
1

TURING MACHINES

2

• The Turing machine is the ultimate model of computation.

Alan Turing (1912–1954), British
mathematician/engineer and one
of the most influential scientists
of the last century.

Turing Machines (TM)

3

In 1936, Turing introduced his abstract
model for computation.

The Turing machine model has become the
standard in theoretical computer science.
Think of a Turing Machine as a DPDA that can
move freely through its stack (= tape).

Turing Machines (TM)

4

Alan Turing was one of the founding fathers of CS.
• His computer model –the Turing Machine– was

inspiration/premonition of the electronic
computer that came two decades later

• Was instrumental in cracking the Nazi Enigma
cryptosystem in WWII

• Invented the “Turing Test” used in AI
• Legacy: The Turing Award. Pre-eminent award

in Theoretical CS

Turing Machines (TM)

5

First Goal of Turing’s Machine: A model that can
compute anything that a human can compute.
Before invention of electronic computers the
term “computer” actually referred to a person
who’s line of work is to calculate numerical
quantities!

As this is a philosophical endeavor, it can’t really
be proved.

Turing’s Thesis: Any “algorithm” can be carried out
by one of his machines

Turing Machines (TM)

A Thinking Machine

6

Second Goal of Turing’s Machine: A model that’s
so simple, that can actually prove interesting
epistemological results. Eyed Hilbert’s 10th

problem, as well as a computational analog of
Gödel’s Incompleteness Theorem in Logic.

Philosophy notwithstanding, Turing’s programs for
cracking the Enigma cryptosystem prove that he
really was a true hacker! Turing’s machine is
actually easily programmable, if you really get
into it. Not practically useful, though…

Turing Machines (TM)

A Thinking Machine

7

Imagine a super-organized, obsessive-compulsive
human computer. The computer wants to avoid
mistakes so everything written down is
completely specified one letter/number at a time.
The computer follows a finite set of rules which
are referred to every time another symbol is
written down. Rules are such that at any given
time, only one rule is active so no ambiguity can
arise. Each rule activates another rule
depending on what letter/number is currently
read.

Turing Machines (TM)

A Thinking Machine

8

Sample Rules:

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

Let’s see how they are carried out on a piece of
paper that contains the reverse binary
representation of 47: 111101

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

9

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

101111

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

10

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

101110

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

11

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

101100

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

12

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

101000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

13

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

100000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

14

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

110000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

15

So the successor’s output on 111101 was
000011 which is the reverse binary
representation of 48.

Similarly, the successor of 127 should be
128:

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

16

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1111111

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

17

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1111110

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

18

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1111100

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

19

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1111000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

20

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1110000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

21

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1100000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

22

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

1000000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

23

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

0000000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

24

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read •, write 1, HALT!

10000000

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

25

It was hard for the ancients to believe that any
algorithm could be carried out on such a device.
For us, it’s much easier to believe, especially if
you’ve programmed in assembly!

However, ancients did finally believe Turing when
Church’s lambda-calculus paradigm (on which
lisp programming is based) proved equivalent!

Turing Machines (TM)

A Thinking Machine: Example: Successor Program

26

A Turing Machine (TM) is a device with a finite
amount of read-only “hard” memory (states), and
an unbounded amount of read/write tape-
memory. There is no separate input. Rather,
the input is assumed to reside on the tape at the
time when the TM starts running.

Just as with Automata, TM’s can either be
input/output machines (compare with Finite
State Transducers), or yes/no decision
machines.

Turing Machines (TM)

27

Church Turing Thesis: all reasonable models
of computation can be simulated by a (single
tape) Turing machine.

If we want to investigate what we can and
can not do using computers, it is sufficient
to study the Turing machine model.

Church Turing thesis

Turing Machines (TM)

28

TM can both write to and read from the tape

The head can move left and right

The string doesn’t have to be read entirely

Accept and Reject take immediate effect

Turing Machines (TM)

A Comparison with FA

29

TM

PDA

FA

Deterministic
by default?

Read/Write Data
Structure

Separate
Input?Device

Turing Machines (TM)

A Comparison with FA and PDA

30

TM

PDA

YesNoneYesFA

Deterministic
by default?

Read/Write Data
Structure

Separate
Input?Device

Turing Machines (TM)

A Comparison with FA and PDA

31

TM

NoLIFO StackYesPDA

YesNoneYesFA

Deterministic
by default?

Read/Write Data
Structure

Separate
Input?Device

Turing Machines (TM)

A Comparison with FA and PDA

32

Yes
(but will also

allow crashes)

1-way infinite
tape. 1 cell

access per step.
NoTM

NoLIFO StackYesPDA

YesNoneYesFA

Deterministic
by default?

Read/Write Data
Structure

Separate
Input?Device

Turing Machines (TM)

A Comparison with FA and PDA

33

FINITE
STATE

CONTROL

INFINITE TAPE

I N P U T

q0q1

A

Turing Machines (TM)

34

0 ? 0, R

read write move

¨ ? ¨, R

qaccept

qreject

0 ? 0, R

¨ ? ¨, R

0 ? 0, R
¨ ? ¨, L

Turing Machines (TM)

35

An edge from the state p to the state q labeled
by …

• aàb,D means if in state p and tape head
reading a, replace a by b and move in the
direction D, and into state q

• aàD means if in state p and tape head
reading a, don’t change a and move in the
direction D, and into state q

• a|b|…|z à … means that given that the
tape head is reading any of the pipe
separated symbols, take same action on
any of the symbols

Turing Machines (TM)

Notations

36

A TM’s next action is completely determined by
current state and symbol read, so can
predict all of future actions if know:

1. current state
2. current tape contents
3. current position of TM’s reading “head”

Turing Machines (TM)

Notations

37

Testing membership in B = { w#w | w ∈ {0,1}* }

STATE

0 1 1 # 0 1 1

q0, FIND # qGO LEFT

0

q1, FIND #q#, FIND ¨

#1

q0, FIND ¨

0

q1, FIND ¨

1x xx

Turing Machines (TM)
Example:

38

A Turing Machine is a 7-tuple
T = (Q, S, G, δ, q0, qaccept, qreject), where:

Q is a finite set of states

Gis the tape alphabet, where ¨ ∈ Gand S ⊆ G

q0 ∈ Q is the start state

S is the input alphabet, where ¨ ∉ S

δ : Q × G? Q × G× {L,R}

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept

Turing Machines (TM)
Definition

39

CONFIGURATIONS

11010q700110

q7

1 0 0 0 0 01 1 1 1

Turing Machines (TM)

40

Depending on its state and the letter xi, the TM
- writes down a letter,
- moves its read/write head Left or Right, and
- jumps to a new state in Q.

RL

At every step,
the head of the
TM M reads a
letter xi from the
one-way infinite
tape. L__1#0_110

Internal State
set Q

Turing Machines (TM)

Informal Description

41

RL

L__1#0_110

Internal State
set Q

Depending on x and q the, the transition function
value d(q,x) = (r,y,d) tells the TM to replace the
letter a by b, move its head in direction d∈{L,R},
and change its internal state to r.

At every step,
the head of the
TM M reads a
letter x from the
tape of size ? .

Turing Machines (TM)

Informal Description

42

The computation can proceed indefinitely, or the
machines reaches one of the two halting states:

or

LL _vv m1
LL _vv m1

accept state t reject state r

Turing Machines (TM)

Output Convention

43

Notation: (q9,¢011_0#1 _? , 3) ? (q3,¢010_0#1 _? , 4)

L__1#0_110¢

L__1#0_010¢

d(q9,1) = (q3,0,R) gives…

q9

q3

Turing Machines (TM)

Transitions in Action

44

A TM recognizes a language if it accepts all
and only those strings in the language

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called Turing-recognizable or
recursively enumerable if some TM
recognizes it

A language is called decidable or recursive
if some TM decides it

Turing Machines (TM)

45

A language is called Turing-recognizable or
recursively enumerable if some TM
recognizes it

A language is called decidable or recursive
if some TM decides it

recursive
languages

r.e.
languages

Turing Machines (TM)

46

Theorem: If A and ¬A are r.e. then A is recursive

Given TM that recognizes A and TM that
recognizes ¬A, we can build a new machine
that decides A

Turing Machines (TM)

47

0 ? ¨, R

¨ ? ¨, R

qacceptqreject

0 ? x, R

x ? x, R
¨ ? ¨, R

x ? x, R

0 ? 0, L
x ? x, L

x ? x, R

¨ ? ¨, L¨ ? ¨, R

0 ? x, R
0 ? 0, R

¨ ? ¨, R
x ? x, R

{ 0 | n = 0 }2n

q0 q1

q2

q3

q4

Turing Machines (TM)

48

0 ? ¨, R

¨ ? ¨, R

qacceptqreject

0 ? x, R

x ? x, R
¨ ? ¨, R

x ? x, R

0 ? 0, L
x ? x, L

x ? x, R

¨ ? ¨, L¨ ? ¨, R

0 ? x, R
0 ? 0, R

¨ ? ¨, R
x ? x, R

{ 0 | n = 0 }2n

q0 q1

q2

q3

q4

q00000

¨q1000

¨xq300

¨x0q40

¨x0xq3

¨x0q2x

¨xq20x

¨q2x0x

q2¨x0x

49

C = {aibjck | ij = k and i, j, k = 1}

aabbbcccccc
xabbbcccccc
xayyyzzzccc
xabbbzzzccc
xxyyyzzzzzz

Turing Machines (TM)

50

Pseudocode:
while (there is a 0 and a 1)
cross these out

if (everything crossed out)
accept

else
reject

Example

Turing Machines (TM)

Write a TM for the language L={w∈{0,1}* : #(0)=#(1)}?

51

0. if read •, go right (dummy move), ACCEPT
if read 0, write $, go right, goto 1 // $ detects start of tape
if read 1, write $, go right, goto 2

1. if read •, go right, REJECT
if read 0 or X, go right, repeat (= goto 1) // look for a 1
if read 1, write X, go left, goto 3

2. if read •, go right, REJECT
if read 1 or X, go right, repeat // look for a 0
if read 0, write X, go left, goto 3

3. if read $, go right, goto 4 // look for start of tape
else, go left, repeat

4. if read 0, write X, go right, goto 1 // similar to step 0
if read 1, write X, go right, goto 2
if read X, go right, repeat
if read •, go right, ACCEPT

Example

Turing Machines (TM)

L={w∈{0,1}* : #(0)=#(1)}?

52

0
1

rej

0à$,R

acc

•àR

21à$,R

0|XàR

1|XàR

3

•àR

0àX,L

1àX,L 0|1|XàL

4

$àR

XàR

0àX,R

1àX,R

•àR

Example

Turing Machines (TM)

L={w∈{0,1}* : #(0)=#(1)}?

53

A string x is accepted by a TM M if after
being put on the tape with the Turing
machine head set to the left-most position,
and letting M run, M eventually enters the
accept state. In this case w is an element
of L(M) –the language accepted by M.

We can formalize this notion as follows:

Turing Machines (TM)

Definition

54

Suppose TM’s configuration at time t is given by uapxv
where p is the current state, ua is what’s to the left of
the head, x is what’s being read, and v is what’s to the
right of the head.

If δ(p,x) = (q,y,R) then write:
uapxv ⇒ uayqv

With resulting configuration uayqv at time t+1.
If, δ(p,x) = (q,y,L) instead, then write:

uapxv ⇒ uqayv
There are also two special cases:

– head is forging new ground –pad with the blank symbol •
– head is stuck at left end –by def. head stays put (only case)

“⇒” is read as “yields”

Turing Machines (TM)

Definition

55

As with context free grammars, one can consider the
reflexive, transitive closure “⇒*” of “⇒”. I.e. this is the
relation between strings recursively defined by:

• if u = v then u ⇒* v
• if u ⇒v then u ⇒* v
• if u ⇒*v and v ⇒* w, then u ⇒*w
“⇒*” is read as “computes to”
A string x is said to be accepted by M if the start

configuration q0 x computes to some accepting
configuration y –i.e., a configuration containing qacc.

The language accepted by M is the set of all accepted
strings. I.e:

L(M) = { x ∈ Σ* | ∃ accepting config. y, q0 x ⇒* y }

Turing Machines (TM)

Definition

56

Three possibilities occur on a given input w :
1. The TM M eventually enters qacc and

therefore halts and accepts. (w ∈ L(M))
2. The TM M eventually enters qrej or crashes

somewhere. M rejects w . (w ∉ L(M))
3. Neither occurs! I.e., M never halts its

computation and is caught up in an infinite
loop, never reaching qacc or qrej. In this case
w is neither accepted nor rejected. However,
any string not explicitly accepted is
considered to be outside the accepted
language. (w ∉ L(M))

Turing Machines (TM)

TM Acceptor and Deciders

57

Any Turing Machines is said to be a recognizer and
recognizes L(M); if in addition, M never enters an
infinite loop, M is called a decider and is said to
decide L(M).

Q: Is the above M an recognizer? A decider? What is
L(M)?

0

1

rej acc

2

•àR

1àR

0àR

1àR 0àR

0àR
1àL

Turing Machines (TM)

TM Acceptor and Deciders

58

A: M is an recognizer but not a decider because 101
causes an infinite loop.

L(M) = 1+ 0+

Q: Is L(M) decidable ?

0

1

rej acc

2

•àR

1àR

0àR

1àR 0àR

0àR
1àL

Turing Machines (TM)

TM Acceptor and Deciders

59

A: Yes. All regular languages are decidable
because can always convert a DFA into a
TM without infinite loops.

Turing Machines (TM)

TM Acceptor and Deciders

60

Input/output (or IO or transducing) Turing
Machines, differ from TM recognizers in that
they have a neutral halt state qhalt instead of the
accept and reject halt states. The TM is then
viewed as a string-function which takes initial
tape contents u to whatever the non blank
portion of the tape is when reaching qhalt . If v is
the tape content upon halting, the notation fM (u)
= v is used.

If M crashes during the computation, or enters into
an infinite loop, M is said to be undefined on u.

Turing Machines (TM)

Input-Output Turing Machines

61

When fM crashes or goes into an infinite
loop for some contents, fM is a partial
function

If M always halts properly for any possible
input, its function f is total (i.e. always
defined).

Turing Machines (TM)

Input-Output Turing Machines

62

A Turing Machine M can be used to compute
functions. f(n)=2n.

A function arguments n will be represented as a
sequence of n 1’s on the TM tape.

For example if n=3 the input string 111 will be
written on the TM tape.

If the function has several arguments then
everyone is represented as a sequence of
1’s and they are separated by the * symbol.

Turing Machines (TM)

Input-Output Turing Machines: Computing a function

63

Let's for example describe a Turing
Machine M which computes the
function f(n)=2n.

The argument n will be represented as a
sequence of n 1’s on the TM tape.

Turing Machines (TM)

Input-Output Turing Machines: Example 1

65

66

A non-Deterministic Turing Machine N allows
more than one possible action per given
state-tape symbol pair.

A string w is accepted by N if after being put on
the tape and letting N run, N eventually
enters qacc on some computation branch.

If, on the other hand, given any branch, N
eventually enters qrej or crashes or enters an
infinite loop on, w is not accepted.

Symbolically as before:
L(N) = { x ∈ Σ* | ∃ accepting config. y, q0 x ⇒* y }

(No change needed as ⇒ need not be function)

Non-Deterministic Turing Machines (NTM)

67

N is always called a non-deterministic
recognizer and is said to recognize
L(N); furthermore, if in addition for all
inputs and all computation branches, N
always halts, then N is called a non-
deterministic decider and is said to
decide L(N).

NTM Acceptor and Deciders

Non-Deterministic Turing Machines (NTM)

68

δ : Q × Gk ? Q × Gk × {L,R}k

FINITE
STATE

CONTROL

Multitape Turing Machines

69

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE

CONTROL

0 01

FINITE
STATE

CONTROL 0 01 # # #

70

Often it’s useful to have several tapes when
carrying out a computations. For example,
consider a two tape I/O TM for adding
numbers (we show only how it acts on a
typical input)

Multitape Turing Machines

71

$ 11 0 1$101

Input string

Multitape Turing Machines

Example: Addition

72

$ 11 0 1$101

Multitape Turing Machines

Example: Addition

73

$ 11 0 1$101

Multitape Turing Machines

Example: Addition

74

$ 11 0 1$101

Multitape Turing Machines

Example: Addition

75

$ 11 0 1$101

Multitape Turing Machines

Example: Addition

76

$
$ 11 0 1$101

Multitape Turing Machines

Example: Addition

77

$
$ 11 0 1

1
$101

Multitape Turing Machines

Example: Addition

78

$
$ 11 0 1

01
$101

Multitape Turing Machines

Example: Addition

79

$
$ 11 0 1

101
$101

Multitape Turing Machines

Example: Addition

80

$
$ 11 0 1

1101
$101

Multitape Turing Machines

Example: Addition

81

$
$ 11 0 1

1101
$101

Multitape Turing Machines

Example: Addition

82

$
$ 1 0 1

1101
$101

Multitape Turing Machines

Example: Addition

83

$
$ 1 0

1101
$101

Multitape Turing Machines

Example: Addition

84

$
$ 1

1101
$101

Multitape Turing Machines

Example: Addition

85

$
$

1101
$101

Multitape Turing Machines

Example: Addition

86

$
$

1101
101

Multitape Turing Machines

Example: Addition

87

$
$

0101
001

Multitape Turing Machines

Example: Addition

88

$
$

0001
001

Multitape Turing Machines

Example: Addition

89

$
$

0001
000

Multitape Turing Machines

Example: Addition

90

$
0

0000
000

Multitape Turing Machines

Example: Addition

91

1
1

0000
000

Multitape Turing Machines

Example: Addition

92

1
1

0000
000

Multitape Turing Machines

Example: Addition

93

1
1

0000
000

Multitape Turing Machines

Example: Addition

94

1
1

0000
000

Multitape Turing Machines

Example: Addition

95

1
1

0000
0000

Output
string

HALT!

Multitape Turing Machines

Example: Addition

96

• Input always put on the first tape
• If I/O machine, output also on first tape
• Can consider machines as “string-vector”

generators. E.g., a 4 tape machine could
be considered as outputting in (Σ*)4

Multitape Turing Machines

Conventions

97

The notions of recursively enumerable / TM
recognizable and recursive / TM decidable are
the greatest contributions of computer science.

For the moment note the following:
They are extremely robust notions (“Church

They are different notions (“computability theory”)

Turing Machines

The Big Deal

98

Write a TM for the Language { 0j | j=2n }

Turing Machines

Exercise

99

Approach: If j=0 then “reject”; If j=1 then “accept”;
if j is even then divide by two; if j is odd and >1
then “reject”. Repeat if necessary.

1. Check if j=0 or j=1, reject/accept accordingly
2. Check, by going left to right if the string has

even or odd number of zeros
3. If odd then “reject”
4. If even then go back left, erasing half the zeros
5. goto 1

Turing Machines

Exercise: Answer hint

Write a TM for the Language { 0j | j=2n }

