parentheses, or use precedence rules
such as a+(b×c) = a+b×c ? (a+b)×c.

Grammar Ambiguity

17

<EXPR> ? <EXPR> + <EXPR>
<EXPR> ? <EXPR> * <EXPR>
<EXPR> ? ( <EXPR> )
<EXPR> ? a

Build a parse tree for a + a * a

<EXPR>

a *+ a

<EXPR>
<EXPR>

a

<EXPR> <EXPR>

<EXPR>

a+ *a

<EXPR>
<EXPR>

a

<EXPR><EXPR>

Example

Grammar Ambiguity

1818

Inherently AmbiguousInherently Ambiguous
nnLanguages that can only be generated by Languages that can only be generated by 
ambiguous grammars are ambiguous grammars are inherently ambiguousinherently ambiguous..

nnExample 5.13: L = {Example 5.13: L = {aannbbnnccmm} } ∪∪ {{aannbbmmccmm}. }. 

nnThe way to make a CFG for this L somehow has to The way to make a CFG for this L somehow has to 
involve the step S involve the step S ?? SS11|S|S22 where S1 produces the where S1 produces the 
strings strings aannbbnnccmm and Sand S22 the strings the strings aannbbmmccmm..
nnThis will be ambiguous on strings This will be ambiguous on strings aannbbnnccnn..

Grammar Ambiguity

}      |    { kjjicbaL kji =∨==



4

19Which derivation tree is correct?

Find a derivation for the expression: id + id ∗ id
E E

+E E

E

+E E

∗E E

E

+E E

∗E E

id id

id

E E

∗E E

E

∗E E

+E E

E

∗E E

+E E

id id

id

E → E + E | E ∗ E | ( E ) | - E | idExample

Grammar Ambiguity

20

According to the grammar, both are correct.

Find a derivation for the expression: id + id ∗ id
E

+E E

∗E E

id id

id

E

+E E

∗E E

id id

id

A grammar that produces more than one
parse tree for any input sentence is said
to be an ambiguous grammar.

E → E + E | E ∗ E | ( E ) | - E | id

Grammar Ambiguity

Example

21

• * has precedence over +

1 + 2 * 3 = 1 + (2 * 3)
1 + 2 * 3 ? (1 + 2)*3

• Associativity and precedence information is typically 
used to disambiguate non-fully parenthesized 
expressions containing unary prefix/postfix operators 
or binary infix operators. 

Grammar Ambiguity

One way to resolve ambiguity is to associate 
precedence to the operators.

Example

22

stmelse  

stmthenif

stmthenifstm

                                      

     expr         |             

     expr           →

if  B1 then if B2 then S1 else S2
vs

if  B1 then if B2 then S1 else S2

Grammar:

Ambiguity:

Grammar Ambiguity

Example

23λ
λ

λ
λ

|
|

|
|

|

aAA
bQcQ
cCC
aPbP

AQPCS

→
→
→
→
→

Yes: consider the string abc

Grammar Ambiguity

Quiz 1

Is the following grammar ambiguous?

24

Yes:  consider ab

Grammar Ambiguity

Quiz 2

Is the following grammar ambiguous? abSbaSS ||→



5

25

λ|SSS →

(Illustrates ambiguous grammar with cycles.)

Cyclic structure

S

SS

SSS

λ

Grammar Ambiguity

Quiz

Is the following grammar ambiguous?

Yes

26

A CFG (V,T,S,P) is a simple grammar
(s-grammar) if and only if all its productions are of the form 
A ? ax with 

A∈V, a∈T, x∈V* and any pair (A,a) occurs at most once.

•Note, for simple grammars a left most derivation of a 
string w∈L(G) is straightforward and requires time |w|.

•Example: Take the s-grammar S ? aS|bSS|c with aabcc:
S ⇒ aS ⇒ aaS ⇒ aabSS ⇒ aabcS ⇒ aabcc.

Quiz: is the grammar S Quiz: is the grammar S ?? aS|bSS|aSS|caS|bSS|aSS|c ss--grammargrammar ?

Simple Grammar
Definition

NO Why? The pair (S,a) occurs twice

27

Normal Forms

Chomsky Normal Form
Griebach Normal Form

28

Even though we can’t get every grammar 
into right-linear form, or in general even 
get rid of ambiguity, there is an especially 
simple form that general CFG’s can be 
converted into:

Chomsky Normal Form CNF

29

Chomsky Normal Form

Definition 6.4: A CFG is in Chomsky normal form
if and only if all production rules are of the form 

A → BC
or A → x
with variables A,B,C∈V and x∈T. 
(Sometimes rule S→? is also allowed.) 
CFGs in CNF can be parsed in time O(|w|3).

Named after Noam Chomsky who in 
the 60s made seminal contributions 
to the field of theoretical linguistics. 
(cf. Chomsky hierarchy of languages). 

30

Noam Chomsky came up with an especially simple 
type of context free grammars which is able to 
capture all context free languages. 

Chomsky's grammatical form is particularly useful 
when one wants to prove certain facts about 
context free languages. This is because 
assuming a much more restrictive kind of 
grammar can often make it easier to prove that 
the generated language has whatever property 
you are interested in. 

Chomsky Normal Form CNF



6

31

• Length of derivation of a string of length 
n in CNF = (2n-1)
(Cf. Number of nodes of a strictly binary tree with n-leaves)

• Maximum depth of a parse tree = n
• Minimum depth of a parse tree = 

  1log 2 +n

Significance of CNF

Chomsky Normal Form CNF

32

A CFG is said to be in Chomsky Normal Form if every rule in the 
grammar has one of the following forms: 

(dyadic variable productions)

(unit terminal productions)

(? for empty string sake only)

Where S is the start variable, A,B,C are variables and a is a terminal. 
Thus epsilons may only appear on the right hand side of the start 
symbol and other RHS are either 2 variables or a single terminal.

Chomsky Normal Form CNF

}{  where SVB,C
S

aA
BCA

−∈
→
→
→

λ

33

• Theorem: There is an algorithm to 
construct a grammar G’ in CNF that is 
equivalent to a CFG G.

Chomsky Normal Form CNF

CFGè CNF

34

• Obtain an equivalent grammar that does 
not contain λ-rules, chain rules, and 
useless variables.

• Apply following conversion on rules of 
the form:   bBcCA →

cW

WCRBRQ
bPPQA

→

→→
→→

        
        

Chomsky Normal Form CNF

CFGè CNF: Construction

35

Converting a general grammar into Chomsky 
Normal Form works in four steps: 

1. Ensure that the start variable doesn't 
appear on the right hand side of any rule. 

2. Remove all ?-rules productions, except from 
start variable.

3. Remove unit variable productions of the 
form  Aà B where A and B are variables. 

4. Add variables and dyadic variable rules to 
replace any longer non-dyadic or non-
variable productions

Chomsky Normal Form CNF

CFGè CNF: Construction

36

Let’s see how this works on the following 
example grammar:

Chomsky Normal Form CNF

CFGè CNF: Example 1

Sà? | a | b | aSa | bSb



7

37

Ensure that start variable doesn't appear 
on the right hand side of any rule. 

1. Start Variable

Chomsky Normal Form CNF

CFGè CNF: Example 1

S’àS

Sà? | a | b | aSa | bSb

38

Remove all epsilon productions, except 
from start variable.

2. Remove ?-rules

Chomsky Normal Form CNF

CFGè CNF: Example 1

S’àS | ?

Sà? | a | b | aSa | bSb | aa | bb

39

Remove unit variable productions of the 
form  Aà B.

3. Remove variable units

Chomsky Normal Form CNF

CFGè CNF: Example 1

S’àS | ? | a | b | aSa | bSb | aa | bb

Sà? | a | b | aSa | bSb | aa | bb

40

Add variables and dyadic variable rules to 
replace any longer productions.

4. Longer production rules

Chomsky Normal Form CNF

CFGè CNF: Example 1

S’à ? | a | b | aSa | bSb | aa | bb AB|CD|AA|CC

Sàa | b | aSa | bSb | aa | bb AB|CD|AA|CC

Aà a

Bà SA

Cà b

DàSC

41

5. Result

Chomsky Normal Form CNF

CFGè CNF: Example 1

S’à ? | a | b | AB | CD | AA | CC

Sà a | b | AB | CD | AA | CC

Aà a

Bà SA

Cà b

DàSC

Sà? | a | b | aSa | bSb

CFG

CNF

42

1. Add a new start variable S0
and add the rule S0 ? S S ? 0S1

S ? T#T

T ? ?

S0 ? S2.  Remove all A ? ? rules 
(where A is not S0)

For each occurrence of A on right 
hand side of a rule, add a new rule 
with the occurrence deleted

If we have the rule B ? A, add 
B ? ?, unless we have 
previously removed B ? ?

S ? T

3.  Remove unit rules A ? B 

Whenever B ? w appears, add 
the rule A ? w unless this was 
a unit rule previously removed 

S ? T#
S ? #T
S ? #
S ? ?

S ? 01
S0 ? ?
S0 ? 0S1

CFGè CNF: Example 2



8

43

S ? 0S1
S ? T#T
S ? T#
S ? #T
S ? #
S ? 01

S0 ? ?

S0 ? 0S1
S0 ? T#T
S0 ? T#
S0 ? #T
S0 ? #
S0 ? 01

4. Convert all remaining rules into the 
proper form

S0 ? 0S1

S0 ? A1A2

A1 ? 0

A2 ? SA3

A3 ? 1

S0 ? T#

S0 ? TA4

A4 ? #

CFGè CNF: Example 2

44

Convert the following into Chomsky normal form:
A ? BAB | B | ?
B ? 00 | ?

A ? BAB | B | ?
B ? 00 | ?

S0 ? A
A ? BAB | B | BB | AB | BA 
B ? 00

S0 ? A | ?

A ? BAB | 00 | BB | AB | BA 
B ? 00

S0 ? BAB | 00 | BB | AB | BA  | ?

CFGè CNF: Example 2

45

•Write into Chomsky Normal Form the CFG:

S ? aA|aBB
A ? aaA|?
B ? bC|bbC
C ? B

Chomsky Normal Form CNF

Exercise

46

•S ? aA|aBB
A ? aaA|?
B ? bC|bbC
C ? B
•Answer (1): First you remove the ?-productions 
(A⇒?):
•S ? aA|aBB|a
A ? aaA|aa
B ? bC|bbC
C ? B

Chomsky Normal Form CNF

Answer

47

•Answer (2): Next you remove the unit-productions from:
S ? aA|aBB|a
A ? aaA|aa
B ? bC|bbC
C ? B
•Removing C? B, we have to include the C⇒*B 
possibility, which can be done by substitution and gives:
S ? aA|aBB|a
A ? aaA|aa
B ? bC|bbC
C ? bC|bbC

Chomsky Normal Form CNF

Answer

48

Answer(3): Next, we determine the useless 
variables in 
S ? aA|aBB|a
A ? aaA|aa
B ? bC|bbC
C ? bC|bbC

The variables B and C can not terminate and are 
therefore useless. So, removing B and C gives:
S ? aA|a
A ? aaA|aa

Chomsky Normal Form CNF

Answer



9

49

Answer(4): To make the CFG in Chomsky 
normal form, we have to introduce terminal 
producing variables for
S ? aA|a
A ? aaA|aa,

•which gives 
S ? XaA|a
A ? XaXaA|XaXa
Xa ? a.

Chomsky Normal Form CNF

Answer

50

Answer(5): Finally, we have to ‘chain’ the 
variables in
S ? XaA|a
A ? XaXaA|XaXa
Xa ? a,
•which gives
S ? XaA|a
A ? XaA2 |XaXa
A2 ? XaA
Xa ? a.

Chomsky Normal Form CNF

Answer

51

• A CFG is in Griebach Normal Form 
if each rule is of the form

}{  where

...21

SVA
S

aA
AAaAA

i

n

−∈
→
→
→

λ

Griebach Normal Form GNF

52

• The size of the equivalent GNF can be 
large compared to the original grammar. 

• Next Example CFG has 5 rules, but the 
corresponding GNF has 24 rules!!

• Length of the derivation in GNF
= Length of the string.

• GNF is useful in relating CFGs
(“generators”) to pushdown automata 
(“recognizers”/”acceptors”).

Griebach Normal Form GNF

53

• Theorem: There is an algorithm to 
construct a grammar G’ in GNF that is 
equivalent to a CFG G.

Griebach Normal Form GNF

CFGè GNF

54

aABC
bCAB

BCA

|
|

→
→
→

aBBCC
bCAB

BCA

|
|

→
→

→

aBCbBCCAC ||→

CBARCBAR

a|bCB    | 
RabCBC

|

    
)|(

→

→

)|()|...|(

|||       
|

|||       

|

|||

CBCBRbCbCBRACR

bCaACbCBAC
aRACbcBRACA

baAbCBA

aRAbcBRAB

abCBaRbCBRC

→

→

→

→

Griebach Normal Form GNF

CFGè GNF: Example



10

55

An even more general form of grammars exists.  
In general, a non-context free grammar is one 
in which whole mixed variable/terminal 
substrings are replaced at a time.  For 
example with Σ = {a,b,c} consider:

For technical reasons, when length of LHS 
always ≤ length of RHS, these general 
grammars are called context sensitive.

Sà ? | ASBC
A à a
CB à BC

aB à ab
bBà bb
bCà bc
cCà cc

Context Sensitive Grammar

56

Find the language generated by the CSG:
Sà ? | ASBC
A à a
CB à BC
aBà ab
bBà bb
bCà bc
cCà cc

Context Sensitive Grammar (CSG)

Example

57

Answer is {anbncn}.  

In a future class we’ll see that this 
language is not context free.  Thus 
perturbing context free-ness by allowing 
context sensitive productions expands 
the class.

Context Sensitive Grammar (CSG)

Example

58

Relations between Grammars

So far we studied 3 grammars:

1. Regular Grammars  (RG)
2. Context Free Grammars (CFG)
2. Context Sensitive Grammars (CSG)

The relation between these 3 grammars is as follow:

RG 

CFG
CSG

59

Programming languages are often defined as Context 
Free Grammars in Backus-Naur Form (BNF).

Example:
<if_statement>  ::= IF <expression><then_clause><else_clause>
<expression>  ::= <term> | <expression>+<term>
<term> ::= <factor>|<term>*<factor>

The variables as indicated by <a variable name>
The arrow ? is replaces by ::=
Here, IF, + and * are terminals.

“Syntax Checking” is checking if a program is an
element of the CFG of the programming language.

Grammar Applications

Programming Languages

60

Grammar Applications

Compiler Syntax Analysis

Scanner
Parser

Semantic Analy.
Inter. Code Gen.

Optimizer
Code Generation

Source Program

Target Program

Compiler:
This part of 
the compiler 

use the 
Grammar



11

61

Applications of CFG

Parsing is where we use the theory of CFGs.

The theory is especially relevant when dealing with 
Extensible Markup Language (XML) files and their 
corresponding Document Type Definitions (DTDs).

Document Type Definitions define the grammar that 
the XML files have to adhere to. Validating XLM files 
equals parsing it against the grammar of the DTD.

The nondeterminism of NPDAs can make parsing slow.
What about deterministic PDAs?


