Type checking

o Static type checking means that the
correctness of using typesis performed at
compile-time

» Dynamic type checking means that the
correctness of using typesis performed at
run-time

Type checking

If type checking is performed at compile-time, one may speak about static type checking;
otherwise, that is, type checking is performed at run-time, a term dynamic type checking is
applied. In principle, type checking can aways be performed at run-time if the information
about types of values in program is accessible in executing code. Obvioudly, dynamic type
checking, compared to static one, leads to the increase of size and execution time of the object
program and lowers the reliability of the compiled code. A programming language is caled a
language with static type checking or strongly typed language, if the type of each expression
can be determined at compile-time, thereby guaranteeing that the type-related errors cannot
occur in object program. Pascal is an example of a strongly typed language. However, even for
Pascal some checks can be performed only dynamically. For instance, consider the following
definitions:

table: array [0..255] of char;
i: integer;

A compiler cannot guarantee that the argument i in the expression t abl e[i] is actualy in the
specified boundaries, that is, not less than zero and not greater than 255. In some cases, such
checking can be performed by techniques like data flow analysis, but it is far from being always
possible. It is clear that this sample demonstrates a common situation, namely, the control of
dice arguments, occurring in the greater part of programming languages. Of course, this
checking is usually performed dynamically.

Equivalence of types

» Structural equivalence of types
» Named equivalence of types

Equivalence of types

The essentia part of type checking is controlling equivalence of types. It is extremely important
for acompiler to check the equivalence of types quickly.

Structural equivalence of types. Two types are called structurally equivalent, if both are either
the same primitive type, or constructed by applying the same constructor to a structurally
equivalent types. In other words, two types are structurally equivalent if and only if they are
identical. We can check whether two types are structurally equivalent by using the following
function:

bool sequiv (s, t)

if (sandt — two identical primtive types)

{ return true;

Llse if (s == array (sl, s2) &t == array (t1, t2))
{ return sequiv (sl, tl) && sequiv (s2, t2);
Llse if (s == s1*s2 && t == t1*t2)

{ return sequiv (sl, tl) && sequiv (s2, t2);
Llse if (s==pointer (s1) &t == pointer (tl))

{ return sequiv (sl1, tl);

Llse if (s==proc (sl, s2) &t == proc (t1, t2))
{ return sequiv (sl, tl) && sequiv (s2, t2);
Llse

{

} return fal se;

Type conversions

 Implicit conversions or coercions
» Explicit type conversions

Type conversions

Consider a formula x+i, where x is a variable of areal type, i isaninteger variable. Since
representations of integer and real numbers in memory are different, different instructions are
used to handle integer and real values, and, commonly, there are no instructions with operands
of different types, a compiler must convert one operand to the type of another, or convert both
to some appropriate type.

Language specifications define what conversions are legal and what are necessary. If an integer
value is assigned to a real variable, the conversion to the type of the assignment target is
performed. However, the conversion of areal value to an integer is, generaly, incorrect. In the
case, a compiler usually converts an integer to a real. Type checking pass inserts conversions
into the interna representation of the source program. For example, the following tree
represents formulax+i after type checking pass.

+

X A/\int_'fo_real
|

i
A conversioniscalled implicit if it isinserted automatically by the compiler. In many
languages, implicit conversions, or coercions, are allowed only in situations when the loss of
information cannot occur, for example, an integer can be safely converted to areal, whereas the

reverse conversion is potentially dangerous with respect to information loss, and, therefore,
extremely undesirable.

The conversion is called explicit if it is explicitly specified by a programmer. Explicit
conversions resemble calls of functions defined on types. Sometimes type conversions are
actually performed on expressions and are true functions, for example, Pascal provides built-in
functions for type conversions: or d converts a character to an integer, chr performsthe reverse
conversion, and so on. Implicit calls are even more wide spread. The C programming language,
for example, implicitly converts ASCII charactersto integersin arithmetical expressions.

