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Abstract—System-level virtualization enables multiple servers
to be consolidated on a single hardware platform and to share
its resources more efficiently. We are currently developing a
performance model of a consolidated multi-tier Java application
server. The model breaks down the CPU utilization of the
workload into servers and transaction types, and use these
service time parameters in the network of queues to predict the
performance. For the target of initial development, we use SPEC-
jAppServer2004 running on a quad-core server consolidated by
Xen.
In this paper, we present the current status of performance

model development. We have found that the measured CPU
utilization seems lower than the actual system saturation level.
As a result, the performance model is saturated at a larger
system size. We also have found that while the behavior of
Manage transactions is most sensitive to the system size, its
service times are lower than other transactions. When the CPU
utilization of 4-core execution is predicted by the data from 1
to 3-core executions, the prediction errors range from -3.6 to
43.4%, with the largest error occurring in the database domain.

Keywords: Workload Analysis, Virtualization, Server
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I. INTRODUCTION

By means of system virtualization, multiple independent
systems can be consolidated on a single physical platform. Ad-
vantages of consolidation include increased hardware resource
utilizations, reduced cost of servers and peripheral devices,
and reduced power supply and cooling costs. One possible
target of consolidation is a multi-tier system, which consists
of multiple server applications interacting with each other.
Such a consolidated system still can employ, for example, the
administrative policies and software versions of the original
(unconsolidated) system. On the other hand, there are also
disadvantages in the server consolidation. First, virtualization
itself consumes system resources [1]. Second, each virtualized
system (or virtual machine, VM) has its own resource demand
which changes dynamically during operation and sometimes
VMs compete for resources with each other. This can make
the system administration and tuning difficult.
To understand the behavior of consolidated multi-tier sys-

tems, we are currently developing a queuing network based
performance model of such systems that takes into account

the virtualization overhead and the effect of multi-core pro-
cessors. For the target of initial development, we use SPEC-
jAppServer2004 [2] running on a quad-core server consoli-
dated by Xen. The CPU utilization of each virtual machine
(or domain in Xen) running a layer of a multi-tier system
is broken down into transaction types, and they are used as
the service time parameters in the queuing network. In this
paper, we present the current status of performance model
development and the issues we have found thus far, including
the discrepancies between the measured CPU utilization and
the system behavior. We also investigate the feasibility of
approximating multi-core performance from the measurement
results.
The rest of this paper is organized as follows. In the

next section, a brief introduction to SPECjAppServer2004
and methodologies of the performance model construction are
presented. In Section III, the measurement results are analyzed
and compared against the output of the model. In Section IV,
we introduce related work and the paper is concluded in
Section V.

Disclosure
SPECjAppServer and SPECjEnterprise are trademarks of

the Standard Performance Evaluation Corp. (SPEC). The
SPECjAppServer2004 and SPECjEnterprise2010 results or
findings in this publication have not been reviewed or accepted
by SPEC, therefore no comparison nor performance inference
can be made against any published SPEC result. The official
web sites for SPECjAppServer2004 and SPECjEnterprise2010
are located at [2] and [3], respectively.

II. PERFORMANCE MODELING
In this section, we first describe the target system of initial

model construction, SPECjAppServer2004, and then present
the methodologies of the performance model construction.

A. SPECjAppServer2004
SPECjAppServer2004 is a benchmark suite to evaluate the

performance of Java Enterprise Edition (JavaEE1) which is
modeled after the business of the automobile manufacturer [4].

1formerly called Java 2 Platform Enterprise Edition, or J2EE when SPEC-
jAppServer2004 was published.
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There are five application domains: Dealer (selling automo-
biles), Customer (managing orders from Dealers), Supplier
(handling parts orders to external vendors), Manufacturing
(managing vehicle manufacturing) and Corporate (managing
Dealers and their orders).
The target system of SPECjAppServer2004 consists of three

layers of servers: web, application and database. The web
server works as an interface to the transactions from the
Dealer domain. The application server acts as a middleware
handling transaction management. The database server (DB)
holds information on orders, customers (Dealers) and their
inventories.
There are five transactions processed at the target system.

Browse (browsing automobile catalogs), Manage (managing
orders and inventories) and Purchase (ordering automobiles):
These three types of transactions are issued from Dealers
via the Web server. The transactions from the Manufacturing
domain are called WorkOrders which model the activities of
the vehicle production lines. Based on the quantity of the cars,
they are classified into two types, Planned line and LargeOrder.
The former is for orders with smaller quantities (14 cars on
average) and issued periodically, while the latter is for larger
orders (140 cars on average) and issued immediately as the
results of Purchase transactions from the Dealer domain.
The system sizes, such as number of emulated clients,

are proportional to the scaling factor (SF)2 and so are the
transaction issue rates from the Dealer and Manufacturing
domains (TABLE I).

TABLE I
TRANSACTION RATE IN TERMS OF SCALING FACTOR (SF). TRANSACTION

TYPES ARE P (PURCHASE), M (MANAGE), B (BROWSE) W
(WORKORDER) AND L (LARGEORDER). THE WORKORDER RATE IS

INCLUSIVE OF LARGEORDER.

Transaction P M B W L
Rate (*SF/Sec) .25 .25 .5 .67 .067

B. Performance Modeling Methodologies
To model the performance of a consolidated server running

SPECjAppServer2004, we first breakdown the workload into
the service time for each transaction type and domain (virtual
machine), STi,j , where i is a transaction type (Purchase,
Manage, Browse, WorkOrder and LargeOrder, or TX =
{p, m, b, w, l}) and j is a virtual machine (Web, App DB and
Dom0, or V M = {W, A, D, 0}). This methodology is used
in [5] with the following differences. On the system we used
for the measurements, the disk utilization was low (1.3% at
SF = 30 at which the highest throughput with valid response
times was achieved) and we did not include the queuing delay
of the disk access. Therefore, we only take into account the
CPU utilization as the system resource.
Next, since our target platform is a consolidated server on

which a privileged domain (Dom0) works as the interface

2We use the term Scaling Factor, or SF, to specify the system size instead
of the official term Injection Rate in [4].

between Xen and guest domains, it consumes CPU time and
we include it to represent the (part of) virtualization overhead.
Transaction flows and mapping of transaction processing to the
physical CPU are shown in Fig. 1. Similar to [5], transaction
flows are simplified so that each transaction visits each server
domain only once.

Dlr Web App DB Dom0

Mfg

pCPU Physical Platform

Virtual Machines

Fig. 1. Transaction Flow and Mapping to Physical CPU. The squares above
the horizontal line are the servers running on the virtual machines (Web, App,
DB and Dom0). The circles above the line are the transaction drivers (Dlr and
Mfg). The solid arrows are the flows of transactions and the dashed lines are
mapping of transaction processing to the physical CPU (pCPU).

From the scaling factor (SF), we calculate the issue rate
of each transaction (TPi where i ∈ TX), and using the
transaction service times STi,j from the measurement, we can
obtain the CPU utilization in each virtual machine (Uj , where
j ∈ V M ):

Uj =

TX∑

i

TPi × STi,j (1)

When the total CPU utilization Util =
∑

j∈V M Uj ≤ 1,
the system is not saturated and we calculate the response
time of each transaction type (RTi, where i ∈ TX) using
the processor-sharing model [6] as follows:

RTi =

V M∑

j

STi,j/(1− Util) + Ci (2)

Ci is the constant factor in the response time for each trans-
action type i which represents the latency of the components
not included in out model (network interface, HDDs). In the
experiments in Section III-B, we use the response time at a
small scaling factor (RTi at SF = 5) minus

∑
j STi,j , where

j ∈ V M for Ci.

III. EVALUATION

In this section, we first present the specifications of the mea-
surement platform. Next, we examine the prediction results
obtained from the performance model and also investigate the
feasibility of approximating multi-core performance with the
model.
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A. Measurement Environment
TABLE II shows the specifications of the hardware and

software used for measurements (top) and the configurations of
the virtual machines and applications (bottom). To obtain the
per domain per transaction service time (STi,j in Section II-B),
we change the mixture of the transactions issued from the
driver. Also, for the measurement of WorkOrder transactions,
we use the customized driver by Kounev [5]. To obtain the
CPU utilization of each domain, we use xentop.

TABLE II
MEASUREMENT PLATFORM SPECIFICATIONS (TOP) AND VIRTUAL

MACHINE CONFIGURATIONS (BOTTOM).

Component Specification
CPU Xeon (E5310, Quad-Core, 1.86GHz)
Memory 6GB
OS CentOS 5.3
VMM Xen 3.1.2

VM Config ApplicationvCPU Mem
Web 2 0.5GB apache v2.2.14
App 4 3GB JBoss v4.0.0
DB 2 1.5GB PostgreSQL v8.3.5
Dom0 2 0.5GB

On this platform, the highest throughput with the valid
response times (≤ 2 and 5 ≤ seconds for the 90% of Dealer
and Manufacturing transactions, respectively) is obtained at
SF = 30. TABLE III shows the utilization of CPU time in
each domain at SF = 30. The largest fraction of CPU time is
allocated to the application domain and DB and web domains
follow. Dom0 takes about 10% of the CPU time.

TABLE III
CPU UTILIZATION AT SF = 30

VM Web App DB Dom0
Util (%) 5.1 50.1 21.6 10.2

B. Scalability and CPU Utilization
From the measurement results described in the previous sec-

tion, we obtained the service time of each transaction at each
domain (TABLE IV). The response time behavior predicted
by the performance model with these service time parameters
shows several discrepancies against the measurement results
(Fig. 2).

TABLE IV
TRANSACTION SERVICE TIME (MSEC)

Transaction Web App DB Dom0
Purchase 1.42 13.57 7.55 2.91
Manage 0.23 1.39 0.81 0.54
Browse 1.91 7.87 0.61 2.39
WorkOrder 0.05 9.18 5.96 1.63
LargeOrder 4.42 50.21 17.58 4.96

First, it seems that the actual system is saturated at a smaller
system size (SF > 32) than that of the performance model

(SF > 35). In other words, the sum of CPU utilizations in
guest domains reported by xentop is smaller than the actual
CPU utilization by some factor and it should be this factor
that represents the overhead of virtualization.
Fig. 2 compares the measured and predicted average re-

sponse times of Purchase, Manage (Dealer domain) and
WorkOrder (Manufacturing domain) transactions. For the sys-
tem sizes below saturation, the actual response times increase
faster than those of the performance model. For example,
for SF = 5 → 25, while the response time of WorkOrder
transaction is increased by 58% on the actual system, that of
the performance model is increased only by 14%. Another
point of discrepancy is the type of Dealer transaction that
is most sensitive to the system scaling up. On the actual
system, the response time of the Manage transaction violates
the quality-of-service (QoS) requirement (≤ 2seconds at 90
percentile) before other two transactions. However, it is the
Purchase transaction on the performance model (Fig. 2).
Actually, we can also find this discrepancy in TABLE IV:
the service times of Manage transaction are lower than those
of Purchase transaction in all domains, which result in the
slower response time growth on the queuing network-based
performance model.
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Fig. 2. Response Time Comparison

C. Prediction of the Multi-Core Performance
As the industry trend in high-performance processors has

switched from higher clock frequency or higher degree of
superscalar to increasing the number of cores [7], one of the
features we wanted to incorporate into the performance model
is to predict the performance gain when the number of cores
is increased. A possible and straightforward approach is to
approximate the service time for n-core by the formula a/n+b
in Amdahl’s law [8]. Based on the workload measurements
of SPECjAppServer2004 for n = 1 . . . 4, we will discuss the
feasibility of this approximation.
TABLE V shows the maximum scaling factor and CPU

utilization in each domain when the number of cores is
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TABLE V
CPU UTILIZATION (%) AND MAXIMUM SCALING FACTOR (SF) FOR 1 TO

4 CORES

No. Cores
1 2 3 4

SF 9 15 22 30
Web 7.5 5.9 5.7 5.1
App 39.1 43.2 46.6 50.1
DB 21.4 24.0 24.3 21.6
Dom0 15.2 11.6 10.6 10.2
Total 83.3 84.7 87.2 87.1

increased from 1 to 4. The scaling factor (SF) is maximum in
the sense at which the highest throughput with valid response
time3 is achieved. As mentioned in Section III-B, the sum
of CPU utilization of each domain reported by xentop is
significantly lower than 100%. Please note that the SFs in
TABLE V are before saturation. By ignoring the response time
conditions, the total CPU utilizations are slightly increased, but
they are still below 100%. For example, in the case of 4-core,
the total CPU utilization can be 91.2% at SF = 32.

TABLE VI
CPU UTILIZATION NORMALIZED TO SCALING FACTOR (%).

No. Cores
VM 1 2 3 4
Web 0.83 0.40 0.26 0.17
App 4.35 2.88 2.12 1.67
DB 2.38 1.60 1.11 0.72
Dom0 1.69 0.77 0.48 0.34

Next, we normalize the CPU utilization in each domain by
SF (TABLE VI). Please note that for each SF in TABLE V,
the system is not saturated and the ratios between transaction
types are constant (TABLE I). Therefore, TABLE VI should
indicate the CPU utilizations for the same amount of work for
the varying number of cores. We fit the CPU utilizations of 1 to
3-core executions into a/n+b, where n is the number of cores
by the least square method and predict the CPU utilizations in
4-core executions. The prediction results and their errors are
shown in TABLE VII. The prediction errors range from -3.6
to 43.4%. These large errors, especially in the DB, indicate the
necessity of further investigation and modeling methodology
refinement.

TABLE VII
4-CORE CPU UTILIZATIONS PREDICTED BY 1 TO 3-CORE EXECUTIONS.

TOTAL IS THE SUM OF ALL FOUR DOMAINS MULTIPLIED BY THE
MAXIMUM SCALING FACTOR (30).

VM Web App DB Dom0 Total
Util (%) 0.18 1.94 1.03 0.33 104.53
Error (%) 6.9 16.1 43.4 -3.6 20.0

3Manage and Browse transactions violate the response time requirements
first beyond these SFs, in 2 to 4-core and 1-core executions, respectively.

D. SPECjEnterprise2010
SPECjEnterprise2010 is the latest benchmark suite from

SPEC to evaluate the application servers based on Java EE [3].
On November 30, 2010, SPECjEnterprise2010 replaced SPEC-
jAppServer2004 and our effort of performance model de-
velopment continues with SPECjEnterprise2010 as the target
system. In addition to the version up of the base JAVA EE tech-
nology (from J2EE 1.3 to Java EE 1.5), SPECjEnterprise2010
is designed to use JMS and MDB more extensively. We are
currently migrating the target system to SPECjEnterprise2010
and we present the result of initial measurement in this Sec-
tion. TABLE VIII shows the specifications of the measurement
platform (top) and virtual machine configurations (bottom).

TABLE VIII
SPECJENTERPRISE2010MEASUREMENT PLATFORM SPECIFICATIONS

(TOP) AND VIRTUAL MACHINE CONFIGURATIONS (BOTTOM).

Component Specification
CPU Xeon 2.13GHz (X3210)
Memory 6GB
OS CentOS 5.5
VMM Xen 4.0.1

VM Config ApplicationvCPU Mem
App 4 2GB Glassfish v3.0.1
DB 2 1.5GB MySQL v5.1.50
Dom0 2 0.5GB

Fig. 3 shows the CPU utilization of SPECjAppServer2004
and SPECjEnterprise2010 at SF = 20. Please note that the
system setup and parameter turning of SPECjEnterprise2010
are still underway. Also, in SPECjEnterprise2010, the web
server is not in a separate VM; rather Dealer transactions are
routed to the application server (Glassfish) through its http
port. For these reasons, it is not possible to draw definitive
conclusions from this early stage of measurement. However,
we see that the CPU utilization of the application server is
significantly higher in 2010, while that of the DB server
is decreased. This observation coincides with the design of
SPECjEnterprise2010, in which some functionality has been
moved from the DB server to the application server (A52
in [9]).

IV. RELATED WORK

Kounev measured the workload of SPECjAppServer2004
and broke down the CPU utilization of each server to trans-
action types. Using these workload parameters, he build a
performance model by the Queuing Petri Net (QPN) and
validated it on the machines with varying performance [5]. Our
modeling methodology is based on Kounev’s and we aim at
extending and validating the model under the conditions such
as the varying number of CPU cores and different transactions
mix.
In [10], authors defined the parameters to represent the

resource usage of VMs (e. g. CPU or memory), and refined
them using the techniques of artificial neural network training.
In [11], authors formulated the performance interferences

837



 0

 10

 20

 30

 40

 50

Web App DB Dom0

C
P

U
 U

til
iz

at
io

n 
(%

)

Virtual Machine

SPECjAppserver2004
SPECjEnterprise2010

Fig. 3. SPECjAppServer2004 and SPECjEnterprise2010 CPU Utilization
(SF = 20).

between VMs using the workload parameters, such as CPU
utilization or the number of cache hits. The target platform had
two VMs running relatively simple synthetic benchmark and
utility programs. In [12], authors modeled the interferences
between VMs on a consolidated CMP server using the similar
parameters as [11]. One of differences between this paper
and [11], [12] is, in this paper, VMs execute different layers
of a single system, while in [11], [12], VMs execute different
applications independently.
SPEC and several vendors proposed benchmark suites for

the performance of virtualized data center servers [13], [14],
[15]. They assume that the virtualized servers are configured
as ’tiles’ : Each title consists of a set of VMs and each VM
on a title runs a common commercial application such as web
server, mail server. One of advantages of virtualized systems
is the capability of changing resource allocations dynamically.
AutoParam is one of attempts to control the resource allocation
in a consolidated 3-tier application server by feeding back the
application QoS [16]. Virtualization technologies are mostly
used for desktop and server systems. Ye et. al, investigated
the overhead of virtualization in high-performance applica-
tions [17].

V. CONCLUSION AND FUTURE WORK

In this paper, we presented our work-in-progress effort of
developing a performance model of consolidated Java applica-
tion servers. Using SPECjAppServer2004 as the initial target
system, we extended the methodologies in [5] to a consolidated
system. We evaluated its feasibility and also analyzed the
workload parameters obtained from the measurements. Our
observations are as follows. (1) It seemed that the CPU
utilizations of VMs obtained from xentop were lower than
those of the actual system. We expect that this difference
represents the virtualization overhead. (2) The transaction re-
sponse times increased gradually even before CPU saturation.
This indicates that it is necessary to incorporate other factors
than PS-queue modeling of CPUs into the transaction response

times. (3) The observed response time and service times of
Manage transaction showed discrepancy. This is the results
of measured per-domain service time of Manage transaction.
(4) When the number of CPU cores was varied, the above
mentioned potential virtualization overhead ranged 13 to 17%.
(5) The prediction error of 4-core CPU utilization using 1 to
3-core executions ranged from -3.6 to 43.4%. The largest error
occurred in the DB domain.
Our current and future work include: (i) As mentioned in

Section III-D, migrating the target system and measurement
platform to SPECjEnterprise2010, (ii) measurement and anal-
ysis of per-transaction service time in 1 to 3-core executions
to identify the source of the prediction error, (iii) analysis of
workload in each VM and vCPU scheduling to identify the
virtualization overhead more precisely.
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