
Utilization of cache area in on-chip multiprocessor

Hitoshi Oia,*, N. Ranganathanb

aHAL Computer Systems, Inc., Campbell, CA 95008, USA
bDepartment of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA

Received 18 January 2000; revised 14 August 2000; accepted 5 September 2000

Abstract

On-chip multiprocessor can be an alternative to the wide-issue superscalar processor approach which is currently the mainstream to exploit

the increasing number of transistors on a silicon chip. Utilization of the cache, especially for the remote data is important in the system using

such on-chip multiprocessors since the ratio of the off-chip and the on-chip memory access latencies is higher than traditional board-level

implementation of the cache coherent non-uniform memory access (CC-NUMA) multiprocessors. We examine two options to utilize the

cache resource of the on-chip multiprocessors whose size is restrained by the die area: (1) the instruction and/or private data are only cached

at the L1 cache to leave more space on the L2 cache for the shared data; (2) divide cache area into the L2 and the remote victim caches or use

all the area for the L2 cache. Results of execution-driven simulations show that the ®rst option improved the performance up to 15%. For the

second option, a remote victim cache with 1/8 of the L2 cache size improved three out of four benchmark programs by 4±8%. However, the

combination of L2 and victim caches that divide the cache area into two halves of the same size was outperformed by the L2 cache occupying

the entire cache area in three out of four benchmark programs. q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Cache area; On-chip multiprocessor; Memory latency; Performance evaluation

1. Introduction

The progress of the semiconductor device technologies

has increased the number of transistors on a silicon chip.

Until now, this increasing number of transistors on a chip

has been used to implement superscalar processors which

can issue multiple instructions simultaneously [1].

However, this approach is limited by the following. The

circuit that implements a higher degree of instruction level

parallelism (ILP) than the current level, (two to three

instructions can be issued simultaneously) occupies much

more die area while most of the applications cannot exploit

such a high degree of ILP [2]. Also, the circuit complexity

of the processor with a higher degree of ILP lowers the

clock speed. It is reported that the performance of an

eight-issue processor is only 20% better than that of a

four-issue processor when the clock speed is taken into

consideration [3].

An alternative approach is to implement a multiprocessor

on a single chip [2,4±7]. In this approach, each processor is

moderately superscalar (for example, there were four two-

issue processors in the estimation of [4]) and operates at a

very high clock rate. In a multiprogramming environment,

each processor executes a process from a different applica-

tion, and bene®ts from the moderate superscalar architecture

and the fast clock speed. When an application has a coarse

grain parallelism, it is divided into multiple threads either by

the programmer or by the compiler. Each processor

executes a different thread from the application, and threads

bene®t from the fast on-chip communication as well as from

the fast clock speed.

Yet another approach to exploit a large number transistors

is to integrate the main memory and the processor on the

same chip [8]. With this approach, the memory latency is

signi®cantly reduced due to the wider on-chip datapath and

the lower signal propagation delay. In this paper, the combi-

nation of the second and the third approach is considered:

implementing a small number of processors and the main

memory on a single chip. When the processors are running

in a multiprogramming environment, they bene®t from the

fast access of the on-chip memory modules. When proces-

sors are executing a parallel program, they bene®t from the

fast interprocess communication.

When the number of processors on a single chip is not

suf®cient to provide the computational power required by

the application, it is possible to build a larger system by

connecting several such on-chip multiprocessors by an

interconnection network. The resulting system is a CC-

NUMA with each on-chip multiprocessor being a cluster

Microprocessors and Microsystems 24 (2000) 429±436

0141-9331/00/$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.

PII: S0141-9331(00)00094-6

www.elsevier.nl/locate/micpro

* Corresponding author.

E-mail address: oi@hal.com (H. Oi).

[9]. However, the access time ratio between the local and

the remote memory is expected to be higher than that of

current CC-NUMA systems that are built with traditional

technologies, such as printed circuit board (PCB). To reduce

the higher latency of the remote access, the utilization of a

cache would become important.

In this paper, two design options are examined to utilize

the cache resource of the on-chip multiprocessor whose size

is restrained by the die area. Due to the on-chip integration,

the access speed of the local memory becomes close to that

of the L2 cache. The ®rst option is to give more room on the

L2 cache for the shared data by single level caching (i.e.

using only L1 cache) for the private data and/or instructions.

Higher locality of the private data and the instruction access

than the shared data and the faster on-chip memory make

this option possible. Another option is to incorporate a

remote victim cache, a cache that only stores remote blocks

replaced from the L2 cache, when the total cache area is

limited by the die size.

This paper is organized as follows. In the next section, the

architecture of the on-chip multiprocessor is described. In

Section 3, the methodology for the performance evaluation

including the simulation model and benchmark programs

are presented. The performance evaluation of the on-chip

multiprocessor and the effectiveness of the design options

are given in Section 4. A summary of this paper is provided

in Section 6.

2. On-chip multiprocessor architecture

Olukotun et al. investigated a ¯oor-plan of their on-chip

multiprocessor architecture and estimated the area

consumption in detail [4]. Their architecture is used as a

starting point. The semiconductor technology they assumed

was that of 1997. When manufactured in the near future, it is

expected that more transistors will be available on a silicon

chip than Olukotun assumed. It is assumed that this extra die

area is to be used for accommodating the main memory on

the same chip. This on-chip main memory reduces the

memory access time signi®cantly. Off-chip memory

accesses involve I/O circuits and connecting wires that

have much higher inductive and capacitive load. The on-

chip memory can avoid these delays. Secondly, the width of

the on-chip memory datapath can be wider than that of the

off-chip memory. This is because the datapath width of the

on-chip memory is not restricted by the number of pins of

the processor chip.

This on-chip multiprocessor can be used as a building

block of a larger scale multiprocessor by connecting several

chips with some interconnection network. The resulting

system is a CC-NUMA with each chip being a cluster [9].

However, the ratio of access speed between the local and the

remote memory is signi®cantly higher in this architecture

due to the faster on-chip memory access. In other words, the

remote miss rate has a greater impact on the performance of

the on-chip multiprocessor than on CC-NUMA systems

built with traditional technologies, such as PCB.

Fig. 1 shows the architecture of the on-chip multi-

processor. There are a small number of processors that are

moderately superscalar. Each processor has its own instruc-

tion and data L1 caches. The size of the L1 caches is small

and it has a low degree of set-associativity (probably direct-

mapped or two-way as seen in current processors) so that its

access speed can catch up the fast processor clock cycle.

Processors on the same chip share an L2 cache that has a

larger size, a higher degree of set-associativity and hence a

slower access speed. The on-chip main memory is divided

into several modules to avoid access contention. Each

memory module is associated with directory entries repre-

senting copies of memory blocks. The off-chip communica-

tion interface is to connect several on-chip multiprocessor

chips via an interconnection network and/or to external

memory modules.

H. Oi, N. Ranganathan / Microprocessors and Microsystems 24 (2000) 429±436430

Fig. 1. On-chip multiprocessor architecture and a bus-based 32 processor system.

3. Simulation environment

In this section, the simulation environment to evaluate the

performance of the proposed architecture in Section 4 is

described.

3.1. Architecture model

For the performance evaluation, an execution-driven

simulator was developed using the ABSS multiprocessor

toolkit [10]. ABSS takes a parallel application written

with p4-macro [11] and augments it with instrumentation

codes.

Each chip has four processors as in [2]. A con®guration of

a bus-connected 32 processors (8 chips) system is consid-

ered as a case study in this paper. Each on-chip multipro-

cessor has the con®guration in Fig. 1 with an assumption

that the size of the on-chip memory is large enough to store

all the instructions and the data.

The L1 cache is direct-mapped and separated for the

instruction and the data, while the L2 cache is four-way

set-associative and uni®ed. A split transaction bus is used

to connect eight chips that are separated for the request (read

request, invalidate request and acknowledgment) and the

data. An invalidation request is broadcast to all the chips

via the request bus, and each chip which has a copy of the

block will send an acknowledgment when it has ®nished the

invalidation of the corresponding cache block in its L2

cache. The on-chip memory module is four-way inter-

leaved. Contention at the shared resources (L2 cache,

memory module, off-chip interface, request/data buses)

are modeled.

The system parameters that will be used in the perfor-

mance evaluation in Section 4 are shown in Table 1. A

relatively small L2 cache (64 KB per chip) is chosen,

since the default problem sizes of SPLASH2 suites are

used which were determined to run simulations in reason-

able time [12]. However, the data sizes of practical applica-

tions are so large that they are likely to split out from the

cache [16].

The clock speed of the bus is ®ve times slower than that of

the processor. Since the width of the data bus is 16 bytes, it

takes four bus cycles (equivalent to 20 processor clock

cycles) to transfer a L2 cache block (64 bytes) between

chips via the data bus.

3.2. Benchmark programs

A set of parallel applications in Table 2, that are from

Stanford SPLASH2 suites [12], are used as benchmark

programs for the performance evaluation. FFT is a one-

dimensional Fast Fourier Transform of n complex points.

Ocean simulates large-scale ocean movements by multigrid

equation solver (contiguous allocation version). Radix

performs a radix sort of integers. Volrend renders a three-

dimensional volume using a ray casting technique. In FFT

and Volrend, the initialization was excluded from the

instrumentation. The default problem size of each bench-

mark program in [12] is used.

The allocation of the shared data to memory modules is as

follows. When a memory location (in the unit of the L2

block size) is accessed by a processor for the ®rst time,

the memory location is assumed to be allocated in one of

the memory modules in the same chip as the processor.

Within a chip, one of memory modules is chosen in a

round-robin manner.

4. Performance evaluation

In this section, the performance of the on-chip multi-

processor is evaluated with the proposed design options

for performance improvement.

4.1. Single-level caching of private data and/or instruction

access

For each benchmark program, code and data sizes,

number of accesses, and L1 and L2 cache hit ratios are

summarized in Tables 3±6.

In general, the L1 hit ratios of the instruction and the

private data access are very high ($96%) and are much

higher than that of the shared data access. This fact leads

to the idea of leaving more room on the L2 cache for the

shared data by using only the L1 cache for the instruction

and/or private data. It is likely that the instructions and the

private data are allocated on the memory modules which are

on the same chip as the processor accessing them. Thus,

even if the accesses to the instruction/private data are

missed at the L1 cache, they can be fetched from the on-chip

H. Oi, N. Ranganathan / Microprocessors and Microsystems 24 (2000) 429±436 431

Table 1

System parameters. Timing parameters are represented by processor clock

cycles

L1 cache Direct mapped;

Size: 8 KB/processor

Latency: 1

Block size: 32 bytes

L2 cache Four-way set-

associativity;

Size: 64 KB/chip

Latency/cycle time: 8/4

Block size: 64 bytes

Memory Four-way

interleaved;

Latency/cycle time: 25/30

Off-chip I/F Latency/cycle time: 10/5

Bus Cycle: 5 Data bus width: 16 bytes

Con®guration 4 Processors per chip 8 chips (32 processors)

Table 2

Benchmark programs and their problem sizes

Application Description Problem size

FFT 1-D FFT 64k complex points

Ocean Multigrid solver of ocean

movement

258 £ 258 grid

Radix Radix sort 256k keys, radix� 1024

Volrend Rendering of 3-D volume Head

memory quickly. On the other hand, in the case of the shared

data access, its miss penalty will be expensive due to the

off-chip communication that is signi®cantly slower than the

on-chip communication. Also, the hit ratio of the shared

data is lower than that of the instruction/private data due

to invalidations.

There are several characteristics that an application and/

or a system con®guration should have to bene®t from the

option of leaving more room on the L2 cache for the shared

data. The L1 hit ratio of the instruction/private data should

be high, while their L2 hit ratio should be low. The access

latencies of the L2 cache and the on-chip memory should be

close (which is likely for the on-chip memory). These char-

acteristics suppress the increase of the L1 miss penalty when

the L2 is not used for the instruction/private data access.

Capacity and con¯ict misses should be dominant within all

the L2 misses of the shared access so that not using the L2

for the instruction/private data can improve the L2 hit ratio

of the shared access. The cost of the remote access should be

expensive so that the improvement of the L2 hit ratio for the

shared access will be more effective. This can be further

divided into a slower interconnection network, higher

contention at interconnection network, etc.

Four different cases are examined: In base case, all the

instructions, private data, and shared data occupy the L2

cache. With priv option, private data does not occupy the

L2 cache (it is only stored at the L1 cache). Similarly, with

inst option, the instruction is only cached at the L1 cache.

P 1 I is a combination of the priv and the inst options. The

execution speed (inverse of the execution time) normalized

to that of the base case of each benchmark program is

presented in Fig. 2. The number of replacements at the L2

normalized to the base case is shown in Fig. 3.

The L1 hit ratio of the instruction fetch for FFT is lower

than those of other benchmark programs while the L2 hit

ratio is quite high (99.82%). This means that the increase of

the L1 miss penalty for the instruction fetch is higher than

other benchmark programs when the L2 cache is not used

for the instruction access. The size of the FFT instruction

code is small (8 KB) since it is a kernel program [12]. Thus,

not using the L2 cache for the instruction did not improve

the L2 hit ratio of the shared access signi®cantly (from

66.66 to 66.70%). Consequently, inst and P 1 I degraded

FFT's performance to 67 and 62% of the base case (not

appeared in Fig. 2 since they are out of range), respectively.

Therefore, this option should not be used for FFT. On the

other hand, the L1 hit ratio of the private access is higher

than that of the instruction access (97.35%) while the L2 hit

ratio is lower than the instruction access (71.15%). Also, the

size of the private data (160 KB) is much larger than the

instruction size (8 KB). As a result, the number of replace-

ments at the L2 cache was reduced by 21%, the L2 hit ratio

of shared data was increased from 66.66 to 68.38%, and the

performance of FFT was improved by 4% with the priv

option.

In Ocean, most of the L2 misses are accesses to the local

memory blocks. It is known that Ocean has a strong nearest-

neighbor communication pattern [13]. The cluster structure

of the on-chip multiprocessor makes most of misses satis-

®ed locally (within the same chip). Consequently, the

fraction of the remote accesses is quite small in all the

access modes. Thus, the effects of two design options

examined in this section are also small. Priv and Inst options

improved Ocean's performance by 3 and 1%, respectively.

P 1 I option was slightly worse than priv alone. Actually,

the number of replacements at the L2 cache was smaller for

P 1 I than for Priv or Inst alone. However, the increased L1

miss penalty for the instruction and private data access

killed the bene®t of the increased L2 hit ratio for the shared

data access.

Neither priv nor inst option alone improved the perfor-

mance of Radix signi®cantly. With priv option, the average

access latency was slightly decreased, but the number of

stalls due to synchronization was increased. Thus, it resulted

H. Oi, N. Ranganathan / Microprocessors and Microsystems 24 (2000) 429±436432

Table 3

FFT: hit ratio and data/instruction sizes

Category # Access (M) Size L1 hit ratio (%) L2 hit ratio (%)

Overall 67 3.5 MB 95.70 71.15

Instruction 54 8 KB 96.51 99.82

Private 6.4 160 KB 97.35 71.15

Shared 6.5 3.1 MB 87.32 66.66

Table 4

Ocean: hit ratio and data/instruction sizes

Category # Access (M) Size L1 hit ratio (%) L2 hit ratio (%)

Overall 765 17.8 MB 95.80 57.83

Instruction 567 68 KB 99.55 87.01

Private 56 109 KB 96.17 61.27

Shared 142 15.5 MB 80.70 54.85

in a slight performance degrade (less than 1%). However,

when two options were used together, (P 1 I), the perfor-

mance of Radix was improved by 3%.

In Volrend, the bene®t of the single-level caching for the

private data and/or instruction access was most effective.

With the priv option alone, its performance was improved

by 14%. In Volrend, there were frequent private data

accesses. This increased the busy rate of the L2 cache

which was shared by four processors on the same chip. By

not using the L2 cache for the private data access, the

average wait time per L2 cache access was reduced from

0.61 to 0.18 processor clock cycle. Since the L2 hit ratio of

the private access was quite low (35%), the increase of the

L1 miss penalty for the private access caused by the priv

option was small. The number of replacements at the L2

cache was reduced to 14% of the base case by the priv

option (Fig. 3). Although it was not as good as the priv

option, the inst option reduced the number of replacements

at the L2 cache by 26%, and it improved the performance of

Volrend by 5%. When two options were combined (P 1 I),

the performance of Volrend was improved by 15%.

4.2. Effectiveness of remote victim cache

In CC-NUMA multiprocessors, the latency of the remote

data access is signi®cantly higher than that of the local data.

One way to alleviate the latency of the remote access is to

add a remote cache to the memory hierarchy [16]. Moga and

Dubois proposed an augmentation to the remote cache, the

remote victim cache: a cache memory that only stores

remote blocks replaced from the L2 cache [17]. Their

study showed that relaxing the inclusion property better

utilizes the remote cache.

In the past studies including the above, it was assumed

that nodes and clusters of CC-NUMA multiprocessors were

build with traditional technologies such as printed circuit

board (PCB). Thus, the addition of the remote caches was

mainly restrained by the cost. However, in the case of the

on-chip implementation, the total size of the L2 cache and

the remote victim cache is restricted by the die area. A

question that arises in this situation is, should the available

chip area be divided into L2 and remote victim caches, or

just use it for a large L2 cache.

Six cache con®gurations are examined: the base con-

®guration in Table 1 (an L2 cache of the size 64 KB/chip

only), an L2 cache of the size 64 KB/chip plus a remote

victim cache of sizes 8, 16, 32, and 64 KB/chip, and an

L2 cache of 128 KB/chip only. A notation of X:Y is used,

where X and Y are the sizes of the L2 and the remote victim

caches, respectively. The total chip area used for the L2 and

remote victim caches should be in the order of

64:0 , 64:8 , 64:16 , 64:32 , 128:0 , 64:64. This is

because 64:64 consumes more area for the cache tag and

the datapath than 128:0. If 64:32 or a smaller victim cache

outperforms 128:0, it can be said that the remote victim

cache better utilizes the limited cache area, and vice

versa. It is assumed that the remote victim cache is four-

way set-associative and its access hit takes four clock cycles

in addition to the L2 latency.

A remote victim cache of the smallest size (8 KB)

improved the performance of FFT by 4%. In FFT, the

remote victim cache was effective only in the write accesses

(i.e. there were no hits for the read access at the remote

victim cache). The number of hits at the remote victim

cache itself was small (only 0.12% of the L2 write misses

were saved by the remote victim cache). However, sub-

sequent write accesses to the same address resulted in either

L1 or L2 hits, and they lowered the average access latency.

Although it was negligible, there was a negative effect of the

remote victim cache. The remote victim cache prevents a

modi®ed L2 cache block from being written back to its

home memory location. This reduces the number of write-

backs and leads to fewer bus transactions, but it also

increases the number of remote accesses. Since the remote

victim cache keeps modi®ed data in a remote location

(owner node), read accesses by processors in other chips

H. Oi, N. Ranganathan / Microprocessors and Microsystems 24 (2000) 429±436 433

Table 5

Radix: hit ratio and data/instruction sizes

Category # Access (M) Size L1 hit ratio (%) L2 hit ratio (%)

Overall 117 2.48 MB 97.17 80.72

Instruction 90 4 KB 99.99 73.99

Private 19 168 KB 99.25 54.35

Shared 8 2.3 MB 60.98 81.92

Table 6

Volrend: hit ratio and data/instruction sizes

Category # Access (M) Size L1 hit ratio (%) L2 hit ratio (%)

Overall 1815 10.6 MB 97.21 62.60

Instruction 1326 19 KB 98.39 84.28

Private 452 122 KB 95.87 35.00

Shared 36 10.5 MB 70.69 67.43

involve extra transactions between the home node and the

owner node. In FFT, increasing the size of the remote victim

cache beyond 8 KB did not prove effective. The perfor-

mance of the con®gurations with a larger remote victim

cache (64:8±64:64) were almost the same, despite the size

of the remote victim cache being increased.

The effectiveness of the remote victim cache in Ocean is

similar to that in FFT. A remote victim cache of the size

8 KB improved the performance of Ocean by 6%. However,

more improvement cannot be expected when the size of the

remote victim cache is increased beyond 8 KB. For exam-

ple, in 64:64, the size of the remote victim cache size was

eight times larger than in 64:8, but the performance of

Ocean was only 1% better than 64:8. The performance

improvements of FFT and Ocean showed a difference

when a larger L2 cache was used: 128:0 improved Ocean's

performance by 12%, which was about 4% better than

64:64. There were also some similarities and differences

between FFT and Ocean. For example, the number of victim

cache hits was small (0.03%), but they made subsequent

accesses to the same address as either L1 or L2 hits. Also,

all the remote victim cache hits were in the write mode in

both benchmark programs, but in the case of Ocean,

addition of the remote victim cache did not increase the

number of remote read accesses.

The use of a remote victim cache was most effective in

Radix. Even 64:8 improved the performance of Radix by

8%, and its effectiveness was increased up to 26% with

64:64. Again, all the remote victim cache hits were in

write modes. With the 64:64 con®guration, 18% of the L2

write misses resulted in remote victim cache hits. A larger

L2 cache (128:0) also improved the performance of Radix

by 21%, but it was slightly less than 64:64. The hit ratio of

the L2 cache in 128:0 (89.7%) was better than that of 64:64

(80.5%). However, 18% of the L2 write misses resulted in

remote victim cache hits, and the remote victim cache

reduced the number of remote write backs of modi®ed

cache blocks (in 128:0 there were 44,802 write backs

while there were 24,116 in 64:64).

A small fraction (0.02%) of the L2 write misses were saved

by the remote victim cache of 8 KB size in Volrend. However,

the number of the L2 cache hits was not increased. This means

that a cache block that was hit at the remote victim cache was

not re-used by any processor in the same chip later. In addition,

the number of remote read accesses due to the victim cache

was increased by 7%. Thus, the performance of 64:8 was

slightly worse than that of 64:0. Actually, the bene®t of the

remote victim cache was negligible, even with 64:64. On the

contrary, 128:0 improved the performance of Volrend by 14%.

As it has been shown in the previous subsection, a large frac-

tion of accesses in Volrend was to private data in which the

remote victim cache was not effective. A larger L2 cache

(128:0), however, worked for both the private and the shared

data, and hence it improved the performance of Volrend

signi®cantly.

5. Related work

Olukoton et al. studied the on-chip multiprocessor as an

alternative to wide-issue superscalar processors, which is

currently the mainstream for using transistors on a silicon

H. Oi, N. Ranganathan / Microprocessors and Microsystems 24 (2000) 429±436434

Fig. 2. Single-level caching of instruction/private data.

Fig. 3. Normalized number of replacement at L2 cache.

Fig. 4. Effect of L2 cache and remote victim cache sizes.

chip [4]. They compared a six-issue superscalar processor

and a four-way on-chip multiprocessor, for parallel applica-

tions and multiprogramming workload. They assumed the

semiconductor technology of 1997 and estimated that four

processors and L1 and L2 caches could be implemented on a

single chip. It is expected that technology of near future can

provide more die area than they estimated. Thus, we

assumed the main memory can also be included on the

same chip. Another difference was that they evaluated the

performance of single chip con®gurations, while we studied

multiple chip con®gurations where the inter-chip commu-

nication would have a signi®cant effect on the performance.

We assumed that the L2 cache is shared by the processors

on the same chip. The effectiveness of the shared L2 caches

was studied by Nayfeh et al. [9]. The on-chip multiprocessor

in [4] also assumed shared L2 caches, while there are

instances of on-chip multiprocessors without shared caches

and assuming cache-to-cache transfer for data sharing

among processors within a chip [5].

In a DSM multiprocessor, the latency of the remote data

access affects its performance, and several techniques to

reduce it have been proposed. Page caching, migration

and replication are techniques to hold remote data locally

by aliasing it to the local physical page [14,15]. Addition of

an extra cache that holds remote data to the memory

hierarchy can also alleviate the remote access latency

[16]. Moga et al. proposed the remote victim cache, a

cache that only stores remote data replaced from the L2

cache [17].

6. Conclusions

In this paper, two design options to better utilize the cache

resources in on-chip multiprocessors were examined. The

effectiveness of these options was evaluated through

execution-driven simulations. Using the single-level

caching for the instruction and/or private data to leave

more space on the L2 cache for the shared data improved

the performance of the on-chip multiprocessor up to 15%.

However, in FFT and Radix, this option used for the instruc-

tion degraded the performance. Therefore, this option has to

be used selectively. The effectiveness of the remote victim

cache was also evaluated by taking total cache area into

consideration. Addition of the remote victim cache of a

small size (1/8 of L2 cache) was effective in three out of

four benchmark programs: it improved the performance by

4±8%. However, having L2 and victim caches of the same

size was less effective than having only an L2 cache of twice

the larger size except in Radix. Therefore, if a small amount

of extra space is available, using it for a remote victim cache

is a good idea. However, the size of the L2 cache should not

be sacri®ced to accommodate a large remote victim cache.

Topics of further study include the following. In this

paper, a con®guration of four processors and on-chip

memory modules per chip was assumed as a case study. It

is possible that the size of on-chip memory modules is not

suf®cient to hold all the instructions and the data, and off-

chip memory modules are attached to the on-chip multi-

processor system. These off-chip memory modules

introduce another level in the memory hierarchy. Ef®cient

data placement and migration techniques between the on-

chip and the off-chip memories need to be investigated in

the future.

In this study, the access speeds of L2 and remote victim

caches were kept constant while their sizes were varied.

Generally speaking, the smaller the cache, the faster its

access [18]. However, since the clock cycles is a discrete

number, so is the cache access speed. As long as the cache

size varies within ªsomeº range, its access speed stays the

same. Also, the actual access time is affected by several

factors, such as semiconductor device technology used in

the chip, and the structure of memory hierarchy. The effects

of these factors on the design options proposed in this paper

would be another topic of further research.

Acknowledgements

This research was supported in part by a National Science

Foundation Grant No. MIPS 9522265.

References

[1] K.C. Yeager, Mips R10000 superscalar microprocessor, IEEE Micro

16 (2) (1996) 28±40.

[2] L. Hammond, B.A. Nayfeh, K. Olukotun, A single-chip multiprocessor,

IEEE Computer 30 (9) (1997) 79±85.

[3] K. Farkas, N. Jouppi, P. Chow, Register ®le considerations in

dynamically scheduled processors, Proceedings of International

Symposium on High Performance Computer Architecture, February

1996, pp. 40±51.

[4] K. Olukotun et al., The case for a single-chip multiprocessor,

Proceedings of Seventh International Conference on Architectural

Support for Programming Languages and Operating Systems, ACM

Press, New York, October 1996, pp. 2±11.

[5] M. Takahashi et al., A shared-bus control mechanism and a cache

coherence protocol for a high-performance on-chip multiprocessor,

Proceedings of International Symposium on High Performance

Computer Architecture, February 1997, pp. 314±322.

[6] T. Yamauchi, L. Hammond and K. Olukotun, A single chip multi-

processor integrated with high density DRAM, Technical Report:

CSL-TR-97-731, Stanford University, August 1997.

[7] H. Oi, N. Ranganathan, Utilization of cache area in on-chip multi-

processor, Proceedings of International Symposium on High

Performance Computing (ISHPC'99), Kyoto, Japan, May 1999,

pp. 373±380.

[8] Y. Nunomura, T. Shimizu, O. Tomisawa, M32R/D-integrating

DRAM and microprocessor, IEEE Micro 17 (6) (1997) 40±48.

[9] B.A. Nayfeh, K. Olukotun, J.P. Singh, The impact of shared-

cache clustering in small-scale shared-memory multiprocessors,

Proceedings of International Symposium on High Performance

Computer Architecture, February 1997, pp. 74±84.

[10] D. Sunada, D. Glasco, M. Flynn, ABSS v2.0: a SPARC simulator,

Technical Report: CSL-TR-98-755, Stanford University, April 1998.

[11] E. Lusk, et al., Portable Programs for Parallel Processors, Holt,

Rinehard & Winston, New York, 1987.

H. Oi, N. Ranganathan / Microprocessors and Microsystems 24 (2000) 429±436 435

[12] S.C. Woo et al., The SPLASH-2 programs: characterization and

methodological considerations, Proceedings of the 22nd International

Symposium on Computer Architecture, June 1995, pp. 24±36.

[13] A. Gupta, W.-D. Weber, Cache invalidation patterns in shared-

memory multiprocessor, IEEE Transactions on Computers 41 (7)

(1992) 794±810.

[14] A. Saulasbury, T. Wilkinson, J. Carter, An argument for simple

COMA, Proceedings of the 22nd International Symposium on

Computer Architecture, June 1995, pp. 276±285.

[15] J. Laudon, D. Lenoski, The SGI origin: a ccNUMA highly scalable

server, Proceedings of the 24th International Symposium on Computer

Architecture, June 1997, pp. 241±251.

[16] Z. Zhang, J. Torrellas, Reducing remote con¯ict misses: NUMA

with remote cache versus COMA, Proceedings of International

Symposium on High Performance Computer Architecture, February

1997, pp. 272±281.

[17] A. Moga, M. Dubois, The effectiveness of SRAM network caches in

clustered DSMs, Proceedings of the Fourth International Symposium

on High Performance Computer Architecture, February 1998,

pp. 103±112.

[18] N.P. Jouppi, S.J.E. Wilton, Tradeoffs in two-level on-chip caching,

WRL Research Report 93/3, Digital Equipment Corporation, October

1993.

H. Oi, N. Ranganathan / Microprocessors and Microsystems 24 (2000) 429±436436

Hitoshi Oi is a Computer Architect at

HAL Computer Systems, Campbell, Cali-

fornia. He received a PhD degree in

Computer Science and Engineering from

University of South Florida. He received

Bachelor's degree in Electronics and

Communication Engineering, and Master's

degree in Electrical Engineering, both from

Meiji University. His research interests

include computer architecture and perfor-

mance evaluation, VLSI design and veri®-

cation, and non-standard logic.

N. Ranganathan received the PhD degree in

Computer Science from the University of

Central Florida, Orlando in 1988. He is

currently a professor in the Department of

Computer Science and Engineering and the

Center for Microelectronics Research at the

University of South Florida, Tampa. His

research interests include VLSI design,

design automation, hardware algorithms,

computer architecture and parallel proces-

sing.

