
Type checking

• Static type checking means that the 
correctness of using types is performed at 
compile-time

• Dynamic type checking means that the 
correctness of using types is performed at 
run-time

 
 

Type checking 
 

If type checking is performed at compile-time, one may speak about static type checking; 
otherwise, that is, type checking is performed at run-time, a term dynamic type checking is 
applied. In principle, type checking can always be performed at run-time if the information 
about types of values in program is accessible in executing code. Obviously, dynamic type 
checking, compared to static one, leads to the increase of size and execution time of the object 
program and lowers the reliability of the compiled code. A programming language is called a 
language with static type checking or strongly typed language, if the type of each expression 
can be determined at compile-time, thereby guaranteeing that the type-related errors cannot 
occur in object program. Pascal is an example of a strongly typed language. However, even for 
Pascal some checks can be performed only dynamically. For instance, consider the following 
definitions: 
 
table: array [0..255] of char; 
i: integer; 
 
A compiler cannot guarantee that the argument i in the expression table[i] is actually in the 
specified boundaries, that is, not less than zero and not greater than 255. In some cases, such 
checking can be performed by techniques like data flow analysis, but it is far from being always 
possible. It is clear that this sample demonstrates a common situation, namely, the control of 
slice arguments, occurring in the greater part of programming languages. Of course, this 
checking is usually performed dynamically.  
 
 



Equivalence of types

• Structural equivalence of types
• Named equivalence of types

 
 

Equivalence of types 
 
The essential part of type checking is controlling equivalence of types. It is extremely important 
for a compiler to check the equivalence of types quickly.  
 
Structural equivalence of types. Two types are called structurally equivalent, if both are either 
the same primitive type, or constructed by applying the same constructor to a structurally 
equivalent types. In other words, two types are structurally equivalent if and only if they are 
identical. We can check whether two types are structurally equivalent by using the following 
function: 
 
bool sequiv (s, t) 
{ 

if (s and t – two identical primitive types) 
{ 

return true; 
} 
else if (s == array (s1, s2) && t == array (t1, t2)) 
{ 

return sequiv (s1, t1) && sequiv (s2, t2); 
} 
else if (s == s1*s2 && t == t1*t2) 
{ 

return sequiv (s1, t1) && sequiv (s2, t2);           
} 
else if (s==pointer (s1) && t == pointer (t1)) 
{ 

return sequiv (s1, t1); 
} 
else if (s==proc (s1, s2) && t == proc (t1, t2)) 
{ 

return sequiv (s1, t1) && sequiv (s2, t2); 
} 
else 
{ 

return false; 
} 

} 
 



Type conversions

• Implicit conversions or coercions
• Explicit type conversions

 
 

Type conversions 
 
Consider a formula x+i, where x is a variable of a real type, i is an integer variable. Since 
representations of integer and real numbers in memory are different, different instructions are 
used to handle integer and real values, and, commonly, there are no instructions with operands 
of different types, a compiler must convert one operand to the type of another, or convert both 
to some appropriate type.  
 
Language specifications define what conversions are legal and what are necessary. If an integer 
value is assigned to a real variable, the conversion to the type of the assignment target is 
performed. However, the conversion of a real value to an integer is, generally, incorrect. In the 
case, a compiler usually converts an integer to a real. Type checking pass inserts conversions 
into the internal representation of the source program. For example, the following tree 
represents formula x+i after type checking pass: 
                                                                + 
                                                  
                                                     x                     int_to_real 
 
                                                                                     
                    i      
A conversion is called implicit if it is inserted automatically by the compiler. In many 
languages, implicit conversions, or coercions, are allowed only in situations when the loss of 
information cannot occur, for example, an integer can be safely converted to a real, whereas the 
reverse conversion is potentially dangerous with respect to information loss, and, therefore, 
extremely undesirable. 
  
The conversion is called explicit if it is explicitly specified by a programmer. Explicit 
conversions resemble calls of functions defined on types. Sometimes type conversions are 
actually performed on expressions and are true functions, for example, Pascal provides built-in 
functions for type conversions: ord converts a character to an integer, chr performs the reverse 
conversion, and so on. Implicit calls are even more wide spread. The C programming language, 
for example, implicitly converts ASCII characters to integers in arithmetical expressions.  
 
 


