
Introduction
Prolog data structures

Backtracking
Conclusion

Brief Introduction to Prolog

Joana Côrte-Real
jcr@dcc.fc.up.pt

CRACS & INESC TEC
Faculty of Sciences
University of Porto

University of Aizu
5th December 2014

1 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Overview

1 Introduction
Introduction to Prolog
Prolog Syntax
Tutorial 1

2 Prolog data structures
Lists
Trees
Tutorial 2

3 Backtracking
Tutorial 3

4 Conclusion

2 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Introduction to Prolog
Prolog Syntax
Tutorial 1

Section 1

Introduction

3 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Introduction to Prolog
Prolog Syntax
Tutorial 1

Programming paradigms

Imperative translation from machine language to user commands

Object object-oriented, versatile and recent

Declarative detachment between program’s goal and execution
details

Functional concerned with recursion, pattern
matching, ...

Logic focus on automatically reasoning about
knowledge in the program

4 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Introduction to Prolog
Prolog Syntax
Tutorial 1

Introduction to Prolog

Prolog represents Horn Clauses - which are a subset of First
Order Logics - where each clause can have at most one
positive literal in the head.

head:−body.

A Prolog program is a set of facts and/or rules defining
relations between entities.

Facts represent relations which are assumed to be true
(axioms)

Rules can be true or false, depending on other relations in the
program

A Prolog program is resolved by computing the consequents
of rules.

5 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Introduction to Prolog
Prolog Syntax
Tutorial 1

Prolog syntax 1

Characters Letters and numbers

Terms can be

variables Person, Father
constants mary, ’The Family’

compound family(’mary&tom’, date(25, feb,
1954))

Symbols :- ; , .

Comments can be used for

line %Comment
text /* Also a comment */

6 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Introduction to Prolog
Prolog Syntax
Tutorial 1

Prolog syntax 2

Operators + - * /

Unification = finds a set of variable substitutions that make two
terms exacty the same.

Arithmetic Prolog does not evaluate mathematical expressions
unless the operator is is used

numbers is > < =\=
terms == \==

7 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Introduction to Prolog
Prolog Syntax
Tutorial 1

Family - facts

%Fact s T1
mothe r o f (mary , john) .
mothe r o f (mary , anne) .
f a t h e r o f (tom , anne) .
f a t h e r o f (tom , john) .

%Query T1
?−mothe r o f (mary , Person) .

8 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Introduction to Prolog
Prolog Syntax
Tutorial 1

Observations

There are two predicates in this example: mother of/2 and
father of/2.

pred/N represents predicate pred(arg1, arg2, ..., argN),
with arity of N arguments.

These predicates have no body and so they are called facts.

Facts can be seen as a multi-relational database in Prolog.

10 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Lists
Trees
Tutorial 2

Section 2

Prolog data structures

11 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Lists
Trees
Tutorial 2

Data structures: List

A few examples:

[]: empty list.

[the,men,[like,to,fish]]

[a,V1,b,[X,Y]]

List is composed of: [Head|Tail]
Head: first element of the list (can be of any type).
Tail: remaining elements as a list.

List Head Tail
[a,b,c] a [b,c]

[a] a []

[] no head no tail

12 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Lists
Trees
Tutorial 2

Equality of Lists

Unifications can happen inside lists

The empty list does not have head or tail

This is used as a stop criterion in list recursion

Examples:
[X,Y,Z] = [john,likes,fish] X=john, Y=likes, Z=fish

[cat] = [X|Y] X=cat, Y=[]

[] = [X|Y] will always fail

13 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Lists
Trees
Tutorial 2

Data structures: Tree

Tree below can be represented as either a+b*c or +(a,*(b,c))

+

/ \

a *

/ \

b c

Trees can be used to represent concept such as:
sentence(noun(john),verb phrase(verb(likes),noun(mary)))

sentence

/ \

noun verb_phrase

/ / \

john verb noun

| |

likes mary
14 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Lists
Trees
Tutorial 2

Family - rules

%Fact s T2
f a t h e r o f (tom , b i l l) .
mothe r o f (mary , j a n e) .

%Rule T2
s i b l i n g (Person1 , Person2) :−

mothe r o f (Mother , Person1) ,
mothe r o f (Mother , Person2) ,
Person1\==Person2 .

s i b l i n g (Person1 , Person2) :−
f a t h e r o f (Father , Person1) ,
f a t h e r o f (Father , Person2) ,
Person1\==Person2 .

%Query T2
?− s i b l i n g (anne , Person) .

15 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Lists
Trees
Tutorial 2

Observations

findall/3 predicate gathers all possible solutions for the query
in argument 2 in a list.

Procedural interpretation: to solve sibling/2, predicates
mother of/2 and father of/2 must be evaluated first.

The resolution mechanism (SLD resolution) builds an
execution tree.

17 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Lists
Trees
Tutorial 2

Execution tree for sibling

18 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Tutorial 3

Section 3

Backtracking

19 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Tutorial 3

Obtaining multiple solutions in Prolog

Backtracking in Prolog can be used to obtain multiple
solutions for a goal (predicate fails vs user-induced failure).

When Prolog is computing a goal, every choice it makes is
stored as a choice point.

If a given goal fails, it can be backtracked (choices undone)
until the previous choice point is restored.

From there, Prolog starts looking for a new alternative for
solving the goal.

20 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Tutorial 3

Family - recursive

%Fact s T3
f a t h e r o f (roge r , tom) .
f a t h e r o f (greg , r o g e r) .

%Rule T3
ma l e an c e s t o r (Person1 , Person2 , 1) :−

f a t h e r o f (Person1 , Person2) .
ma l e an c e s t o r (Person1 , Person2 , L e v e l) :−

f a t h e r o f (Person1 , NewPerson) ,
ma l e an c e s t o r (NewPerson , Person2 ,

NewLevel) ,
L e v e l i s NewLevel+1.

%Query T3
?−ma l e an c e s t o r (P , anne , 2) .

21 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Tutorial 3

Observations

Declarative interpretation of query: are greg and anne related
through the male line?

male ancestor/3 can solve both the level of the relation and
find a person who is related to someone else.

Note that recursion must be made with new variables every
time: NewLevel, NewPerson.

23 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Tutorial 3

Execution tree for male ancestor

24 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Section 4

Conclusion

25 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Conclusions

Prolog allows for an almost direct match between a FOL
algorithm and its execution syntax.

Because Prolog is based on FOL, if the facts are true, then
the program will produce true results.

Prolog’s declarative nature is particularly suited to build and
consult multi-relational data.

There are many Prolog systems in the literature with different
features such as Yap Prolog1, SWI-Prolog2, SICStus Prolog3, etc.

1www.dcc.fc.up.pt/ vsc/Yap/documentation.html
2www.swi-prolog.org
3sicstus.sics.se

26 / 27

Introduction
Prolog data structures

Backtracking
Conclusion

Thank you

Joana Côrte-Real

27 / 27

