
Language Processing 
Systems 



Evaluation

• Active sheets          10 %
• Exercise reports 30 %
• Midterm Exam        20 %
• Final Exam             40 %



Contact

• Send e-mail to 
hamada@u-aizu.ac.jp

• Course materials at 
www.u-aizu.ac.jp/~hamada/education.html

Check every week for update



Books

Andrew W. Appel : Modern Compiler Implementation  in C

A. Aho, R. Sethi and J. Ullman, Compilers: Principles, Techniques and Tools 
(The Dragon Book), Addison Wesley

S. Muchnick, Advanced Compiler Design and Implementation,   Morgan 
Kaufman, 1997



Books



Goals

• understand the structure of a compiler
• understand how the components operate
• understand the tools involved

• scanner generator, parser generator, etc.

• understanding means
• [theory] be able to read source code
• [practice] be able to adapt/write source code



The Course covers:

• Introduction
• Lexical Analysis
• Syntax Analysis
• Semantic Analysis
• Intermediate Code Generation
• Code Generation
• Code Optimization (if there is time)



Related to Compilers

• Interpreters (direct execution)
• Assemblers
• Preprocessors
• Text formatters (non-WYSIWYG)
• Analysis tools



Today’s Outline

• Introduction to Language Processing Systems
• Why do we need a compiler?
• What are compilers? 
• Anatomy of a compiler



Why study compilers?
• Better understanding of programming language 

concepts
• Wide applicability

• Transforming “data” is very common
• Many useful data structures and algorithms

• Bring together:
• Data structures & Algorithms
• Formal Languages
• Computer Architecture

• Influence:
• Language Design
• Architecture (influence is bi-directional)



Issues Driving Compiler 
Design

• Correctness
• Speed (runtime and compile time)

• Degrees of optimization 
• Multiple passes

• Space
• Feedback to user
• Debugging



Why Study Compilers?

• Compilers enable programming at a high 
level language  instead of machine 
instructions.
• Malleability, Portability, Modularity, Simplicity, 

Programmer Productivity  
• Also Efficiency and Performance



Compilers Construction touches 
many topics in Computer Science
• Theory

• Finite State Automata, Grammars and Parsing, data-flow

• Algorithms
• Graph manipulation, dynamic programming

• Data structures
• Symbol tables, abstract syntax trees

• Systems
• Allocation and naming, multi-pass systems, compiler construction

• Computer Architecture
• Memory hierarchy, instruction selection, interlocks and latencies 

• Security
• Detection of and Protection against vulnerabilities 

• Software Engineering
• Software development environments, debugging 

• Artificial Intelligence
• Heuristic based search 



Power of a Language

• Can use to describe any action
• Not tied to a “context”

• Many ways to describe the same action
• Flexible



How to instruct a 
computer 

• How about natural languages?
• English??
• “Open the pod bay doors, Hal.”
• “I am sorry Dave, I am afraid I cannot 

do that”
• We are not there yet!!

• Natural Languages: 
• Powerful, but…
• Ambiguous 

• Same expression describes many possible 
actions



Programming Languages 

• Properties
• need to be precise
• need to be concise
• need to be expressive
• need to be at a high-level (lot of abstractions)



High-level Abstract Description
to Low-level Implementation Details 

Foot Soldier

President

My poll ratings are low,
lets invade a small nation

General

Cross the river and take
defensive positions

Sergeant

Forward march, turn left
Stop!, Shoot



1. How to instruct the computer

Compiler
Assembly 
Language

Translation

• Microprocessors talk in assembly language
• Low-level Implementation Details

Program 
written 

in a 
Programming

Languages

• Write a program using a programming language
– High-level Abstract Description



1. How to instruct the computer

• Input: High-level programming language
• Output: Low-level assembly instructions
• Compiler does the translation:

• Read and understand the program 
• Precisely determine what actions it require
• Figure-out how to faithfully carry-out those 

actions
• Instruct the computer to carry out those 

actions



Input to the Compiler

• Standard imperative language (Java, C, 
C++)
• State

• Variables, 
• Structures, 
• Arrays

• Computation
• Expressions (arithmetic, logical, etc.)
• Assignment statements
• Control flow (conditionals, loops)
• Procedures



Output of the Compiler

• State
• Registers
• Memory with Flat Address Space

• Machine code – load/store architecture
• Load, store instructions
• Arithmetic, logical operations on registers
• Branch instructions



Example (input program)

int sumcalc(int a, int b, int N)
{

int i, x, y;
x = 0;
y = 0;
for(i = 0; i <= N; i++) {

x = x + (4*a/b)*i + (i+1)*(i+1);
x = x + b*y;

}
return x;

}



Example (Output assembly code)
sumcalc:

pushq %rbp
movq %rsp, %rbp
movl %edi, -4(%rbp)
movl %esi, -8(%rbp)
movl %edx, -12(%rbp)
movl $0, -20(%rbp)
movl $0, -24(%rbp)
movl $0, -16(%rbp)

.L2:    movl -16(%rbp), %eax
cmpl -12(%rbp), %eax
jg .L3
movl -4(%rbp), %eax
leal 0(,%rax,4), %edx
leaq -8(%rbp), %rax
movq %rax, -40(%rbp)
movl %edx, %eax
movq -40(%rbp), %rcx
cltd
idivl (%rcx)
movl %eax, -28(%rbp)
movl -28(%rbp), %edx
imull -16(%rbp), %edx
movl -16(%rbp), %eax
incl %eax
imull %eax, %eax
addl %eax, %edx
leaq -20(%rbp), %rax
addl %edx, (%rax)
movl -8(%rbp), %eax
movl %eax, %edx
imull -24(%rbp), %edx
leaq -20(%rbp), %rax
addl %edx, (%rax)
leaq -16(%rbp), %rax
incl (%rax)
jmp .L2

.L3:    movl -20(%rbp), %eax
leave
ret

.size   sumcalc, .-sumcalc
.section

.Lframe1:
.long   .LECIE1-.LSCIE1

.LSCIE1:.long   0x0
.byte   0x1
.string ""
.uleb128 0x1
.sleb128 -8
.byte   0x10
.byte   0xc
.uleb128 0x7
.uleb128 0x8
.byte   0x90
.uleb128 0x1
.align 8

.LECIE1:.long   .LEFDE1-.LASFDE1
.long   .LASFDE1-.Lframe1
.quad   .LFB2
.quad   .LFE2-.LFB2
.byte   0x4
.long   .LCFI0-.LFB2
.byte   0xe
.uleb128 0x10
.byte   0x86
.uleb128 0x2
.byte   0x4
.long   .LCFI1-.LCFI0
.byte   0xd
.uleb128 0x6
.align 8



Anatomy of a Computer

Program 
written 

in a 
Programming

Languages

Assembly 
Language

Translation
Compiler



What is a compiler?

program
in some
source

language

executable
code for
target

machine

compiler

A compiler is a program that reads a program 
written in one language and translates it into 
another language.

Traditionally, compilers go from high-level languages to 
low-level languages.



Example

X=a+b*10

MOV id3, R2
MUL #10.0, R2
MOV id2, R1
ADD R2, R1
MOV R1, id1

compiler



What is a compiler?

program
in some
source

language

executable
code for
target

machine

front-end
analysis

semantic
represen-

tation

back-end
synthesis

compiler

Intermediate 
representation



Compiler Architecture

Scanner
(lexical
analysis)

Parser
(syntax
analysis)

Code
Optimizer

Code
GeneratorSource

language

tokens Parse tree
Intermediate

Language

Target
language

Semantic
Analysis

IC 
generator

AST

Error 
Handler

Symbol
Table

OIL

Front End Back End



front-end: 
from program text to AST

program text

lexical analysis

syntax analysis

context handling

annotated AST

tokens

AST

front-end



front-end: 
from program text to AST

program text

lexical analysis

syntax analysis

context handling

annotated AST

tokens

AST

scanner
generator

token
description

parser
generator

language
grammar

Scanner

Parser

Semantic 
analysis Semantic 

representation



Semantic representation

• heart of the compiler
• intermediate code

• linked lists of pseudo instructions
• abstract syntax tree (AST)

program
in some
source

language

executable
code for
target

machine

front-end
analysis

semantic
represen-

tation

back-end
synthesis

compiler



AST example

• expression grammar

expression → expression ‘+’ term | expression ‘-’ term | term
term → term ‘*’ factor | term ‘/’ factor | factor
factor → identifier | constant | ‘(‘ expression ‘)’

• example expression

b*b – 4*a*c



parse tree: b*b – 4*a*c

‘b’

identifier

expression

term

factor

term

‘b’

factor

identifier

‘*’

‘4’

constant

term

factor

term

‘a’

factor

identifier

‘*’

term

factor‘*’

‘c’

identifier

expression

‘-’



AST: b*b – 4*a*c

‘*’

‘c’

‘-’

‘b’

‘4’

‘*’

‘a’

‘*’

‘b’



annotated AST: b*b – 4*a*c

• identifier
• constant
• term
• expression

‘*’

‘c’

‘-’

‘b’

‘4’

‘*’

type: real
loc: reg1

type: real
loc: reg2

type: real
loc: const

type: real
loc: sp+24

type: real
loc: reg2

‘a’
type: real
loc: sp+8

‘*’

type: real
loc: reg1

type: real
loc: sp+16 ‘b’

type: real
loc: sp+16



Parser
:=

id1 +

id2 *

id3 60

position = initial + rate * 60

Scanner

id1 := id2 + id3 * 60

Semantic Analyzer

:=

id1 +

id2 *

id3 int-to-real

60

Example



AST exercise (5 min.)

• expression grammar

expression → expression ‘+’ term | expression ‘-’ term | term
term → term ‘*’ factor | term ‘/’ factor | factor
factor → identifier | constant | ‘(‘ expression ‘)’

• example expression

b*b – (4*a*c)

• draw parse tree and AST



Answers



answer
parse tree: b*b – 4*a*c

‘b’

identifier

expression

term

factor

term

‘b’

factor

identifier

‘*’

‘4’

constant

term

factor

term

‘a’

factor

identifier

‘*’

term

factor‘*’

‘c’

identifier

expression

‘-’



answer
parse tree: b*b – (4*a*c)

‘b’

identifier

expression

term

factor

term

‘b’

factor

identifier

‘*’

term

expression

‘-’

expression

factor

‘(’ ‘)’

‘4*a*c’



Break



Advantages of Using Front-end and Back-
end

1. Retargeting - Build a compiler for a new 
machine by attaching a new code generator to 
an existing front-end.

2. Optimization - reuse intermediate code 
optimizers in compilers for different languages 
and different machines.

Note: the terms “intermediate code”, 
“intermediate language”, and “intermediate 
representation” are all used interchangeably.



Compiler structure

• L+M modules = LxM compilers

program
in some
source

language

front-end
analysis

semantic
represen-

tation

executable
code for
target

machine

back-end
synthesis

compiler

program
in some
source

language

front-end
analysis

executable
code for
target

machine

back-end
synthesis

executable
code for
target

machine

back-end
synthesis



Limitations of modular 
approach

• performance
• generic vs specific
• loss of information

• variations must be small
• same programming paradigm
• similar processor architecture

program
in some
source

language

front-end
analysis

semantic
represen-

tation

executable
code for
target

machine

back-end
synthesis

compiler

program
in some
source

language

front-end
analysis

executable
code for
target

machine

back-end
synthesis

executable
code for
target

machine

back-end
synthesis



Front-end and Back-end

• Suppose you want to write 3 compilers to 4 computer platforms:

C++

Java

FORTRAN

MIPS

SPARC

Pentium

PowerPC

We need to write 12 programs



Front-end and Back-end

• But we can do it better

FE BE

IR

– IR: Intermediate Representation
– FE: Front-End

– BE: Back-End

C++

Java

FORTRAN

MIPS

SPARC

Pentium

PowerPC

BE

BE

BE

FE

FE

We need to write 7 programs only



Front-end and Back-end

• Suppose you want to write compilers from m source languages to n
computer platforms. A naïve solution requires n*m programs:

• but we can do it with n+m programs:

FE

FE

FE

BE

BE

BE

BE

IR

– IR: Intermediate Representation
– FE: Front-End
– BE: Back-End

C++
Java

FORTRAN

MIPS
SPARC
Pentium
PowerPC

C++
Java

FORTRAN

MIPS
SPARC
Pentium
PowerPC



Compiler Example

position=initial+rate*60

MOV id3, R2
MUL #60.0, R2
MOV id2, R1
ADD R2, R1
MOV R1, id1

compiler



Parser
:=

id1 +

id2 *

id3 60

position := initial + rate * 60

Scanner

id1 := id2 + id3 * 60

Semantic Analyzer

:=

id1 +

id2 *

id3 int-to-real

60

Intermediate Code Generator

temp1 := int-to-real (60)
temp2 := id3 * temp1
temp3 := id2 + temp2
id1      := temp3

Code Optimizer

temp1 := id3 * 60.0
id1      := id2 + temp1

Code Generator

MOV id3,    R2
MUL #60.0, R2
MOV      id2,     R1
ADD       R2, R1
MOV      R1,      id1

Example



Development
Compiler

Source Code

Application
Source Code

Expected
Application

Output

Application
Output

Resident
Compiler

Development
Compiler

Compiled
Application

Application
Output
Verifier

Application
Input

Compiler Development
Test Cycle



A Simple Compiler Example
Our goal is to build a very simple compiler its source program are 

expressions formed from digits separated by plus (+) and minus (-) 
signs in infix form. The target program is the same expression but in a 
postfix form.

compilerInfix expression Postfix expression

Infix expression: Refer to expressions in which the operations are put 
between its operands.

Example:  a+b*10

Postfix expression: Refer to expressions in which the operations come 
after its operands.

Example:  ab10*+



Infix to Postfix translation

1. If E is a digit then its postfix form is E

2. If E=E1+E2 then its postfix form is E1`E2`+

4. If E=(E1) then E and E1 have the same postfix form

3. If E=E1-E2 then its postfix form is E1`E2`-

Where in 2 and 3 E1` and E2` represent the postfix 
forms of E1 and E2 respectively.



END 



Interpreter vs Compiler

Source Program

Source Program

Compiler

Input OutputInterpreter

Input OutputTarget 
Program



Typical Compiler
Source 
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code 
Generator

Code Optimizer

Code Generator Target 
Program


