Recognition of strings in a
language

[cra:parsing S

*Generative aspect of CFG: By now it should be clear how,
from a CFG G, you can derive strings wl L(G).

«Analytical aspect: Given a CFG G and strings w, how do
you decide if wi L(G) and —if so— how do you determine
the derivation tree or the sequence of production rules
that produce w? This is called the problem of parsing.

e Parser

A program that determines if a string wi L(@G)
by constructing a derivation. Equivalently,
it searches the graph of G.

— Top-down parsers

« Constructs the derivation tree from root to
leaves.

* Leftmost derivation.
— Bottom-up parsers

« Constructs the derivation tree from leaves to
root.

« Rightmost derivation in reverse.

[cro: parsing NN

Parse trees (=Derivation Tree)

A parse tree is a graphical representation
of a derivation sequence of a sentential form.

Tree nodes represent symbols of the
grammar (nonterminals or terminals) and
tree edges represent derivation steps.

[cro: parsing NN

Given the following grammar:

[E®@ E+E|E*E|(E)|-E]id]

Is the string -(id + id) a sentence in this grammar?

Yes because there is the following derivation:

Ep -EP -(E)P -(E+E)P -(id+id)

[cro: parsing NN

_ [E®@ E+E|E*E|(E)|-E|id]

Lets examine this derivation:
Ep -Eb -(E)P -(E+E)P -(id+id)

Ec= E = E => E => E
/ \E / \E / \E / \E
71N 7 IN 7 IN
(E) (E) (E)
71N AN
E + E E + E
This is a top-down derivation iL iL

because we start building the
parse tree at the top parse tree
6

[cre: parsing SN
—
S8 2B AR N

g N f s {)

Leftmost
derivation

'SP SSPp aSP ab

- Consider the CFG grammar G

S® A
A® T|A+T i
T® b|(A) Show that (b)+b 1 L(G)?

DsDeR e om f O

mExhaustive parsing is a form of top-down parsing where
you start with S and systematically go through all possible (say
leftmost) derivations until you produce the string w.

n(You can remove sentential forms that will not work.)

mExample: Can the CFG S ? SS | asSb | bSa| ? produce the
string w = aabb, and how?

mAfter one step: S b SS or aSb or bSaor 2.

mAfter two steps: S b SSS or aSbS or bSaS or S,

or S b aSSh or aaShb or abSab or ab.

mAfter three steps we see that: S b aSb b aaSbb b aabb.

[crc:parsin S

Y - | Sp SSP S ab
S S
"2 2B AT
AR A)
s S b a b
S S S s
Rightmost ‘ |:> ‘ |:> /\E>
Derivation a b S S
in Reverse

Practical Parsers

« Language/Grammar designed to enable deterministic (directed
and backtrack-free) searches.

— Top-down parsers : LL(k) languages
« E.g., Pascal, Ada, etc.
« Better error diagnosis and recovery.
— Bottom-up parsers : LALR(1), LR(k) languages
« E.g., C/C++, Java, etc.
« Handles left recursion in the grammar.
— Backtracking parsers
« E.g., Prolog interpreter.

mObvious flaw: it will take a long time and a lot of memory
for moderately long strings w: It is inefficient.

wFor cases wi L(G) exhaustive parsing may never end.

This will especially happen if we have rules like A? ? that make
the sentential forms ‘shrink’ so that we will never know if we
went ‘too far’ with our parsing attempts.

sSimilar problems occur if the parsing can get in a loop according
toAb BP AP B...

mFortunately, it is always possible to remove problematic rules
like A? ?and A? B from a CFG G.

Definition: a string is derived ambiguously
in a context-free grammar if it has two or
more different parse trees

Definition: a grammar is ambiguous if it
generates some string ambiguously

Tih_e ambiguity of 0" 1+1 is shown by the two
different parse trees:

<EXPR>? <EXPR> + <EXPR>
<EXPR>? <EXPR> * <EXPR>
<EXPR>? (<EXPR>)
<EXPR>? a
Build a parsetreefora+a*a
<EXPR> <EXPR>
/ <EXPR> <EXPR>

<EXPR> / \ / \ <EXPR>

<EXPR> [<EXPR> <EXPR>| <EXPR>

a * + a

—F\—string wl L(G) is derived ambiguously if it has
more than one derivation tree (or equivalently: if it has
more than one leftmost derivation (or rightmost)).

A grammar is ambiguous if some strings are derived
ambiguously.

Typical example:rule S® 0|1|S+S|S' S

SPb S+Sb S'S+Sbhb 0°S+Sb 0 1+Sbk 0 1+1
versus
Sb S'SP 0'Sb 0°S+Sb 0°1+Sb 0 1+1

_Ill_ote that the two different derivations:
SphP S+Sb 0+SpP 0+1
and
SphP S+Sbh S+1p 0+1
do not constitute an ambiguous string
0+1 as have the same parse tree:

Ambiguity causes troubles when trying to interpret strings
like: “She likes men who love women who don't smoke.”

Solutions: Use parentheses, or use precedence rules
such asa+(b’c)=a+b’c? (at+b)c.

Inherently Ambiguous

mLanguages that can only be generated by
ambiguous grammars are inherently ambiguous.

sExample 5.13: L = {a"bcm} E {a"bmcm}.

ablct |i=jUj=K
s The way to make a CFG for this L somehow has to
involve the step S ? S,|S, where S1 produces the

strings a”bnc™ and S, the strings anbmc™.
= This will be ambiguous on strings a"bncn.

- [E@ E+E|E*E|(E)|-E|id]

Find a derivation for the expression: id +id * id

E = E = E =9 E
7N 71N /1IN
E + E E + E E + E
VARN I /IN\
E * E id E * E
| |
id id
E E —> E E
/1N /IN VAN
E * E E * E g *x E
/1IN /INC
E + E E + E id
Which derivation tree is correct? ild iL A

One way to resolve ambiguity is to associate
precedence to the operators.

« * has precedence over +

« Associativity and precedence information is typically
used to disambiguate non-fully parenthesized
ex;gressio_ns containing unary prefix/postfix operators
or binary infix operators.

21

[Grammar gy
[ouiz1
Is the following grammar ambiguous? S ® PC | AQ
P® aPb|l
Y es: consider the string abc] C ® CC | I

Q® bQc|l
A® aAll

- [E@ E+E|E*E|(E)|-E|id]

Find a derivation for the expression: id +id * id

E
According to the grammar, both are correct. E/ |\E
+
I /1IN
id E *
A grammar that produces more than one iL iL
parse tree for any input sentence is said E
to be an ambiguous grammar. VARN
E + E
JINC
E * E id
| |
id id 0

(stm) ® if (expr) then (stm)
Grammar: | if (expr) then {stm)
dse (stm)
. |if Blthenif B2then Sl else 2
Ambiguity:

VS
if Blthenif B2then Sl else S2

Is the following grammar ambiguous? | S ® aSl S)lab

crammar Ambiguty | [sinpe cranmar N

A CFG (V,T,S,P) is asimple grammar

S ® $ | I (s-gram m_ar) if and only if all its productions are of the form
A? ax with

Al V,al T, xI V*and any pair (A,a) occurs at most once.

Is the following grammar ambiguous?

*Note, for simple grammars a left most derivation of a
S string wi L(G) is straightforward and requires time |w].

*Example: Take the s-grammar S ? aS|bSS|c with aabcc:
SS

Sb aSP aaSpP aabSS P aabcS P aabcc.

/ I Cyclic structure
5 | Quiz: is the grammar S ? aS|bSS|aSS|c s-grammar ? |
(INustrates ambiguous grammar with cycles.) 25 - - |The pair (S,a) occurs twice | 26
Even though we can't get every grammar
into right-linear form, or in general even
Normal Forms get rid of ambiguity, there is an especially

simple form that general CFG’s can be
converted into:

Chomsky Normal Form
Griebach Normal Form

Noam Chomsky came up with an especially simple

Chomsky Normal Form

Definition 6.4: A CFG is in Chomsky normal form O

if and only if all production rules are of the form type of context free grammars which is able to
A® BC capture all context free languages.

o A® x Chomsky's grammatical form is particularly useful

with variables A,B,Cl Vand xi T. when one wants to prove certain facts about

(Sometimes rule S® ? s also allowed.) context free languages. This is because

CFGs in CNF can be parsed in time O(Jw[). assuming a much more restrictive kind of

grammar can often make it easier to prove that
the generated language has whatever property

Named after Noam Chomsky who in
you are interested in.

the 60s made seminal contributions
to the field of theoretical linguistics.
(cf. Chomsky hierarchy of languages).

Significance of CNF

« Length of derivation of a string of length
nin CNF = (2n-1)
(Cf. Number of nodes of a strictly binary tree with n-leaves)

¢ Maximum depth of a parse tree = n dog, ni+1

¢ Minimum depth of a parse tree =

o

A CFG is said to be in Chomsky Normal Form if every rule in the
grammar has one of the following forms:

A® BC (dyadic variable productions)
A® a (unit terminal productions)
S® | (? for empty string sake only)

whereB,Cl V- {S

Where S is the start variable, A,B,C are variables and a is a terminal.
Thus epsilons may only appear on the right hand side of the start
symbol and other RHS are either 2 variables or a single terminal.

» Theorem: There is an algorithm to
construct a grammar G’ in CNF that is
equivalentto a CFG G.

Converting a general grammar into Chomsky
Normal Form works in four steps:

1. Ensure that the start variable doesn't
appear on the right hand side of any rule.

2. Remove all ?-rules productions, except from
start variable.

3. Remove unit variable productions of the
form A > B where A and B are variables.

4. Add variables and dyadic variable rules to
replace any longer non-dyadic or non-
variable productions 5

 Obtain an equivalent grammar that does
not contain | -rules, chain rules, and
useless variables.

 Apply following conversion on rules of

the form: ﬂ

AR PQ P®Db
Q® BR R®WC
W® c “

Let’s see how this works on the following
example grammar:

S>7?|a|b|aSa|bSh

1. Start Variable

Ensure that start variable doesn't appear
on the right hand side of any rule.

s>S
S>7?|a|b|aSa|bSh

3. Remove variable units
Remove unit variable productions of the
form A -> B.

S'> ?|alblaSa|bSb|aa|bb
S> a|b|aSa|bSb|aa]|bb

2. Remove ?-rules

Remove all epsilon productions, except
from start variable.

S'>S|?
S> a|b|aSa|bSb|aa]|bb

cro cn: Example 1 |
4. Longer production rules
Add variables and dyadic variable rules to
replace any longer productions.
s> ?|alb] ABJ|CD|AA|CC
S>al|b| ABJ|CD|AA|CC
A> a
B> SA

C>b
D->sSC 40

5. Result

CNF
S'> ?|a|b|AB|CD|AA|CC
CFG S> a|b|AB|CD|AA|CC

s>?|a|b|asa|bsb P A> a

B> SA
C>b
D->SC

a1

2. Redhaveeallsiart varidbte S,
autaddihe noteSg), ? S

For each occurrence of A on right
hand side of arule, add a new rule
with the occurrence deleted

If we have therule B ? A, add
B ? ? unless we have
previously removed B ? ?

3. Remove unitrulesA ? B

Whenever B ? w appears, add
therule A ? w unless this was
a unit rule previously removed

4. Convert all remaining rules into the
proper form

S, ? 0S1
So? AA;
A2 0
A,? SA,
A2 1

*Write into Chomsky Normal Form the CFG:

S? aAlaBB
A? aaA?
B? bC|bbC
C? B

45

«Answer (2): Next you remove the unit-productions from:
S? aAlaBBja

A? aaAlaa

B? bC|bbC

C? B

*Removing C? B, we have to include the Cbp *B
possibility, which can be done by substitution and gives:
S? aAlaBBja

A? aaAlaa

B? bC|bbC

C? bC|bbC

a7

Convert the following into Chomsky normal form:
A? BAB|B|?
B? 00|2

Sp? A Sp? Al?
A? BAB|B|? .} A? BAB|B|BB|AB|BA
B? 00|? B? 00

¥

S,? BAB|00|BB|AB|BA |?
A? BAB|00|BB|AB|BA
B? 00

*S? aAlaBB

A? aaA?

B? bC|bbC

C? B

eAnswer (1): First you remove the ?-productions
(AP ?):

S ? aA|aBB|a

A? aaAlaa

B? bC|bbC

C? B

46

Answer(3): Next, we determine the useless
variables in

S? aA|aBB|a

A? aaAlaa

B ? bC|bbC

C? bC|bbC

The variables B and C can not terminate and are
therefore useless. So, removing B and C gives:
S? aAla

A? aaAlaa 8

Answer(4): To make the CFG in Chomsky
normal form, we have to introduce terminal
producing variables for

S? aAJa

A ? aaAlaa,

swhich gives

S? XAla

A2 X XAIX X,
X, ? a.

49

* A CFG is in Griebach Normal Form
if each rule is of the form

A® aAA..A
A® a

S® |
where AT V-{S

» Theorem: There is an algorithm to
construct a grammar G’ in GNF that is
equivalentto a CFG G.

Answer(5): Finally, we have to ‘chain’ the
variables in

S? XAla

A? X XAIX X,

X, ? a,

swhich gives

S? XAla

A? XA, XX,

A ? XA

X, ? a.

» The size of the equivalent GNF can be

large compared to the original grammar.

« Next Example CFG has 5 rules, but the
corresponding GNF has 24 rules!!

« Length of the derivation in GNF
= Length of the string.

* GNF is useful in relating CFGs
(“generators”) to pushdown automata
(“recognizers”/’acceptors”).

cro onr- examo- N
A® BC l—LECB aH
B® CA|b R® ACBR|ACB
C® AB|a ﬂ
ﬂ C ® bCBR |aR |bCB |a
A® BC B® chRA|aRé
B® CA|b ICEA 24l
I A® bcBRAC |aRAC
C® BCBJa |bCBAC |aAC |bC
C® CACB|CB |a R® (bCBRAC [...|bC)(CBR |CB)
54

An even more general form of grammars exists.
In general, a non-context free grammar is one
in which whole mixed variable/terminal
substrings are replaced at a time. For
example with S = {a,b,c} consider:

S-> ?| ASBC aB > ab
A->a bB - bb
CB > BC bC = bc

cC > cc

For technical reasons, when length of LHS
always £ length of RHS, these general

grammars are called context sensitive. 55

Answer is {a"b"c"}.

In a future class we'll see that this
language is not context free. Thus
perturbing context free-ness by allowing
context sensitive productions expands
the class.

57
Programming languages are often defined as Context
Free Grammars in Backus-Naur Form (BNF).

Example:

<if_statement> :=1| F <expression><then_clause><else_clause>
<expression> ::= <term> | <expression>+<term>

<term> ::= <factor>|<term>*<factor>

The variables as indicated by <a variable name>
The arrow ? is replaces by ::=
Here, | F, + and * are terminals.

“Syntax Checking” is checking if a program is an
element of the CFG of the programming language.

Find the language generated by the CSG:
S > ?| ASBC

A->a

CB > BC

aB > ab

bB > bb

bC > bc

cC > cc

So far we studied 3 grammars:

2. Context Sensitive Grammars (CSG)

The relation between these 3 grammars is as follow:

&

This part of
the compiler

use the
Grammar

Source Program

|
Scanner

Parser
Semantic Analy.
Inter. Code Gen.

Optimizer

Code Generation
| 60

Target Program

10

Applications of CFG

Parsing is where we use the theory of CFGs.

The theory is especially relevant when dealing with
Extensible Markup Language (XML) files and their
corresponding Document Type Definitions (DTDs).

Document Type Definitions define the grammar that
the XML files have to adhere to. Validating XLM files
equals parsing it against the grammar of the DTD.

The nondeterminism of NPDAs can make parsing slow.
What about deterministic PDAs?

11

