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ABSTRACT
Bytecode hardware-translation improves the performance of
a Java Virtual Machine (JVM) with small hardware resource
and complexity overhead. Instruction folding is a technique
to further improve the performance of a JVM by reduc-
ing the redundancy in the stack-based instruction execu-
tion. However, the variable instruction length of the Java
bytecode makes the folding logic complex. In this paper, we
propose a folding scheme with reduced hardware complexity
and evaluate its performance. For seven benchmark cases,
the proposed scheme folded 6.6% to 37.1% of the bytecodes
which correspond to 84.2% to 102% of the PicoJava-II’s per-
formance.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: PROCESSOR
ARCHITECTURES; B.8.2 [Hardware]: PERFORMANCE
AND RELIABILITY—Performance Analysis and Design Aids

General Terms
Performance, Design

Keywords
Java Virtual Machine, Hardware-Translation, Performance
Evaluation, Instruction Folding.

1. INTRODUCTION
In this section, we present an introduction to the hardware-

translation based Java Virtual Machine and the instruction
folding.

1.1 Hardware-Translation of Java Bytecode
Hardware-translation is a technique to enhance the per-

formance of the Java Virtual Machine (JVM) [1] by dynam-
ically replacing the bytecodes to native machine instruc-
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tions 1. A small translation logic is inserted between the
fetch and decode stages of the processor pipeline. When
a flag in the processor’s status register indicates that the
fetched instruction is a Java bytecode, it is converted into
native instructions by the translation unit. If the native
instruction is fetched, it bypasses the translation logic. In
theory, the decode and later stages of the processor pipeline
do not see the difference between the native and Java byte-
code execution modes which implies that the changes to the
processor core is kept minimum.

Table 1 shows an example of the bytecode translation. In
this example, two local variables which are assigned local
variable indicies 3 and 4, are added and the result is writ-
ten to the local variable 3. First two bytecodes, ILOAD 3
and ILOAD 4 push the values of two local variables onto the
stack. Following the ARM Jazelle’s specification, R0 to R3
are used to hold the top four words of the operand stack in
this example 2. Therefore, the first two bytecodes are trans-
lated into two load word instructions (LDR) using R7 which
holds the address of the local variable 0 and corresponding
offsets. Next bytecode, IADD, pops and adds two top of
stack words and pushes the result onto the stack. This byte-
code is translated into a native instruction which adds two
registers R0 and R1. The last bytecode, ISTORE 3 pops the
top of stack word and writes it to the local variable 3. This
bytecode is replaced with a store word instruction (STR).

As shown in the above example, the translation unit reads
a single bytecode at a time and generates a short sequence
of native machine instruction(s). The hardware-translation
is limited to the simple 140 bytecodes such as load, store,
and arithmetic/logical operations on the stack [4]. Complex
bytecodes, such as new (create a new object), are emulated

1In the court order [2] dated September 30, 2003, ARM’s
Jazelle and Nazomi’s U.S. Patent No. 6,332,215 are distin-
guished as follows. While Nazomi’s patent translates Java
bytecodes into native instructions before reaching the de-
code stage of the CPU, ARM’s Jazelle translates bytecodes
into controls signals. While this difference may be impor-
tant for the patent issues, it is not essential for the ideas
discussed in this paper. Therefore, the readers of this pa-
per can interchangeably read “native instructions” as “the
sequence of control signals corresponding to the native in-
structions”, vice versa.
2Since the number of registers assigned to hold operand
stack entries is fixed to four, they are considered to be used
as a circular buffer with a modulo 4 pointer to R0 to R3. If
more than four items are pushed onto the stack, spill and
restore operations are required. For the sake of simplicity,
however, these operations are omitted in this example.



Table 1: An Example of Bytecode Hardware-
Translation

Bytecode ARM Instruction
ILOAD 3 LDR R0, [R7, #12]
ILOAD 4 LDR R1 [R7, #16]
IADD ADD R0, R1
ISTORE 3 STR R0, [R7, #12]

by the software. By limiting the complexity of the trans-
lation mechanism, the hardware resource overhead and the
performance gain are balanced: in the case of Jazelle, it
is reported that 8x performance gain was achieved by 12K
gates, while typical dedicated or co-processors are around
20-25K [4].

1.2 Instruction Folding of Java Bytecode
As shown in the bytecode sequence in Table 1, there is in-

herent redundancy in the Java bytecode which comes from
its stack architecture. In the above example, it took four
bytecodes to add two variables and write the result back to
one of them. Almost all microprocessors can do an equiva-
lent operation with a single instruction, such as ADD A, B.
This technique of merging multiple bytecodes into a single
instruction is called the instruction folding and can be found
in Java processors [7]. However, there are two issues when
applying the instruction folding scheme to the hardware-
translation based JVMs. First, most embedded micropro-
cessors, which are the target platform of the hardware-
translation JVM, are RISC architectures. This implies that
arithmetic and logic operations cannot take memory loca-
tions as operands. If the part of operand stack for the local
variables is allocated on the main memory (which is likely as
shown in the example in Table 1), the instruction folding is
not possible. Previously, we proposed to add a small regis-
ter file to the datapath of the JVM to reduce the number of
memory accesses caused by the local variables [6]. This extra
register file (called local variable cache in [6]) also makes in-
struction folding possible on the hardware-translation based
JVMs.

Another issue is the hardware complexity of the logic
circuit that detects foldable bytecode sequences. In Sun’s
PicoJava-II, up to four bytecodes are folded into a single mi-
croprocessor operation, meaning four bytecodes are decoded
simultaneously. Compared to the single bytecode decod-
ing policy of the hardware translation, decoding four byte-
codes for folding detection may be too complex. Moreover,
the variable length of Java bytecode adds more complexity
to the detection of the foldable sequences. The first byte-
code opcode is pointed to by the program counter (PC),
but the next bytecode could be either at PC + 1, 2 or even
at PC + 3 depending on the first bytecode (excluding non-
foldable bytecodes). This means that to obtain the i-th
opcode, where i = 2 · · · 4, we have to decode 1 · · · i− 1 byte-
codes beforehand.

In this paper, we present an instruction folding mechanism
that provides similar performance to that of PicoJava-II
with a reduced hardware complexity. The proposed scheme
is evaluated by bytecode level simulations and analysis of
bytecode sequence patterns that contribute to instruction
folding are presented.

The rest of this paper is organized as follows. In the

next section, an overview of PicoJava-II’s folding scheme
is presented. In Section 3, we propose an instruction folding
scheme that alleviates the hardware complexity of PicoJava-
II’s scheme. In Section 4, the experimental environment
including Java Virtual Machine and benchmark programs
are first described, and then the proposed schemed is evalu-
ated by comparing it to the performance of the PicoJava-II
through simulations. Related work and conclusions are pre-
sented in Sections 5 and 6, respectively.

2. PICOJAVA-II’S INSTRUCTION FOLDING
SCHEME

In this section, the instruction folding scheme of Sun’s
PicoJava-II and its source of hardware complexity are de-
scribed. In PicoJava-II, Java bytecodes are classified into
six types [7]:

LV: A local variable load or load from global register or
push constant (e. g. ILOAD)

OP: An operation that uses the top two entries of stack and
that produces a one-word result (IADD)

BG2: An operation that uses the top two entries of the
stack and breaks the group (IF ICMPEQ)

BG1: An operation that uses only the topmost entry of the
stack and breaks the group (IFEQ)

MEM: A local vars store, global register store, and memory
load (ISTORE)

NF: A nonfoldable instruction (GOTO)

Based on this classification, the following nine bytecode
patterns (groups) are defined:

Group 1 LV LV OP MEM

Group 2 LV LV OP

Group 3 LV LV BG2

Group 4 LV OP MEM

Group 5 LV BG2

Group 6 LV BG1

Group 7 LV OP

Group 8 LV MEM

Group 9 OP MEM

Fig. 1 shows the block diagram of the PicoJava-II’s fold-
able sequence detection circuit. Note that this diagram is
reproduced from [7] with the following changes. First, while
PicoJava-II has extended two-byte long instructions, they
are specific to PicoJava-II’s implementation and unrelated
to other JVMs in general, including ours. Therefore, the
folding type decoders handle only single byte bytecodes.
Second, in PicoJava-II, each instruction byte is associated
with the length of the bytecode by assuming that the byte
is the opcode. This instruction length is decoded in the in-
struction cache which is in the fetch stage of the pipeline. In
this paper, we assume that the hardware translation module
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Figure 1: PicoJava-II’s Foldable Bytecode Detection
Logic

of the Java Bytecode is inserted between the fetch and de-
code stages and try to minimize the changes to the processor
core. Therefore, unlike PicoJava-II, decoding of the instruc-
tion length is also performed in the hardware translation
module.

In the instruction buffer, there are seven entries and each
entry consists of an instruction byte (i0 to i6). All instruc-
tion bytes are speculatively decoded by folding type de-
coders (fdec) and generate instruction types (it0 to it6) and
instruction lengths (l0 to l6). The first byte in the buffer (i0)
is always the opcode of the first bytecode (b0). Therefore,
it0 is actually the folding type of the first bytecode (t0).

Since the length of foldable bytecodes varies from one
(e. g. IADD) to three (e. g. SIPUSH), the length of the first
bytecode (l0) is fed to a 3-to-1 mux to select the folding type
of the second bytecode (t1) from it1 to it3. The length of
the first bytecode (l0) is also used to select the accumulated
length of the first and the second bytecodes (acc len1) from
l1 to l3, which in turn selects the folding type of the third
bytecode (t2) from it2 to it6 as well as to select the accumu-
lated length of the first through third bytecodes (acc len2).

Similarly, acc len2 selects the folding type of the fourth
bytecode (t3) from it3 to it6 and the accumulated length of
the first through fourth bytecodes (acc len3).

The folding detection logic takes folding types of all four
bytecodes (t0 to t3) and enables one of nine output (Group1
to Group9) if any foldable sequences are detected. Needless
to say, since a longer sequence has a priority, for example,
for an LV LV OP MEM sequence, only Group1 output is
enabled (i. e. Group2 is disabled).

Note that, the length of the first bytecode (l0) is prop-
agated through three multiplexers to determine the folding
type of the fourth bytecode (t3). t3 is then fed into the fold-

ing detection logic and then finally a possible folding pattern
is determined.

It has been pointed out that the instruction folding unit
(IFU) can be a critical path in the decode stage of the
PicoJava-II processor pipeline [8]. In addition, if we remem-
ber that the hardware-translation based JVM translates one
bytecode at a time, the hardware resource and complexity
overhead of PicoJava-II’s instruction folding scheme may not
be suitable for incorporation without modification.

3. THREE BYTECODE FOLDING SCHEME
WITH REDUCED COMPLEXITY

In this section, we propose an instruction folding scheme
that takes up to three bytecodes with reduced hardware
complexity and still provides a similar performance as PicoJava-
II. The primary source of complexity in the PicoJava-II’s
folding mechanism is the variable length of the bytecode,
especially, the length of the LV type bytecodes that varies
from one to three bytes. To reduce this complexity, we mod-
ified the PicoJava-II’s scheme in the following two points.
First, we limit the number of folding bytecodes to three
(i. e. Group1 is excluded) Next, we exclude SIPUSH, which
is the only three byte long LV type bytecode and handle it
as an NF bytecode.

As we will see in the next section, in general, the fraction
of Group 1 sequence (LV LV OP MEM) is small and the
instruction count of SIPUSH is also small compared to other
LV bytecodes. The lengths of MEM, BG1 and BG2 are also
variable. However, these bytecodes are always at the end of
the foldable sequence and hence do not affect the position
of the opcodes of other bytecodes in a foldable sequence.

Fig. 2 shows the block diagram of the proposed folding
scheme. While the instruction buffer stores seven instruc-
tion bytes, it only (speculatively) decodes the folding types
(it0 to it4) and lengths (l0 to l4) of the first five bytes (i0
to i4) since the opcode of the third bytecode in foldable
sequences does not go beyond i4. The folding type of the
second bytecode (t1) is selected from either it1 or it2 based
on the length of the first bytecode (acc len0) which is actu-
ally l0. The accumulated instruction lengths up to second
and third bytecodes (acc len1 and acc len12, respectively)
are obtained in the same manner as in the PicoJava-II with
fewer candidates.

The hardware complexity of the proposed mechanism is
reduced in the following points. First, since we have dropped
Group 1, the length of the multiplexer chain to obtain the
accumulated instruction lengths has reduced from three to
two. Second, the sizes of the MUXes for t1 and t2 as well as
acc len1 and acc len2 have changed from 3-to-1 and 5-to-1
to 2-to-1 and 3-to-1, respectively. Moreover, the number of
folding type decoders (fdec) has been reduced from seven to
five.

Block diagrams in Figs. 1 and 2 do not include the circuit
which handle the cases where the bytecode sequence pattern
is foldable but its length exceeds the size of the instruction
buffer. In such a case, the folding type of the corresponding
bytecode must be changed to NF regardless of its prede-
coded folding type. The proposed scheme is also simpler
than PicoJava-II in this part because only acc len0 = 1 or 2
and acc len1 = 2 to 4 are valid for the folding type signals
t1 and t2, respectively.

A complete and precise estimation of the hardware over-
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head and speed cannot be obtained without (at least) the
datapath that is controlled by the folding pattern signals de-
tected in the pattern detection module. At present, we do
not have such a complete model of a hardware-translation
based JVM and also the emphasis of this paper is placed
on the optimization of the folding patterns. However, as
a metrics of the hardware complexity and operation speed,
we wrote Verilog models for the circuits in Figs. 1 and 2
and synthesized them under the 0.35µ rule. In PicoJava-
II’s model (Fig. 1), the delay of the longest path (from i0
to Group 1) was 2.82ns. On the other hand, in the pro-
posed scheme (Fig. 2), the delay of the longest path (from
i0 to Group 2) was 2.50ns, which is a reduction of 11%. We
also compared the logic circuit areas and it was found that
the proposed scheme occupied 35% less area than that of
PicoJava-II.

4. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the pro-

posed folding mechanism and compare it to that of PicoJava-
II. We also use two bytecode version of PicoJava-II’s mecha-
nism which only works for groups 5 to 9 as another reference.
First, we present the simulation environment including JVM
and benchmark programs and the simulation results follow.

4.1 Experimental Environment
For the JVM and Java Runtime Environment, we use

Kaffe version 1.0.7 [9]. Kaffe is an open-source implementa-
tion of the JVM and we compiled it with “–with-engine=intrp”
option so that all bytecodes are interpreted. It is assumed

that a 16-entry local variable cache is attached to the JVM
which works as described in [6]. This size of the local vari-
able cache can accommodate all local variables of DES, ECM
and PNG, or is effectively large enough for SAXON with
XSLTMark test case documents.

Note that, the LV type bytecodes can be further divided
into two classes. The first class is those actually accessing
local variables, such as ILOAD. If the local variable cache
does not have a valid copy of the accessed local variable, it
must be loaded from the memory. Therefore, for example, a
Group7 sequence ILOAD 1, IADD, is effectively not folded
if the local variable 1 is not present in the local variable
cache. Another class of LV bytecodes is those not actually
accessing local variables, such as ICONST 0. When such
a bytecode appears in any foldable sequence, it is always
folded.

The benchmark programs used for the evaluation are listed
in Table 2. The first set of benchmark programs is SAXON
Version 6.3, an XSLT processor [10], driven by four test case
XML documents from XSLTMark [11]. We chose four test
case documents, chart, decoy, encrypt and trend, based on
the average number of bytecode executed for a method in-
vocation and the functional categories defined in the XSLT-
Mark.

The Embedded CaffeineMark consists of five tests, Sieve,
Loop, Logic, Method and Float [12]. Each of these tests is
basic and tries to measure various aspects of JVM. Compos-
ite results of all five tests are used.

DES is a DES based encryption and decryption of a text
file using the Bouncy Castle Crypto Package [13]. A text file
of 3KB is first encrypted and then decrypted using the sam-
ple program included in the Bouncy Castle Crypto package
(src/org/bouncycastle/crypto/examples/DESExample.java).

PNG extracts properties of a PNG image (512×512 from [15])
such as pixel size and bit depth using com.sixlegs.png PNG
decoder and its sample program PropertiesExample.java [14].

EEMBC’s GrinderBench is getting a popularity as a bench-
mark for embedded Java 2 Micro Edition [5]. At this mo-
ment, we do not have access to GrinderBench and could
not use it for the performance evaluation of the proposed
folding mechanism. However, three out of five benchmark
programs in GrinderBench (Crypto, kXML and Png) are of
similar types of applications as the benchmarks used in this
paper.

The fraction of each bytecode type and the average exe-
cution length for each benchmark program are presented in
Tables 3 and 4, respectively. The average execution length is
the number of contiguously executed bytecodes without in-
terruption by invocation or return. The higher this number,
the more chances of folding. The number in parentheses in
the LV column indicates the fraction of three-byte LV byte-
code (SIPUSH). Since this bytecode is handled as an NF in
the proposed scheme, this number indicates the cases where
PicoJava-II can fold instructions but the proposed scheme
cannot.

4.2 Simulation Results
In this section, we present the results of simulations. Fig. 3

shows the breakdown of the folded bytecodes for SAXON
with four XSLTMark test cases. Compared to other bench-
mark programs, the fractions of folded bytecodes for SAXON
are small. Two reasons can be found in Tables 3 and 4.
First, they have high fractions of non-foldable bytecode (NF)



Table 2: Benchmark Program Description
Bench Description
-mark

SAXON Version 6.0 with XSLTMark 1.2.0
chart Generates an HTML chart of some sales data

(select, control).
decoy Simple template with decoy patterns

to distract the matching process (match).
encrypt Performs a Rot-13 operation on all element

names and text nodes (function).
trend Computes trends in the input data

(select, functions).
ECM Embedded CaffeineMark

(Sieve, Loop, Logic, Method and Float).
DES DES encryption/decryption using

the Bouncy Castle Crypto
PNG Extract PNG image properties using

com.sixlegs.png

Table 3: Benchmark Program Bytecode Analysis.
The numbers in parentheses in the LV column are
the fractions of three byte LV bytecode (i. e. SI-
PUSH).

Bench Bytecode Types (%)
-mark LV OP BG1 BG2 MEM NF

SAXON with XSLTMark
chart 44.4 (0.7) 4.3 7.7 12.6 4.1 26.8
decoy 44.4 (0.2) 2.3 8.3 9.9 4.0 31.1
encrypt 42.5 (0.1) 4.0 7.4 14.0 3.3 28.8
trend 39.9 (0.1) 1.6 9.8 5.8 2.6 40.3
ECM 45.3 (0.0) 4.7 9.1 14.9 6.7 19.2
DES 43.8 (0.7) 24.9 1.6 9.8 9.4 10.5
PNG 42.8 (2.5) 11.0 3.8 13.3 2.9 26.3

ranging from 26.8% to 40.3%. Second, the average execu-
tion lengths are short, leading to fewer chances of folding.
Among these four cases, the highest folding performance
was archived in chart. With the proposed scheme, 17.6% of
bytecodes were folded, which is 95% of PicoJava-II (18.5%)
as shown in Table 5. While the difference is small, Groups 1,
7 and 8 are major contributors to it.

The performance of the proposed scheme is almost the
same as PicoJava-II’s for other three test cases (99.7, 99.6
and 102%). The proposed scheme cannot fold Group 1,
but more Groups 2, 5, 6 and 9 (also Group 4 in trend) are
folded in the proposed scheme. While the difference is quite
small, the proposed scheme performed better than PicoJava-
II on trend (6.6% v.s. 6.5%). Groups 2, 4, 5 and 6 are the
sources of this better performance. Two-Bytecode version of
PicoJava-II’s scheme (PJ2B) performed significantly worse
than the other two schemes (71.6% to 89.5% of PicoJava-II).
In PJ2B, three and four byte sequences (Group 1 to 4) are
partially detected as two byte sequences and folded. The in-
creases resulting from partially folded sequences are mostly
in Group 5 to 7. The number of NF bytecodes and the
average execution length of decoy are lower than those of
encrypt. However, all three folding schemes performed bet-
ter on decoy than on encrypt.

Table 4: Average Execution Lengths of Benchmark
Programs (The number of contiguously executed
bytecodes without interruption by invocation or re-
turn).

Benchmark chart decoy encrypt trend

Length 11.6 8.8 10.8 4.9

Benchmark ECM DES PNG

Length 90.6 66.1 24.3
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Figure 3: Breakdown of the Folded Bytecodes for
SAXON with XSLTMark Test Cases. For each
benchmark, three bars indicate Two-Bytecode ver-
sion of PicoJava-II, proposed scheme, PicoJava-II’s
scheme (left to right).

Fig. 4 shows the breakdown of the folded bytecodes in
the Embedded CaffeineMark, DES and PNG. The average
execution length of Embedded CaffeineMark (ECM) is 90.6
bytecodes, which is the longest among the benchmark pro-
grams used in this paper. This long execution per method
invocation led to high folding ratios (32.3% to 26.8%). One
thing that should be noted is that, while 6.7% of bytecodes
were of MEM type, we hardly see Group 4 in PicoJava-II
and the proposed scheme. Instead, 5.8% of bytecodes were
folded in Group 8 in all three schemes. Therefore, most of
MEM bytecodes follow LVs: meaning either they copy one
LV to another (e. g. ILOAD 1 and ISTORE 2) or initialize
an LV by a constant (ICONST 2 and ISTORE 3). 1.6% of
bytecodes were folding in Group 1 in PicoJava-II. However,
when it is compared to the sums of Groups 1 and 2 in the
proposed scheme, the difference shrinks to 0.5%. This im-
plies that the increase of Group 2 in the proposed scheme
effectively absorbed most of the Group 1 sequences. The
proposed scheme achieved a relative performance of 98.5%
of PicoJava-II’s scheme. In PJ2B, we see that the fraction of
Group 7 is significantly, higher than PicoJava-II and the pro-
posed scheme (3.3% against 0.3%). This is possibly because
the LV OP part of Groups 1 and 2 were detected and folded
as Group 7 in PJ2B. The relative performance of PJ2B was
83.0%.



Table 5: Relative Performance of Two-Bytecode
version of PicoJava-II (PJ2B) and the Proposed
Scheme Normalized to PicoJava-II’s Four-Bytecode
Folding Scheme.

Folding Benchmark Programs
Scheme chart decoy encrypt trend

PJ2B 71.6 75.9 85.0 89.5
Proposed 95.0 99.7 99.6 102

Folding Benchmark Programs
Scheme ECM DES PNG

PJ2B 83.0 67.4 81.5
Proposed 98.5 95.4 84.2

DES has a very long average execution length (next to
ECM) and the lowest fraction of NF bytecodes (10.5%). It
also has a very high fraction of OP bytecodes (24.9%), which
leads to large numbers of folded bytecodes in Groups 2, 7
and 9. These two properties confirm computation-intensive
nature of DES encryption/decryption algorithms. While the
fraction of MEM bytecodes is the highest among the bench-
marks used, the fraction of Group 8 foldings is quite low
(0.1%). This means, unlike ECM, MEM bytecodes are used
to store the results of OP bytecodes rather than initialization
or copy of local variables. In DES, the fractions of three-
byte LV bytecodes (SIPUSH) is relatively high (0.7%) and
the fraction of Group 1 is the highest among the benchmark
programs used. Since SIPUSH and Group 1 are excluded
in the proposed scheme, these two properties are disadvan-
tages for the proposed scheme. The fraction of Group 2 in
the proposed scheme is not high enough to cover excluded
Group 1 in PicoJava-II and also the fraction of Group 7 is
slightly lower in the proposed scheme. The proposed scheme
performed 95.4% of PicoJava-II’s folding. In PJ2B, we see
that the bar for Group 7 is much longer than in PicoJava-
II or in the proposed scheme, but it is not long enough to
cover Groups 1 to 4 that are missing in PJ2B. The relative
performance of PJ2B is only 67.4% of the original four-byte
folding scheme.

Since PNG’s runtime behavior is closer to SAXON than
ECM and DES, so is its folding performance. Its fraction of
NF bytecode is 26.3% and the average execution length is
only 24.3 bytecodes. As a results, even with the PicoJava-
II’s scheme, only 16.8% of bytecodes are folded. Also, 2.9%
of bytecodes were folded as Group 1 in PicoJava-II and 2.5%
of bytecodes were SIPUSH, both of which are disadvantages
for the proposed scheme. The relative performance of the
proposed scheme was 84.2% which was worst for all the
benchmarks tested in this paper. With PJ2B, the fractions
of Groups 5 to 8 increased significantly by partially folding
the longer sequences (Groups 1 to 4). Its relative perfor-
mance, 81.5%, was close to that of the proposed scheme.

In principle, it is possible that opcodes form a foldable
sequence but the folding is not performed in the PicoJava-
II. This is because, while the opcode of the last bytecode
in a foldable sequence is present in the instruction buffer,
its parameter is not. For example, the sequence of SIPUSH
0x100, ILOAD 4, IADD, ISTORE 5 is a Group 1 sequence
and is eight byte long. While the opcode of the last bytecode
ISTORE 5 is in the instruction buffer (and its folding type is

decoded as MEM), its parameter (local variable index 5) is
not. Therefore, this sequence cannot be folded as a Group 1.
However, for the simulations in this paper, we did not see
any instance of such “parameter overflow” in PicoJava-II,
even for PNG which has the highest fraction of SIPUSH.
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PicoJava-II, proposed scheme, PicoJava-II’s scheme
are shown from left to right

5. RELATED WORK
ARM’s Jazelle and Nazomi’s Jstar are commercial prod-

ucts that incorporate hardware-translation based JVM. In
this paper, the base design of the hardware-translation based
JVM assumed the information published in ARM’s white
paper [3]. However, the ideas presented in this paper do not
depend on the features specific to ARM or Nazomi’s archi-
tectures and should be applicable to most embedded RISC
microprocessors.

PicoJava-II [7] directly executes Java bytecodes by the
hardware. Since a pure JVM is not sufficient to build a real
system, PicoJava’s instruction set is extended for running
applications written in “legacy” programming languages such
as C/C++. Therefore, its design approach takes an oppo-
site direction from the hardware-translation which tries to
execute Java bytecodes by adding a small translation logic
to the standard RISC type microprocessors. Our proposed
instruction folding scheme is based on PicoJava-II.

Radhakrishnan et. al studied the microarchitecture of
PicoJava-II and pointed out the instruction folding is the
critical path of the processor pipeline [8]. To solve this issue,
they proposed to move the instruction folding module from
the decode stage of the pipeline to the instruction fill unit
in the fetch stage. They also proposed to store the folded
bytecodes in a dedicated cache (decoded bytecode cache)
so that the folded bytecodes will be executed faster in the
future.

Kim and Chang proposed a more aggressive folding mech-
anism which tried to find two or more foldable instruction se-
quences in which one breaks the sequence of the others [16].
The emphasis was placed on how to find such multiple se-



quences in the instruction stream and they did not work on
how to fold each basic sequence (such as LV LV OP MEM).
Moreover, since their scheme detects the foldable sequences
by a state machine, it can be only used for ahead-of-time
folding (and used later by storing it in a decoded bytecode
cache as in [8]). Otherwise, if it is implemented by a combi-
nation circuit, the size of the detection logic and instruction
buffer will be larger than that for single sequence folding
schemes.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an instruction folding scheme

for a hardware-translation based JVM. One of the sources
of hardware complexity in the instruction folding in the
PicoJava-II is the variable length of the bytecode format.
The proposed scheme alleviated this problem by removing
the SIPUSH which is the only three-byte long LV bytecode
in the folding type classification of PicoJava-II. We also
excluded the four-byte code sequence (LV LV OP MEM,
Group 1 in PicoJava-II) so that the number of bytecodes
decoded simultaneously is reduced from four to three. The
proposed scheme achieved 84.2% to 102% of the PicoJava-
II’s scheme for seven benchmarks. If we exclude PNG, which
is the only case where the effects of SIPUSH and Group 1 re-
moval are significant, the worst relative performance of the
proposed scheme’ jumps to 95.0%.

Currently, a Group 1 sequence (LV LV OP MEM) is par-
tially folded as a Group 2 sequence (LV LV OP) in the pro-
posed scheme. However, if the local variable accessed in the
first LV is not present in the local variable cache, we should
have more chances of folding by discarding the first LV and
handle the (partial) sequence of LV OP MEM as Group 2.
Note that, LV is a local variable load bytecode while MEM
is a local variable store. Therefore, MEM bytecode does not
require the local variable to be present in the local variable
cache and hence its access is hit as long as the index of the
variable is with in the range of the local variable cache. A
possible improvement for the proposed scheme is to look up
the status of the local variable cache before folding. With
this scheme, we can expect the folding ratio to be increased
at the cost of local variable cache look-up.

In this paper, we evaluated the effectiveness of the pro-
posed instruction scheme by the fraction of folded bytecodes.
Actually, foldable bytecodes are only one of three types
of codes executed on a JVM, other two are non-foldable
(that include bytecodes that cannot be hardware-translated
and handled by software emulation) and native methods.
We plant to develop a more complete model of hardware-
translation based JVM so that we can evaluated the perfor-
mance by total execution time (or, possibly by power con-
sumption) of all three types of codes mentioned above.
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