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TURING MACHINES
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• The Turing machine is the ultimate model of computation.

Alan Turing (1912–1954), British
mathematician/engineer and one 
of the most influential scientists
of the last century. 

Turing Machines (TM)
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In 1936, Turing introduced his abstract 
model for computation.

The Turing machine model has become the
standard in theoretical computer science.
Think of a Turing Machine as a DPDA that can 
move freely through its stack (= tape).

Turing Machines (TM)



4

Alan Turing was one of the founding fathers of CS.
• His computer model –the Turing Machine– was 

inspiration/premonition of the electronic 
computer that came two decades later

• Was instrumental in cracking the Nazi Enigma 
cryptosystem in WWII

• Invented the “Turing Test” used in AI
• Legacy: The Turing Award.  Pre-eminent award 

in Theoretical CS

Turing Machines (TM)
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First Goal of Turing’s Machine:  A model that can 
compute anything that a human can compute.  
Before invention of electronic computers the 
term “computer” actually referred to a person
who’s line of work is to calculate numerical 
quantities!

As this is a philosophical endeavor, it can’t really 
be proved.

Turing’s Thesis: Any “algorithm” can be carried out 
by one of his machines

Turing Machines (TM)

A Thinking Machine
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Second Goal of Turing’s Machine:  A model that’s 
so simple, that can actually prove interesting 
epistemological results.  Eyed Hilbert’s 10th

problem, as well as a computational analog of 
Gödel’s Incompleteness Theorem in Logic.

Philosophy notwithstanding, Turing’s programs for 
cracking the Enigma cryptosystem prove that he 
really was a true hacker!  Turing’s machine is 
actually easily programmable, if you really get 
into it.  Not practically useful, though…

Turing Machines (TM)

A Thinking Machine
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Imagine a super-organized, obsessive-compulsive 
human computer.  The computer wants to avoid 
mistakes so everything written down is 
completely specified one letter/number at a time.  
The computer follows a finite set of rules which 
are referred to every time another symbol is 
written down.  Rules are such that at any given 
time, only one rule is active so no ambiguity can 
arise.  Each rule activates another rule 
depending on what letter/number is currently 
read.

Turing Machines (TM)

A Thinking Machine
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Sample Rules:

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

Let’s see how they are carried out on a piece of 
paper that contains the reverse binary 
representation of 47: 111101

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

101111

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

101110

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

101100

Turing Machines (TM)

A Thinking Machine: Example: Successor Program



12

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

101000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program



13

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

100000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

110000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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So the successor’s output on 111101 was 
000011 which is the reverse binary 
representation of 48.

Similarly, the successor of 127 should be 
128:

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1111111

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1111110

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1111100

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1111000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1110000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1100000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1000000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

0000000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

10000000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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It was hard for the ancients to believe that any
algorithm could be carried out on such a device.  
For us, it’s much easier to believe, especially if 
you’ve programmed in assembly!

However, ancients did finally believe Turing when 
Church’s lambda-calculus paradigm (on which 
lisp programming is based) proved equivalent!

Turing Machines (TM)

A Thinking Machine: Example: Successor Program
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A Turing Machine (TM) is a device with a finite 
amount of read-only “hard” memory (states), and 
an unbounded amount of read/write tape-
memory.  There is no separate input.  Rather, 
the input is assumed to reside on the tape at the 
time when the TM starts running.

Just as with Automata, TM’s can either be 
input/output machines (compare with Finite 
State Transducers), or yes/no decision 
machines.  

Turing Machines (TM)
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Church Turing Thesis: all reasonable models
of computation can be simulated by a (single
tape) Turing machine.

If we want to investigate what we can and 
can not do using computers, it is sufficient 
to study the Turing machine model.

Church Turing thesis

Turing Machines (TM)
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TM can both write to and read from the tape

The head can move left and right

The string doesn’t have to be read entirely

Accept and Reject take immediate effect

Turing Machines (TM)

A Comparison with FA
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TM

PDA

FA

Deterministic 
by default?

Read/Write Data 
Structure

Separate 
Input?Device

Turing Machines (TM)

A Comparison with FA and PDA
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TM

PDA

YesNoneYesFA

Deterministic 
by default?

Read/Write Data 
Structure

Separate 
Input?Device

Turing Machines (TM)

A Comparison with FA and PDA
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TM

NoLIFO StackYesPDA

YesNoneYesFA

Deterministic 
by default?

Read/Write Data 
Structure

Separate 
Input?Device

Turing Machines (TM)

A Comparison with FA and PDA
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Yes
(but will also 

allow crashes)

1-way infinite 
tape.  1 cell 

access per step.
NoTM

NoLIFO StackYesPDA

YesNoneYesFA

Deterministic 
by default?

Read/Write Data 
Structure

Separate 
Input?Device

Turing Machines (TM)

A Comparison with FA and PDA
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FINITE 
STATE 

CONTROL

INFINITE TAPE

I N P U T

q0q1

A

Turing Machines (TM)
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0 ? 0, R

read write move

¨ ? ¨, R

qaccept

qreject

0 ? 0, R

¨ ? ¨, R

0 ? 0, R
¨ ?  ¨, L

Turing Machines (TM)
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An edge from the state p to the state q labeled 
by …

• aàb,D  means if in state p and tape head 
reading a, replace a by b and move in the 
direction D, and into state q

• aàD     means if in state p and tape head 
reading a, don’t change a and move in the 
direction D, and into state q

• a|b|…|z à … means that given that the 
tape head is reading any of the pipe 
separated symbols, take same action on 
any of the symbols

Turing Machines (TM)

Notations



36

A TM’s next action is completely determined by 
current state and symbol read, so can 
predict all of future actions if know:

1. current state
2. current tape contents
3. current position of TM’s reading “head”

Turing Machines (TM)

Notations
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Testing membership in B = { w#w | w ∈ {0,1}* }

STATE

0 1 1 # 0 1 1

q0, FIND # qGO LEFT

0

q1, FIND #q#, FIND ¨

#1

q0, FIND ¨

0

q1, FIND ¨

1x xx

Turing Machines (TM)
Example:
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A Turing Machine is a 7-tuple 
T = (Q, S, G, δ, q0, qaccept, qreject), where: 

Q is a finite set of states

Gis the tape alphabet, where ¨ ∈ Gand S ⊆ G

q0 ∈ Q is the start state

S is the input alphabet, where ¨ ∉ S

δ : Q × G? Q × G× {L,R}

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept

Turing Machines (TM)
Definition
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CONFIGURATIONS

11010q700110

q7

1 0 0 0 0 01 1 1 1

Turing Machines (TM)
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Depending on its state and the letter xi, the TM 
- writes down a letter, 
- moves its read/write head Left or Right, and 
- jumps to a new state in Q.

RL

At every step, 
the head of the 
TM M reads a 
letter xi from the 
one-way infinite 
tape. L__1#0_110

Internal State 
set Q

Turing Machines (TM)

Informal Description



41

RL

L__1#0_110

Internal State 
set Q

Depending on x and q the, the transition function
value d(q,x) = (r,y,d) tells the TM to replace the 
letter a by b, move its head in direction d∈{L,R}, 
and change its internal state to r.

At every step, 
the head of the 
TM M reads a 
letter x from the 
tape of size ? .

Turing Machines (TM)

Informal Description
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The computation can proceed indefinitely, or the 
machines reaches one of the two halting states:

or

LL _vv m1
LL _vv m1

accept state t reject state r

Turing Machines (TM)

Output Convention
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Notation: (q9,¢011_0#1 _? , 3) ? (q3,¢010_0#1 _? , 4)

L__1#0_110¢

L__1#0_010¢

d(q9,1) = (q3,0,R) gives…

q9

q3

Turing Machines (TM)

Transitions in Action
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A TM recognizes a language if it accepts all 
and only those strings in the language

A TM decides a language if it accepts all 
strings in the language and rejects all strings 
not in the language

A language is called Turing-recognizable or 
recursively enumerable if some TM 
recognizes it

A language is called decidable or recursive 
if some TM decides it

Turing Machines (TM)
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A language is called Turing-recognizable or 
recursively enumerable if some TM 
recognizes it

A language is called decidable or recursive 
if some TM decides it

recursive
languages

r.e. 
languages

Turing Machines (TM)



46

Theorem: If A and ¬A are r.e. then A is recursive

Given TM that recognizes A and TM that 
recognizes ¬A, we can build a new machine 
that decides A

Turing Machines (TM)
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0 ? ¨, R

¨ ? ¨, R

qacceptqreject

0 ? x, R

x ? x, R
¨ ? ¨, R

x ? x, R

0 ? 0, L
x ? x, L

x ? x, R

¨ ? ¨, L¨ ? ¨, R

0 ? x, R
0 ? 0, R

¨ ? ¨, R
x ? x, R

{ 0   | n = 0 }2n

q0 q1

q2

q3

q4

Turing Machines (TM)
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0 ? ¨, R

¨ ? ¨, R

qacceptqreject

0 ? x, R

x ? x, R
¨ ? ¨, R

x ? x, R

0 ? 0, L
x ? x, L

x ? x, R

¨ ? ¨, L¨ ? ¨, R

0 ? x, R
0 ? 0, R

¨ ? ¨, R
x ? x, R

{ 0   | n = 0 }2n

q0 q1

q2

q3

q4

q00000

¨q1000

¨xq300

¨x0q40

¨x0xq3

¨x0q2x

¨xq20x

¨q2x0x

q2¨x0x



49

C = {aibjck | ij = k and i, j, k = 1}

aabbbcccccc
xabbbcccccc
xayyyzzzccc
xabbbzzzccc
xxyyyzzzzzz

Turing Machines (TM)
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Pseudocode:
while (there is a 0 and a 1)
cross these out

if (everything crossed out)
accept

else
reject

Example

Turing Machines (TM)

Write a TM for the language L={w∈{0,1}* : #(0)=#(1)}?
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0. if read •, go right (dummy move), ACCEPT
if read 0, write $, go right, goto 1  // $ detects start of tape
if read 1, write $, go right, goto 2

1. if read •, go right, REJECT
if read 0 or X, go right, repeat (= goto 1) // look for a 1
if read 1, write X, go left, goto 3

2. if read •, go right, REJECT
if read 1 or X, go right, repeat // look for a 0
if read 0, write X, go left, goto 3

3. if read $, go right, goto 4 // look for start of tape
else, go left, repeat

4. if read 0, write X, go right, goto 1 // similar to step 0
if read 1, write X, go right, goto 2
if read X, go right, repeat
if read •, go right, ACCEPT

Example

Turing Machines (TM)

L={w∈{0,1}* : #(0)=#(1)}?
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0
1

rej

0à$,R

acc

•àR

21à$,R

0|XàR

1|XàR

3

•àR

0àX,L

1àX,L 0|1|XàL

4

$àR

XàR

0àX,R

1àX,R

•àR

Example

Turing Machines (TM)

L={w∈{0,1}* : #(0)=#(1)}?
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A string x is accepted by a TM M if after 
being put on the tape with the Turing 
machine head set to the left-most position, 
and letting M run, M eventually enters the 
accept state. In this case w is an element 
of L(M) –the language accepted by M.

We can formalize this notion as follows:

Turing Machines (TM)

Definition
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Suppose TM’s configuration at time t is given by uapxv 
where p is the current state, ua is what’s to the left of 
the head, x is what’s being read, and v is what’s to the 
right of the head.

If δ(p,x) = (q,y,R) then write:
uapxv  ⇒ uayqv

With resulting configuration uayqv at time t+1.   
If, δ(p,x) = (q,y,L) instead, then write:

uapxv  ⇒ uqayv
There are also two special cases:

– head is forging new ground –pad with the blank symbol •
– head is stuck at left end –by def. head stays put (only case)

“⇒” is read as “yields”

Turing Machines (TM)

Definition
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As with context free grammars, one can consider the 
reflexive, transitive closure “⇒*” of “⇒”.  I.e. this is the 
relation between strings recursively defined by:

• if u = v then u ⇒* v
• if u ⇒v then u ⇒* v
• if u ⇒*v and v ⇒* w, then  u ⇒*w
“⇒*” is read as “computes to”
A string x is said to be accepted  by M if the start 

configuration q0 x computes to some accepting 
configuration y –i.e., a configuration containing qacc.

The language accepted by M is the set of all accepted 
strings.  I.e:

L(M) = { x ∈ Σ* | ∃ accepting config. y, q0 x ⇒* y }

Turing Machines (TM)

Definition
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Three possibilities occur on a given input w :
1. The TM M eventually enters qacc and 

therefore halts and accepts.  (w ∈ L(M) )
2. The TM M eventually enters qrej or crashes 

somewhere.  M rejects w . (w ∉ L(M) )
3. Neither occurs!  I.e., M never halts its 

computation and is caught up in an infinite 
loop, never reaching qacc or qrej. In this case 
w is neither accepted nor rejected. However, 
any string not explicitly accepted is 
considered to be outside the accepted 
language. (w ∉ L(M) )

Turing Machines (TM)

TM Acceptor and Deciders
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Any Turing Machines is said to be a recognizer and 
recognizes L(M); if in addition, M never enters an 
infinite loop, M is called a decider and is said to
decide L(M).

Q:  Is the above M an recognizer?  A decider?  What is 
L(M)?

0

1

rej acc

2

•àR

1àR

0àR

1àR 0àR

0àR
1àL

Turing Machines (TM)

TM Acceptor and Deciders
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A:  M is an recognizer but not a decider because 101 
causes an infinite loop.

L(M) = 1+ 0+

Q:  Is L(M ) decidable ?

0

1

rej acc

2

•àR

1àR

0àR

1àR 0àR

0àR
1àL

Turing Machines (TM)

TM Acceptor and Deciders



59

A:  Yes.  All regular languages are decidable 
because can always convert a DFA into a 
TM without infinite loops.

Turing Machines (TM)

TM Acceptor and Deciders
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Input/output (or IO or transducing) Turing 
Machines, differ from TM recognizers in that 
they have a neutral halt state qhalt instead of the 
accept and reject halt states.  The TM is then 
viewed as a string-function which takes initial 
tape contents u to whatever the non blank 
portion of the tape is when reaching qhalt .  If v is 
the tape content upon halting, the notation fM (u) 
= v is used.

If M crashes during the computation, or enters into 
an infinite loop, M is said to be undefined on u. 

Turing Machines (TM)

Input-Output Turing Machines
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When fM crashes or goes into an infinite 
loop for some contents, fM is a partial 
function

If M always halts properly for any possible 
input, its function f is total (i.e. always 
defined). 

Turing Machines (TM)

Input-Output Turing Machines
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A Turing Machine M can be used to compute 
functions. f(n)=2n.

A function arguments n will be represented as a 
sequence of n 1’s on the TM tape.

For example if n=3 the input string 111 will be 
written on the TM tape.

If the function has several arguments then 
everyone is represented as a sequence of 
1’s and they are separated by the * symbol.

Turing Machines (TM)

Input-Output Turing Machines: Computing a function
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Let's for example describe a Turing 
Machine M which computes the 
function f(n)=2n.

The argument n will be represented as a 
sequence of n 1’s on the TM tape.

Turing Machines (TM)

Input-Output Turing Machines: Example 1
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A non-Deterministic Turing Machine N allows 
more than one possible action per given 
state-tape symbol pair. 

A string w is accepted by N if after being put on 
the tape and letting N run, N eventually 
enters qacc on some computation branch.

If, on the other hand, given any branch, N 
eventually enters qrej or crashes or enters an 
infinite loop on, w is not accepted.

Symbolically as before:
L(N) = { x ∈ Σ* | ∃ accepting config. y, q0 x ⇒* y }

(No change needed as ⇒ need not be function)

Non-Deterministic Turing Machines (NTM)
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N is always called a non-deterministic
recognizer and is said to recognize
L(N); furthermore, if in addition for all 
inputs and all computation branches, N 
always halts, then N is called a non-
deterministic decider and is said to 
decide L(N).

NTM Acceptor and Deciders

Non-Deterministic Turing Machines (NTM)
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δ : Q × Gk ? Q × Gk × {L,R}k

FINITE 
STATE 

CONTROL

Multitape Turing Machines 
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Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine

FINITE 
STATE 

CONTROL

0 01

FINITE 
STATE 

CONTROL 0 01 # # #
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Often it’s useful to have several tapes when 
carrying out a computations.  For example, 
consider a two tape I/O TM for adding 
numbers (we show only how it acts on a 
typical input)

Multitape Turing Machines 
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$ 11 0 1$101

Input string

Multitape Turing Machines 

Example: Addition
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$ 11 0 1$101

Multitape Turing Machines 

Example: Addition
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$ 11 0 1$101

Multitape Turing Machines 

Example: Addition
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$ 11 0 1$101

Multitape Turing Machines 

Example: Addition
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$ 11 0 1$101

Multitape Turing Machines 

Example: Addition
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$
$ 11 0 1$101

Multitape Turing Machines 

Example: Addition
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$
$ 11 0 1

1
$101

Multitape Turing Machines 

Example: Addition
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$
$ 11 0 1

01
$101

Multitape Turing Machines 

Example: Addition
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$
$ 11 0 1

101
$101

Multitape Turing Machines 

Example: Addition
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$
$ 11 0 1

1101
$101

Multitape Turing Machines 

Example: Addition
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$
$ 11 0 1

1101
$101

Multitape Turing Machines 

Example: Addition
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$
$ 1 0 1

1101
$101

Multitape Turing Machines 

Example: Addition
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$
$ 1 0

1101
$101

Multitape Turing Machines 

Example: Addition
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$
$ 1

1101
$101

Multitape Turing Machines 

Example: Addition
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$
$

1101
$101

Multitape Turing Machines 

Example: Addition
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$
$

1101
101

Multitape Turing Machines 

Example: Addition
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$
$

0101
001

Multitape Turing Machines 

Example: Addition
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$
$

0001
001

Multitape Turing Machines 

Example: Addition
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$
$

0001
000

Multitape Turing Machines 

Example: Addition
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$
0

0000
000

Multitape Turing Machines 

Example: Addition
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1
1

0000
000

Multitape Turing Machines 

Example: Addition
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1
1

0000
000

Multitape Turing Machines 

Example: Addition
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1
1

0000
000

Multitape Turing Machines 

Example: Addition
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1
1

0000
000

Multitape Turing Machines 

Example: Addition
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1
1

0000
0000

Output
string

HALT!

Multitape Turing Machines 

Example: Addition
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• Input always put on the first tape
• If I/O machine, output also on first tape
• Can consider machines as “string-vector” 

generators.  E.g., a 4 tape machine could 
be considered as outputting in  (Σ*)4

Multitape Turing Machines 

Conventions
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The notions of recursively enumerable / TM 
recognizable and recursive / TM decidable are 
the greatest contributions of computer science.

For the moment note the following:
They are extremely robust notions (“Church 

They are different notions (“computability theory”)

Turing Machines 

The Big Deal
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Write a TM for the Language { 0j | j=2n }

Turing Machines 

Exercise
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Approach: If j=0 then “reject”; If j=1 then “accept”; 
if j is even then divide by two; if j is odd and >1 
then “reject”.  Repeat if necessary.

1. Check if j=0 or j=1, reject/accept accordingly
2. Check, by going left to right if the string has

even or odd number of zeros
3. If odd then “reject”
4. If even then go back left, erasing half the zeros
5. goto 1

Turing Machines 

Exercise: Answer hint

Write a TM for the Language { 0j | j=2n }


