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Abstract
Hardware bytecode translation is a technique to improve the per-
formance of the Java Virtual Machine (JVM), especially on the
portable devices for which dynamic compilation is infeasible. How-
ever, since the translation is done on a single bytecode basis, it
is likely to generate frequent memory accesses for local variables
which can be a performance bottleneck.

In this paper, we propose to add a small register file to the
datapath of the hardware-translation based JVM and use it as a local
variable cache. We evaluate the effectiveness of the local variable
cache against the size of the local variable cache which determines
the chip area overhead and the operating speed. We also discuss the
mechanisms for the efficient parameter passing and the on-the-fly
profiling.

With two types of exceptions, a 16-entry local variable cache
achieved hit ratios of 60 to 98%. The first type of exceptions
is represented by the FFT, which accesses more than 16 local
variables. In this case, on-the-fly profiling was effective. The hit
ratio of 16-entry cache for the FFT was increased from 44 to 83%.
The second type of exception is represented by the SAXON XSLT
processor for which cold misses were significant. The proposed
parameter passing mechanism turned 6.4 to 13.3% of total accesses
from miss to hit to the local variable cache.

Categories and Subject DescriptorsC.1 [Computer Systems Or-
ganization]: PROCESSOR ARCHITECTURES

General Terms Performance, Design

Keywords Java Virtual Machine, Hardware-Translation, Memory
Hierarchy

1. Introduction
Java Virtual Machine (JVM) is an abstract instruction set architec-
ture that realizes important features of the Java language includ-
ing platform independence and security model [1]. These features
make Java and JVM especially suitable for portable devices for
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which various platforms are available from the manufacturers who
are competing the market shares. The most flexible and hence pop-
ular implementation method for the JVM is a software interpreta-
tion [2]. An interpreter program written in the native instructions
for the platform reads, analyzes and executes Java bytecode (ma-
chine instructions for JVM). Since interpreters are merely an appli-
cation written in the native language of the platform and the speci-
fication of the JVM leaves flexibility in the implementation, it has
been widely adapted and has become the most standard form of the
JVM implementation.

Clearly, the drawback of the interpretation is its performance.
For example, to check a single bit in a bytecode may take several
native instructions in the software while it takes much shorter than
a single clock cycle in the hardware. Various dynamic compilation
techniques are proposed and are adapted in mostly for the JVMs
on the desktop and server platforms [3]. Its key idea is to detect
frequently invoked methods (procedures in the Java language) dur-
ing the execution and compile them into native instructions of the
platform. However, it is not a suitable solution for the JVM on the
embedded devices for the following reasons. First, the compilation
itself takes execution time and consumes battery power. Second,
the code size of the compiled code is increased which is not prefer-
able for the limited memory space of the embedded devices. For
a server platform, these compilation overheads are negligible since
the compiled code are repeatedly executed many times. On the con-
trary, it is likely that the application downloaded to a portable de-
vice is executed for a few times and it will be replaced by another
application quickly. Therefore, due to the compilation overheads
mentioned above, some other solution to improve the performance
of the JVM on the portable devices is required.

Hardware-translation is a technique to accelerate the execution
of Java application by dynamically converting the bytecode into
the native instructions. With the low hardware overhead and simple
mechanism, it is considered to be suitable for the JVM on embed-
ded processors. In this paper, we investigate the design and perfor-
mance of the local variable cache which further accelerates the ex-
ecution of a hardware-translation based JVM by reducing the num-
ber of memory accesses.

This paper is organized as follows. In the next section, an
overview of the hardware-translation based JVM and the local
variable cache are presented. In Section 3, JVM and benchmark
programs used for the experiments in this paper are described. Sec-
tion 4 evaluates the performance of the base design of the local
variable cache. Sections 5 and 6 propose and evaluate two ideas
to further enhance the performance of the local variable cache.
Related work and conclusions are presented in Sections 7 and 8,
respectively.



2. Hardware-Translation of Java
Bytecode
Hardware-translation is a technique to enhance the performance of
the JVM by dynamically replacing the bytecodes to native machine
instructions1. A small translation logic is inserted between the
fetch and decode stages of the processor pipeline. When a flag in
the processor’s status register indicates that the fetched instruction
is a Java bytecode, it is converted into native instructions by the
translation unit. If the native instruction is fetched, it bypasses the
translation logic. Therefore, it is a reconfigurable processor in the
instruction set level.

Table 1 shows an example of the bytecode translation. In this
example, two local variables which are assigned local variable
indicies 3 and 4, are added and the result is written to the local
variable 3. First two bytecodes, ILOAD3 and ILOAD 4 push the
values of two local variables onto the stack. Following the ARM
Jazelle’s specification, R0 to R3 are used to hold the top four
words of the operand stack in this example. Therefore, the first
two bytecodes are translated into two load word instructions (LDR)
using R7 which holds the address of the local variable 0 and
corresponding offsets. Next bytecode, IADD, pops and adds two
top of stack words and pushes the results onto the stack. This
bytecode is translated into a native instruction which adds two
registers R0 and R1. The last bytecode, ISTORE3 pops the top
of stack word and writes it to the local variable 3. This bytecode is
replaced with a store word instruction (STR).

Bytecode ARM Inst.
ILOAD 3 LDR R0, [R7, #12]
ILOAD 4 LDR R1 [R7, #16]
IADD ADD R0, R1
ISTORE3 STR R0, [R7, #12]

Table 1. Bytecode Hardware-Translation Example

As shown in the above example, the translation unit reads a sin-
gle bytecode at a time and generates a short sequence of native
machine instruction(s). The hardware-translation is limited to the
simple bytecodes such as load, store, and arithmetic/logical opera-
tions on the stack. Complex bytecodes, such asnew (create a new
object), are emulated by the software. By limiting the complexity of
the translation mechanism, the hardware resource overhead and the
performance gain are balanced: in the case of Jazelle, it is reported
that 8x performance gain was achieved by 12K gates [4].

In a JVM, local variables are allocated on the operand stack. In
the literature [9], as well as in our analysis, a significant fraction
(35% to more than 80%) of bytecodes are accesses to local vari-
ables. Since the translation is done on a single bytecode basis, the
same local variables may be repeatedly loaded from and stored to
the main memory. These memory accesses for local variables not
only degrade the performance by the access latency but also re-
sult in a shorter battery life. Moreover, having local variables in the
memory makes the instruction folding [18] difficult to implement
(this topic will be discussed in Section 8).

Figure 1 shows a sample datapath with the local variable cache.
The local variable cache should have a similar structure as the

1 In the court order [8] dated September 30, 2003, ARM’s Jazelle and
Nazomi’s U.S. Patent No. 6,332,215 are distinguished as follows. While
Nazomi’s patent translates Java bytecodes into native instructions before
reaching the decode stage of the CPU, ARM’s Jazelle translates bytecodes
into controls signals. While this difference may be important for the patent
issues, it is not essential for the ideas discussed in this paper. Therefore, the
readers of this paper can interchangeably read “native instructions” as “the
sequence of control signals corresponding to the native instructions”, vice
versa.

register file used for the general purpose registers (GPR). It has
two read ports and one write port. The difference is that each entry
is associated withv andmbits indicating that the entry is valid and
modified, respectively.
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Figure 1. A Datapath with Local Variable Cache

In Figure 2, the operation of the local variable cache is de-
scribed for representative bytecodes, ILOAD, ISTORE, INVOKE-
VIRTUAL and IRETURN as example. Note that operations not di-
rectly related to the local variable cache, such as handling overflow
of top of stack registers, are not included.

On the ILOAD, the local variable index (idx) is checked if it
is within the range of cache size (LVCSIZE). If true, the valid
bit of the corresponding entry (v[idx]) is checked. If the entry is
valid, the value of the local variable entry is copied to one of top-
of-stack word registers which is one of R0 to R3 pointed to by the
srp counter. The control sequence for this copy operation should
be similar to the MOV instruction with an exception that WLV
(instead of WGPR) is enabled so that the value will be written to
the local variable cache (not GPR). If v[idx] is not set, the local
variable is read from the memory by issuing LDR instruction using
the local variable pointer (R7) and idx as offset. When the data
is returned from the memory, it is written to R[srp] and LV[idx]
simultaneously by enabling both WGPR and WLV. The valid bit
of the corresponding entry is also set. If the index is out of range,
ILOAD is replaced with a memory read instruction.

If the index of the ISTORE is within the LVCSIZE, it is re-
placed with a copy (MOV) from R[srp] to LV[idx] and the modi-
fied bit of the corresponding entry is also set. Otherwise, a memory
write instruction (STR) is issued.

On the INVOKEVIRTUAL and IRETURN bytecodes, all valid
and modified bits are set to 0. In addition, the modified entries in
the local variable cache are written back to the memory for the
INVOKEVIRTUAL. Therefore, the local variable cache is caller-
saved.

3. Experimental Environment
In this section, the experimental environment for the performance
evaluation in later sections is described. For the Java Virtual Ma-
chine and runtime environment, we used Kaffe version 1.0.7 [10].
Kaffe is an open-source implementation of the JVM and we com-
piled it with “–with-engine=intrp” option so that all bytecodes are
interpreted.

We use several different types of Java benchmark programs
listed in Table 2. The first set of benchmarks are from SciMark
2.0 Java Numerical Benchmark [11], which includes FFT, LU,
Monte Carlo, SOR and Sparse Matrix Multiplication. These are
computational kernels and chosen to represent the usage of local
variables in loop-intensive applications.

The next benchmark is JOrbis, which is a pure Java implementa-
tion of Ogg Vorbis audio decoder [14]. For the input to the decoder,
startup2.ogg which is a 2-channel bitstream sampled at 44.1KHz
included in the JOrbis installation kit was used.



switch(bc){
case ILOAD:
if(idx < LVC SIZE){
if(v[idx]) {
MOV R[srp], LV[idx];
}
else{
LDR R[srp], [R7, 4∗idx];
MOV LV[idx], R[srp];
v[idx] = 1;
}
}
else{
LDR R[srp], [R7, 4∗idx];
}
break;

case ISTORE:
if(idx < LVC SIZE){
MOV LV[idx], R[srp];
v[idx] = 1;
m[idx] = 1;
}
else{
STR R[srp], [R7, 4∗idx];
}
break;

case INVOKEVIRTUAL:
for(i = 0; i < LVC SIZE; i++){
if(m[i]) {
STR LV[i], [R7, 4∗i];
m[i] = 0;
}
v[i] = 0;
}
break;

case IRETURN:
for(i = 0; i < LVC SIZE; i++){
v[i] = 0;
m[i] = 0;
}
break;

}

Figure 2. Bytecode Translation and Local Variable Cache Opera-
tion. bc: bytecode, idx: local variable index, srp: pointer to one of
top-of-stack registers (R0 to R3) LVCSIZE: number of words in
the Local Variable Cache, v[]: valid bit, m[]: modified bit.

The third benchmark is SAXON Version 6.3, an XSLT proces-
sor [12], driven by four test case XML documents from XSLT-
Mark [13]. We chose four test case documents, chart, decoy, en-
crypt and trend, based on the average number of bytecode executed
for a method invocation and the functional categories defined in the
XSLTMark.

The Embedded CaffeineMark consists of five tests, Sieve, Loop,
Logic, Method and Float. Each of these tests is basic and tries to
measure various aspects of JVM. Due to the license restriction, we
only report the composite results of all five tests.

Table 3 shows a brief summary of the benchmark program
execution. The number of bytecode executed per method invocation
(third column) indicates the length of execution path of a method.
The longer the execution path, the more likely to access the same
local variable repeatedly. Note that long and double data types are
two-word long in Java. Therefore, an access to a local variable of
these types is counted as two words in Table 3. All computation-
intensive benchmark programs (SciMark 2.0, JOrbis and ECM)
have loops which resulted in long average execution paths: except
MonteCarlo, they executed more than 200 bytecodes per method
invocation. On the other hand, SAXON processing XSLTMark
test case documents has short execution paths, which range from
9.77 to 23.5 bytecodes per method invocation. Access frequency
distribution over local variable index are shown in Figures 3 and 4.

Some of local variables are used for passing parameters (argu-
ments) to a method, which is the topic of Section 5. The sixth and
seventh columns summarize the accesses to arguments.

Benchmark Bytecode LV Access Arg Access
Tot pmi pmi pbc pmi pbc

FFT 4.50 519.4 455.3 .877 59.5 .115
LU 6.44 294.8 276.6 .938 27.5 .093
MonteCarlo 2.14 54.1 24.50 .453 12.3 .115
SOR 5.73 344.9 319.1 .925 11.9 .035
SparseMatMult 3.91 310.3 316.9 1.02 57.4 .185
chart 2.29 23.5 13.8 .584 5.57 .237
decoy 11.2 17.9 10.0 .562 4.44 .248
encrypt 24.6 21.6 13.2 .610 5.73 .265
trend 13.8 9.77 4.13 .423 2.92 .299
JOrbis 390 238.6 207.1 .868 31.5 .132
ECM 17.2 247.8 153.8 .621 33.1 .114

Table 3. Summary of Benchmark Execution. Total executed byte-
codes are in millions (106). pbi: per method invocation. pbc: per
bytecode.
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Benchmark Description
SciMark 2.0 Java Numerical Benchmark

FFT FFT on 1024 complex doubles
LU LU factorization of a100× 100 double dense matrix

MonteCarlo Monte Carlo integration to computeπ
SOR Successive Over-relaxation on a100× 100 grid.

SparseMatMult Multiplication of1000× 1000 sparse matrices
SAXON Version 6.0 with XSLTMark 1.2.0

chart Generates an HTML chart of some sales data (select, control).
decoy Simple template with decoy patterns to distract the matching process (match).

encrypt Performs a Rot-13 operation on all element names and text nodes (function).
trend Computes trends in the input data (select, functions).

JOrbis Ogg Vorbis audio decoder in Java
ECM Embedded CaffeineMark (Sieve, Loop, Logic, Method and Float).

Table 2. Benchmark Program Description
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4. Evaluation of the Base Design
In this section, the performance of the local variable cache pre-
sented in Section 2 is evaluated using the benchmark described in
the previous section. The size of the local variable cache is varied
from 4 to 32 words (depending on the highest local variable index
for each benchmark) and the hit ratio to the local variable cache is
used as the performance metrics.

Figure 5 shows the hit ratios of the local variable cache for the
SciMark 2.0 benchmark programs. These computation-intensive
programs are likely to use a large number of local variables. Their
access distributions are somewhat irregular (Figure 3). Conse-
quently, to achieve a high hit ratio, the local variable cache needs to
be large enough to accommodate all the local variables. However,
once all local variables are mapped to the cache, they are repeat-
edly accessed in the loop during a single invocation of a method.
FFT is the most typical case for these trends. While it accesses 30
local variables, local variables 10 to 17 are much less frequently
accessed than others. Therefore, the improvement in the hit ratio
for the cache size increase that corresponds to these local variables
is gradual. With 32 entries, all the local variable are cached and 455
accesses on the average for each method invocation makes the hit
ratio as high as 99%.

The counterexample is MonteCarlo, which uses a small number
of local variables and average execution path per method invoca-
tion is shorter than other benchmarks in SciMark2.0. 8 entries are
sufficient to cache most of local variables, but they are not reused
many times due to the short average execution path. Consequently,
the best hit ratio is only 71%. LU, SOR and SparseMatMult show
similar characteristics as FFT with fewer local variables.
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Figure 5. SciMark 2.0 Hit Ratio

Figure 6 shows the hit ratios for JOrbis, Embedded Caffeine-
Mark and SAXON XSLT processor with four XML test documents.

JOrbis is also a computation intensive workload: it uses a large
number (27) of local variables and has a long average execution
length. Therefore, its performance exhibits a similar trend as the
FFT. With a 4-entry local variable cache, the hit ratio is only 22%,
but it rapidly goes up to 94% with 28 entries.

The behavior of SAXON is quite different from SciMark 2.0
and JOrbis. In fact, it is a typical behavior of programs written in
Java. The average execution length is an order of magnitude shorter
than SciMark 2.0 and JOrbis. While it uses up to 22 local variables,
90% of accesses are for variables 0 to 7 and local variables 12 and
higher only count 2% of total accesses. Among four test cases,
chart, decoy and encrypt show similar curves on their hit ratios:
they start at around 40% with 4 entries and increase up to 61 to
66% with 12 entries. The hit ratio of trend is 34% with 4 entries
and only increases to 39% with 12 entries. The average execution



lengths of trend is only 9.8 bytecode which is less than half of other
three test cases. This short execution length emphasizes the effect
of cold misses which cannot be reduced by increasing the size of the
local variable cache. While the Embedded CaffeineMark does not
provide source files, it is considered to have loop structures, which
increase chances of repeated accesses to the same local variables.
Also, the number of local variables is small (16) and lower eight
variables count 86% of the total accesses. Hence, its hit ratio is
quite high even with 4 entries (73%) and it increases up to 95%
with 16 entries.
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Figure 6. SAXON, JOrbis and Embedded CaffeineMark Hit Ratio

5. Parameter Passing with the Local Variable
Cache

In the SPARC architecture, 32 registers are divided into four
groups:Globals (R0 to R7),Outs (R8 to R15),Locals (R16 to
R23) andIns (R24 to R31) [16]. When a procedure is called, phys-
ical registers mapped in Outs in the caller procedure are moved to
Ins in the callee procedure. Therefore, the caller procedure write
parameters to the callee procedure in the Outs registers and the
callee procedure receives them from the Ins registers.

While this sliding register window provides a smooth parameter
passing mechanism, it may not be feasible for embedded processors
due to the hardware and software overhead [17]. In this section,
we propose and evaluate a parameter passing mechanism incorpo-
rated into the local variable cache in the hardware-translation based
JVM.

In a JVM, parameters to a callee method are pushed onto
the operand stack before invocation. After the invocation of the
method, these parameters appear as local variables for the callee
method. For example, if three words were pushed as input param-
eters, they appear as local variables 0 to 2 in the callee method.
Figure 7 shows the proposed parameter passing mechanism in the
hardware-translation based JVM. As explained in Section 2, regis-
ters R0 to R3 hold copies of top four words of the operand stack
in the hardware translation based JVM. When a method invocation
bytecode (such as INVOKEVIRTUAL) is executed, physical regis-
ters for R0 to R3 and LV0 to LV3 are swapped. This swapping can
be implemented by 2-to-1 multiplexers and a single bit FF which
is set and reset on the method invocation bytecodes. Based on the
number of parameters pushed on to the stack, the valid bits of the
corresponding entries are set. Since parameters can be directly ac-
cessed in the callee method, storing the top of stack registers to the

memory and loading local variables from the memory are elimi-
nated.
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Figure 7. Parameter Passing with Local Variable Cache

As we saw in the previous section, the effect of cold misses
is significant in the SAXON XSLT processor. From Table 3, it
is shown that the large fractions (40 to 70%) of local variables
accesses are for the method parameters in SAXON. The proposed
parameter passing mechanism eliminates the cold misses to method
parameters. Table 4 shows the increase in the hit ratios by the
parameter passing mechanism for the SAXON processing four test
cases. Note that, the number of cold misses does not change when
the size of local variable cache varies. Therefore, the increase of
the cache hit ratio is also a constant. With the proposed mechanism,
the hit ratio for a 16-entry local variable cache is increased to 53%
(trend) to 75% (chart).

Benchmark programs other than SAXON are loop-oriented for
which the effect of cold misses is small. Hence, the improvement on
the hit ratios on these benchmarks are negligible (around or much
smaller than 1%).

Test Case Improvement
chart 8.2%
decoy 8.6%
encrypt 6.3%
trend 13.3%

Table 4. Improvement of the SAXON Hit Ratio with Parameter
Passing by Local Variable Cache

6. Register Mapping Problem
So far, we have assumed the identity mapping from the local vari-
able index into the cache entry. Therefore, for ann-entry local vari-
able cache, it is assumed that local variables 0 ton− 1 are cached.
However, as shown in Figures 3 and 4, the access frequency of lo-
cal variable is not a monotonically decreasing function over the in-
dex. In the ARM Jazelle, R4 is permanently is assigned to the local
variable 0 (’this’ pointer) [4]. However, in some benchmarks, other
local variables are more frequently accessed than the local vari-
able 0 (e.g. SparseMatMult). For the benchmark programs used in
this paper, the largest local variable index was 29 in FFT. Thus, a
local variable cache with 30 or more entries can store all the local
variables.

On the other hand, a large register file not only occupies a large
chip area, but it also slows down the access speed. Considering
the fact that the size of register file in most embedded processors
is 16, there may be a situation where, rather than a large local
variable cache, a smaller cache with optimized mapping scheme is
preferable. In this section, we consider the optimization of mapping
local variables to cache entries.



The first possibility is to let the programmer, compiler, or off-
line profiling utility provide an optimized mapping for each appli-
cation. However, such information may not be available until the
JVM architecture proposed in this paper becomes (nearly) stan-
dard. In this section, we consider on-the-fly profiling methods to
optimize the register mapping. The assumption is not to analyze
the whole structures of the class files before execution, like com-
pilers. Rather, we simply count the number of accesses to each local
variable in the course of execution.

The first option (Opt 1 in Table 5) is to count the local variable
access separately for each method. When a return bytecode is
executed or another method is invoked, the access statistics for
that method is stored somewhere (most likely to the memory).
The access count for each local variables is averaged over the
invocations of the method. Register map is created for each method
and is updated with the information up to the previous invocation
of the method.

The need of saving and restoring local variable access statistics
makes this option infeasible. However, this option captures the
local variable access behavior of each method more accurately than
other options explained below. Therefore, we use this option as a
reference.

The second option (Opt 2) is to use a single counter for each
local variable’s access, regardless of in which method it is accessed.
Since this options does not require saving and restoring access
histogram on method invocation and return, it is considered more
practical.

In above two options, it is assumed that the number of bits for
each counter is long enough to prevent counter overflow. As the
third option (Opt 3), we use a fewer number of bits (default 8 bits)
for each counter. When a counter is overflown, all the counters
are right shifted by one bit. This option is chosen to balance the
accuracy of profiling and the hardware overhead. For the options
two and three, the register map is updated on the invocation and
return bytecode.

The fourth option (Opt 4) is the base design which we have
assumed by the previous section, that is, the identical mapping from
the local variable index to the cache entry.

Benchmark Opt 1 Opt 2 Opt 3 Opt 4
FFT 88.3 80.2 82.6 44.1
JOrbis 92.1 78.8 69.2 66.2
SOR 94.1 94.1 94.1 54.6

Table 5. Hit Ratios for a 16-entry Local Variable Cache with
Mapping Optimizations

We chose benchmarks that access more than 16 local variables
from Table 2 except SAXON for which the fraction of accesses
to local variables 16 and higher was quite small. Table 5 shows
the hit ratios for a 16-entry local variable cache with the four
options mentioned above. Mapping optimization was very effective
in SOR: the hit ratio was increased from 54.6% to 94.1%. Also, the
difference among options 1 to 3 was negligible.

The effectiveness of the on-the-fly profiling was relatively small
and varied among options 1 to 3 in JOrbis. Option 3 only improved
the hit ratio by 3% of the total access. Moreover, there were signifi-
cant differences between options 2 and 3. This indicates the default
length of counters (8-bit) is not sufficient for JOrbis.

To further investigate the behavior of JOrbis under these profil-
ing options, we varied the length of the counters in option 3. From
the hit ratios shown in Figure 8, it is known that an array of 16-bit
counters works similarly to counters with (effectively) unlimited
length. It should also be noted that the hit ratio for option 3 with
8-bit counters (80.0%) is worse than that of option 4 (82.1%) for

the 20-entry cache size. The difference between these two options
are small and hit rations for both cases are high. Moreover, JOrbis
was the only case for this phenomena for the benchmarks used in
this paper. However, if for any other workload the hit ratio of the
proposed on-the-fly is significantly lower than option 4 (i.e. identi-
cal mapping), it may be necessary to switch between the identical
mapping and the mapping based on the on-the-fly profiling auto-
matically.

The most practical option (option 3) improved the hit ratio of
FFT by 1.87 times. Note that, the hit ratio for option 2 is lower
than that of option 3, which is an opposite phenomena to JOrbis.
It is considered that too long counters prevent the register mapping
from adapting to the change of access patterns between methods.
The difference on the optimum length of counters between FFT and
JOrbis also suggests the necessity of further study in determining
the number of bits in the counters.
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7. Related Work
ARM’s Jazelle and Nazomi’s Jstar are commercial products that
incorporate hardware-translation based JVM. In this paper, the
based design of the hardware-translation based JVM assumed the
information published in ARM’s white paper [4]. However, the
ideas presented in this paper do not depend on the features specific
to ARM or Nazomi’s architectures and should be applicable to most
embedded RISC microprocessors.

picoJava [18] directly executes Java bytecodes. It has a stack
cache of 64 entries (256 bytes) with automatic fill and spill func-
tionalities. Since a pure JVM is not sufficient to build a real system,
picoJava’s instruction set is extended for running applications writ-
ten in “legacy” programming languages such as C/C++. Therefore,
its design approach takes an opposite direction from the hardware-
translation which tries to utilize the existing hardware resources of
the standard RISC type microprocessors. When the stack cache of
picoJava-II is incorporated into an embedded processor, its control
signals and datapath will be an extra overhead as it will not be used
for the native instructions.

Delft-Java is another hardware-translation based JVM [19]. One
of its design goal is to execute multiple Java threads simultane-
ously by exploiting the superscalar architecture of the base micro-
processor. It uses a set of counters to keep track of the register as-
signments to the stack operands. However, it does not have a local
variable cache and does not reuse the data loaded into registers. In



Delft-Java, parameter passing is performed in a similar way to the
mechanism proposed in this paper: the mapping information from
registers to the operand stack values are passed to the callee method
so that the callee method directly accesses the parameters from the
registers. This mapping from the registers to the parameters is part
of the run-time register assignment mentioned above. Our solution
is simpler than theirs: the registers used for operand stack are fixed
and passing parameters is performed by flipping a single bit by the
invocation bytecode which swaps the local variable cache entries
and the registers assigned to the operand stack.

Radhakrishnan et. al also studied the performance of a hardware-
translation based JVM [6]. Their architecture model also did not
include any support for local variable caching. One possible rea-
son why local variable cache was not considered in [19, 6] may
be they assumed high performance processors as the base of the
JVM which normally have 32 or more general purpose registers.
This number of GPRs may be practically large enough to map fre-
quently accessed local variables to registers if an elaborate register
mapping scheme is used during the translation of Java bytecode.
The target of hardware-translation mechanism assumed in this pa-
per is embedded processors which normally have around 16 GPRs,
probably not enough to accommodate local variables.

Sethi and Kubiczek proposed to extend the size of register file
of their ARC tangent-A4 processor to place the local variables
in the register file [7]. Since they chose to handle the bytecode
by the software, the execution speed is not accelerated. Also, to
manipulate the larger register file, their instruction set must be
extended, which may not be a generic solution. The local variable
cache proposed in this paper is invisible in both native and JVM
modes. Thus, recompilation of applications is not necessary. If the
local variable cache and GPRs are merged with an extra write
port (to write the value of a local variable to a GPA and an LV
entry simultaneously), the proposed local variable cache will have
a similar structure as their Unified Register Mapped (URM) stack.

8. Conclusion and Future Work
In this paper, we proposed to add a small register file in the datapath
of the hardware-translation based JVM and to use it as a cache
for local variables. With few exceptions, a 16-entry local variable
cache, which is the size of a typical register file in embedded
processors, eliminated 60% to 98% of memory accesses caused by
the local variables in the benchmark programs.

Exceptions fell into two types. The first type was the SAXON
XML parser in which initial (cold) misses were dominant due to
the short execution path. For this type of applications, we proposed
to use the local variable cache to pass parameters on the method
invocation. This option improved the hit ratio of the local variable
cache (16-entry) for SAXON with trend test case from 39% to 53%.

The second type was computation intensive workload repre-
sented by the FFT from SciMark 2.0. This type of workload ac-
cesses many local variables and their access frequency over the
variable index draws a complex curve. While compiler optimiza-
tion or offline profiler are effective, these options may not alway be
available. In this paper, we investigated the on-the-fly profiling of
the local variable access behavior using an array of counters. With
this option, the hit ratio of FFT was almost doubled (from 44.1%
to 82.6%).

The topics of further investigation include the following. To es-
timate the overhead of chip area and operation speed, it is necessary
to design a prototype of the hardware-translation unit including the
local variable cache. In this paper, we only considered the bytecode
that can be directly executed by the hardware-translation module.
By taking into account both bytecodes that are hardware-executable
and that require software emulation, we can estimate the perfor-
mance improvement of the proposed architecture more accurately.

Instruction folding is a technique to combine the operations of
multiple bytecodes to accelerate the execution of the JVM [18]. For
example, the sequence ofILOAD 3, ILOAD 4, IADD, ISTORE 3 may
be combined and translated into a single native instruction ofADD
[R7, #12], [R7, #16]. However, this instruction is not possi-
ble for most embedded processors which cannot take memory lo-
cations as operands for arithmetic and logical operations. Since the
proposed local variable cache is placed inside the datapath of the
processor and is accessible in a similar manner as general purpose
registers, the instruction folding should be applicable to the JVM
with a local variable cache. For example, it should be possible to
translate the above bytecode sequence into an extended instruction
of ADD LV3, LV4 with the instruction folding. The control signals
of this extended instruction can be generated by enablingA LV,
B LV and W LV instead ofA GPR, B GPR and W GPR in the nor-
mal MOV instruction. The local variable cache alone reduces the
memory access latency (and possibly power consumption). How-
ever, when it is combined with the instruction folding, it eliminates
the bytecodes accessing the local variables. The complexity of the
hardware-translation module is increased since the translation is
not done by the single bytecode basis. Rather, it has to detect a
sequence of several bytecode for which folding is possible. There-
fore, it is necessary to find a set of bytecode sequences for which
the complexity of the translation module and the performance gain
are balanced.
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