
Hardware Support for a Wireless Sensor Network Virtual
Machine ∗

Hitoshi Oi
†

Department of Computer Science
The University of Aizu

Aizu-Wakamatsu, JAPAN
hitoshi@u-aizu.ac.jp

ABSTRACT
Virtual Machines (VMs) have been proposed as an efficient pro-
gramming model for Wireless Sensor Network (WSN) devices. How-
ever, the processing overhead required for VM execution has a sig-
nificant impact on the power consumption and battery lifetime of
these devices. This paper describes the design of a hardware accel-
erator for Maté, a VM running on TinyOS. While faster execution
speed is not important in the WSN applications, reduction in the
number of clock cycles for performing the same task results in the
lower duty cycle, which in turn saves the power consumption. With
the dedicated data path, it is expected that the numbers of clock cy-
cles can be reduced by one to two orders of magnitude compared
to the software implementation of Maté.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems; C.4 [Computer Systems Organiza-
tion]: Performance of Systems

General Terms
Design

Keywords
Wireless Sensor Network, Virtual Machine, Hardware Support, Low
Power Design

1. INTRODUCTION
Wireless Sensor Networks (WSNs) combine processing, sensing

and communications into tiny devices (motes) that can be deployed
over wide-areas to provide long-term monitoring [1]. It is expected
∗An earlier version of this work was done under the collaboration
with Chris Bleakley and his group at the University College Dublin,
Ireland.
†This work is supported in part by grant from the University of
Aizu Competitive Research Funding.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mobilware’08, February 12-15, 2008, Innsbruck, Austria
Copyright 2008 ACM 978-1-59593-984-5/08/02 ...$5.00.

that thousands of low-cost motes will be deployed over wide-areas
to provide monitoring of conditions and/or activity. Potential ap-
plications include traffic monitoring, precision agriculture, habitat
monitoring, building security, waste control and seismic sensing.

One of the key research challenges in the area of WSN is in pro-
viding an efficient programming model for such systems. Uniquely,
the programming model must allow for a heterogeneous mix of pro-
cessors, motes with different sensing capabilities, over-the-network
software update and low power consumption. One attractive pro-
gramming model for such systems is the use of Virtual Machines
(VMs) executing on the mote processors [2].

VMs allow for a single programming model which will oper-
ate across a heterogeneous mix of processors. Allowance may be
made for the various capabilities of motes by providing profiles and
abstractions of mote capabilities in the programming model. How-
ever, execution of software using a VM incurs an overhead in ex-
ecution time relative to execution of functionally equivalent native
code. Typically, the overhead is of the range 1-33 times [3]. Since
the delay between sensor or timer events is usually long compared
to the processing time, increases in execution time are not an issue
for WSN applications. However, the increase in power consump-
tion due to the execution of an increased number of instructions is
a limiting factor.

In field experiments, it has been found that current WSN motes
have a battery life of just a few days when running native code [4].
Studies across a range of benchmark applications show that the pro-
cessor consume between 28% and 86% of total mote energy [4].
Clearly, if applications are implemented using software running on
VMs, a further reduction in battery life can be expected. In con-
trast, the target battery life for the use WSN motes in real-world
applications is 12-18 months.

TinyOS [5] is currently the de facto operating system for sen-
sor network motes. TinyOS was developed for the WSN mote
specific requirements of small footprint, management of hardware,
support for concurrency, modularity and robustness. Maté was de-
veloped by a team at Berkley as a bytecode interpreter that runs on
TinyOS [3].

This paper describes work carried out with the goal of devel-
oping a low power Maté compliant VM suitable for WSN motes.
Previously, we have pointed out that two major sources of execu-
tion overhead in Maté are synchronization and stack-based opera-
tions [6]. In this paper, we describe the design of a hardware ac-
celerator that reduces the execution overhead of Maté and compare
the execution overhead of Maté in the original software implemen-
tation and the proposed hardware-assisted implementation.

The paper is structured as follows. Section 2 provides an overview
of related work in the area. Section 3 describes the design of the
proposed hardware accelerator for the WSN VM. In Section 4, the

effectiveness of the proposed design in reducing the power con-
sumption of the WSN motes running VM applications are pre-
sented. Section 5 provides conclusions and future work.

2. RELATED WORK
An overview of middleware approaches for WSNs is provided

in [2]. Of these various approaches, VMs have a number of ad-
vantages for implementation of WSN systems. They allow the pro-
grammer to write-once and execute many times across a range of
heterogeneous processors. The modularity of VM code allows for
concise bytecode. This reduces memory footprint and RF power
consumption when dynamically updating applications via the net-
work [3]. VMs intrinsically provide security and synchronization
models which simplify the programming task. The VMs customized
for WSN applications include Maté [3], MagnetOS [7], VM* [8]
and SwissQM [9].

Maté is a bytecode interpreter which runs on top of TinyOS.
TinyOS uses a component based software architecture. Each com-
ponent can call or respond to a command; flag or process an event;
or execute a task. Processing is based on interrupts which are man-
aged via a simple FIFO scheduler implemented in software. Maté
is a single TinyOS component that interfaces to various system
components such as sensors, the network and non-volatile storage.
Most instructions operate on an operand stack. A return address
stack is provided for subroutine calls. Control flow instructions and
instructions with immediate operands are available. There are three
types of instructions: basic, s-class and x-class. Basic instructions
include arithmetic and LED control. S-class instructions access in-
memory structures for messaging. X-class instructions are push
constant and branch on less than or equal. Eight instructions are
set aside for users to define. Three operand types are supported -
values, sensor readings and messages.

Maté uses a high level programming interface which allows for
very short application programs. Code is split into capsules of 24
instructions which can be transmitted through the network. Cap-
sules contain code, identification and versioning information. Sub-
routine capsules allow for more complex programs to be constructed
across multiple capsules. Maté starts execution in response to an
event, e.g. a timer wake up. Control then jumps to the start of
the corresponding packet and completes with the halt instruction.
The first version of Maté lacks flexibility and support for higher
level languages as pointed out in the literature [2]. The specifica-
tion of Maté has been upgraded as an application specific virtual
machine (ASVM) for improved execution efficiency and customiz-
ability [10, 11].

VM* provides a richer service interface than Maté, allowing for
easier programming. It uses software synthesis to tailor and scale
the system software to each application. VM* also allows fine-
grain updating of the VM itself, whereas Maté only allows updates
to VM applications. This allows for greater flexibility and can re-
duce the energy of code dynamic update via the network. VM*
is based on JVM but includes a number of innovations to reduce
bytecode size.

SwissQM is another VM architecture for the WSN [9]. It is de-
signed to enhance the data acquisition capability of the sensor net-
works. In the application level, SwissQM is designed to process
SQL-like queries. The instruction set architecture of the VM is
stack-based and the bytecodes include aggregation operations.

SOS is an operating system for the sensor network node that con-
sists of a common kernel and application modules [13]. Applica-
tion modules can be dynamically loaded and unloaded to a running
node with a small system interruption. The authors compared SOS
with Maté and TinyOS in their CPU overhead and power consump-

tion to show SOS’s higher level of functional flexibility and lower
performance overhead.

MagnetOS differs quite significantly from Maté and VM*. It
consists of a Single System Image layer which provides a high level
abstraction of an entire WSN. The abstraction allows the whole net-
work to appear as a single, unified VM. The system partitions appli-
cations into components and dynamically distributes them through
the network.

The concept of using hardware accelerators to speed up or re-
duce the power consumption of VMs has been applied to execution
of Java bytecode for some time [12]. There are significant differ-
ences between the requirements for a JVM on an embedded proces-
sor and a WSN VM. In particular, WSN VMs require efficient ab-
stractions for sensing devices, must operate on devices with limited
memory and processing resources, must support data aggregation
techniques across multiple nodes and must be power aware when
processing and communicating data. On the other hands, a JVM
is often implemented on portable devices such as mobile phones
and running interactive applications. Therefore, when compared
to WSN VMs, embedded JVMs are more concerned on their per-
formance. Hence, it is not expected that all hardware acceleration
concepts from the Java arena will work well for WSN processors.

3. HARDWARE ACCELERATOR FOR VM
EXECUTION

In this section, we describe the architecture of the WSN mote
with proposed hardware accelerator and how it reduces the execu-
tion overhead of the VM. The design of our VM is based on Maté
and the hardware accelerator consists of two modules: operand
stack module and synchronization module. These two modules
implement the operations of Maté that are identified as the major
sources of the overhead for VM execution [6, 10]. Figure 1 shows
the architecture of the wireless sensor network processor with the
proposed hardware accelerator for virtual machine. The hardware
accelerator is attached to the data bus of the microcontroller on
which the bytecode interpreter of the virtual machine is executed.

Command
& Status
Registers

Operand
Stack

Synchro
-nization

Controller

Internal Data Bus

Control Signals

Program
Flash

Micro
Controller

Data
RAM

Peripheral
Device

Hardware Accelerator

Data Bus

Figure 1: Proposed WSN Processor Architecture

The registers in Table 1 are used to initiate operand stack and
synchronization operations and to receive the return status and value.
These registers are mapped onto the data memory address space
and the microcontroller writes command and parameters and read
results using load/store instructions. A possible optimization is to
swap part of general purpose registers with these these registers
when the processor is running the VM. In this way, any instruc-
tions having registers as their operands can directly access the hard
accelerator registers (i. e. can omit load/store instructions).

A context corresponds to a process in other operation systems
and each context has its own operand stack and stack pointer. A
context locks and releases shared variable(s). The Context register
specifies the context for which an operand stack/synchronization
operation is performed. Command register specifies one of oper-
ations to be performed that are described in the following subsec-
tions. The results of the operation performed, such as a success
in locking a variable or a stack overflow, are reported by the Status
register. The Data register is used to store the integer data or the ad-
dress of other types of data (such as message buffer) to be pushed
or popped. It is also used for specifying the starting address of the
bytecode to be scanned. The data type is specified in the Type reg-
ister. It is also used for specifying the length of the bytecode to be
scanned in AnalyzeVars (Section 3.2).

Name Length Mode Descriptions
Context 1 W Context of the stack

Command 1 W Stack/Synch. operation
Status 1 R Return status
Data 2 RW Stack Operand

Code Address
Type 1 RW Operand type.

Table 1: Hardware Accelerator Registers

3.1 Operand Stack Module
For the purpose of explanation, we use the VM configuration

parameters, such as number of contexts, of the BombillaMica (an
implementation of Maté included in TinyOS 1.1.15 distribution).
Each entry in the operand stack consists of the Type (1 Byte) and
ValBuf (2 Bytes) fields. In the BombillaMica implementation, there
are 13 valid contexts defined. Each context has own operand stack
which consists of a 8-entry stack and a stack pointer. A possible
and preferred implementation is to make the operand stack as a 3-
byte wide register file indexed by the concatenation of the Context
register and the stack pointer.

Cycles
Command SW HW Description
pushValue 93 14 Push 16-bit Int

pushReading 93 16 Push sensor reading
pushBuffer 93 14 Push message buffer

pushOperand 91 14 Push untyped operand
popOperand 65 14 Pop TOS operand

Table 2: Stack Operations

Table 2 shows the operand stack operations that are performed
by the hardware accelerator. PushValue, pushReading, pushBuffer
and pushOperand push a 16-bit integer, a value read from a sen-
sor, the address of a message buffer and the address of an untyped

value. Unlike push operations, there is only a single pop opera-
tion, popOperand. Therefore, the bytecode that uses the popped
operand must check the type using the Type register. Push and pop
operations can cause stack overflow and underflow errors. These
errors are reported by the Status register. A possible encoding of
the Status register is to use the MSB to indicate the occurrence of
an error and the LSBs to indicate the number of entries in the stack
(the latter is only useful for the debugging purpose).

The second and third columns (labeled SW and HW, respec-
tively) in the table show the numbers of clock cycles when each
operation is performed by the software and the hardware. The num-
ber of clock cycles for the software case is obtained by simulating
the stack operations using Avrora [14]. The number of clock cycles
for the hardware is calculated as follows. First, the microcontroller
writes necessary parameters (if any) and the command to the hard-
ware accelerator registers. Theses writes take two clock cycles per
byte. After one clock cycle, the microcontroller reads the Status
register and checks if the operation has been performed normally
by executing a conditional branch instruction on the return status
value. It is assumed that these post-operation steps take four clock
cycles. The instruction set architecture of the microcontroller is
based on [15].

st Z+, r20 # Write Context
st Z+, r21 # Lower 8−bit of data
st Z+, r22 # Higher 8−bit of data
ldi r23, pushValue
st Z+, r23 # Command (pushValue)
ld r24, Z # Load return status
andi r24, 0x80 # Return state is in MSB
brne OK: # check the return status
call error

OK:

Figure 2: Sample Invocation of pushValue

A sample invocation of pushValue operation using the hard-
ware accelerator is shown in Figure 2. It is assumed that Z reg-
ister has the address of the Context register and registers r20 to
r22 have already been loaded with the context and the value to be
pushed. It should be noticed that some bytecodes perform multi-
ple stack operations per bytecode and some redundant steps can be
removed. For example, an add performs two popOperand and
one pushValue operations. In the hardware implementation, we
only need to set the Context register once for such bytecodes.
On the other hand, each stack operation is invoked as a separate
function call in the software implementation. Therefore, redundant
operations in a single bytecode cannot be eliminated.

3.2 Synchronization Module
The objective of the Synchronization module is to avoid the race

condition between contexts and for that purpose, it maintains a set
of data structures for each context most of which are bit vectors
representing shared variables (Table 3).

Each context runs a program (called handler) which is iden-
tified by a unique handlerID. currentHandler is an array
that maps a contextID into a handlerID and represents the
handler running on the context. acquireSet, heldSet, and
releaseSet are arrays of bit vectors indexed by the contex-
tID which is given by the Context register in Table 1. They rep-
resent shared variables to acquire, being held and to be released
by the context. usedVars is an array of bit vectors indexed by

Data Structure Description
CurrentHandler Map context to handler

acquireSet Vars to acquire lock by context
heldSet Vars being held by context

releaseSet Vars to release by context
userVars Vars used in handler
locked Vars locked
holder Context locking vars

byteLength Length of bytecode
lockNum Var used in bytecode

Table 3: Data Structures in Synch. Module

the handlerID. Each bit vector represents the shared variables used
in the handler. holder maps a shared variable number into a
contextID and represtns the context holding the variable. locked
is a bit vector representing which variables are locked: lockedi =

1 means that variable i is locked by some existing context. These
data structures are constructed by AnalyzeVars which scans a
newly received program capsule (described later). byteLength
and lockNum are tables that map bytecode into its number of bytes
and the variable used in the bytecode, respectively.

Cycles
Command SW HW Description

lock 62 10 Lock a variable
unlock 64 10 Unlock a variable

isLocked 23 8 If a var is locked ?
isHeldBy 29 10 Am I locking a var ?

AnalyzeVars 1.3 × 10
4 270 Find vars in a capsule

Table 4: Synchronization Operations

Table 4 shows the operations performed in the Synchronization
module. Again, the columns labeled as SW and HW represent the
numbers of clock cycles for the operation when implemented in
software and hardware, respectively. In AnalyzeVars, it is as-
sumed that the code length is 128 bytes and the hardware accelera-
tor takes two cycles to access a byte in the memory.

First four operations are used in the bytecodes and also in the
scheduling of the tasks. lock and unlock lock/unlock a vari-
able. isHeldBy and isLocked check if a variable is held by the
current context or somebody else. When a new program capsule
is received, its bytecodes are scanned and shared variables used in
the capsule are recorded in the corresponding entry of usedVars.
This operation, AnalyzeVars, is performed by the synchroniza-
tion module by providing the starting address of the program cap-
sule stored in the data RAM, its length and the assigned handlerID
using the Data, Status and Context registers, respectively.

4. DISCUSSION
In [3], Maté bytecodes are classified into four groups based on

their relative costs against the native code implementations. Sam-
ple bytecodes in this classification and their relative costs are shown
in Table 5. Please note that it is not appropriate to directly compare
the numbers of clock cycles in Table 5 and those in Tables 2 and 4.
These two sets of figures are measured by different methodologies
in different environments (especially compiler versions and options
which should affect the resulting codes significantly). However, it
is also true that we run a stack-based virtual machine on top of a

register-based microprocessor. Operations on stack and other data
structures require handling memory pointers which are 16-bit long
while the data path of the processor is 8-bit. All these overheads
can be reduced by one to two orders of magnitude by means of ded-
icated hardware modules. Therefore, it is expected that the opera-
tions in the Simple group can be executed with similar costs as the
native instructions. For operations in other groups, especially the
Long Split, the numbers of clock cycles saved by the hardware ac-
celerator should be smaller than those for Simple operations. How-
ever, the processor is not necessarily required to be turned on for
the entire period of executing these types of operations. Depending
on the design and functionality of the peripheral devices, it may be
possible to put the processor into the low power mode while the pe-
ripheral is doing the necessary operation. In this case, the hardware
accelerator can help the processor to setup the parameters for the
operation and retrieve the results to/from the operand stack so that
the processor can enter the low power mode quickly.

Clock Cycles
Operation Mate Native Cost
Simple: add 469 14 33.5:1
Downstream: rand 435 45 9.5:1
Quick Split: sense 1342 396 3.4:1
Long Split: sendr 685+ ≈ 2

4 ≈ 2
4 1.03:1

Table 5: Maté Bytecodes vs. Native Code. Reproduced from [3]

Unlike other computing platforms, such as desktop PCs or servers,
the objective of the hardware acceleration in the sensor network vir-
tual machine is not to increase the throughput; rather, it is to finish
the same amount of job in a shorter period of time so that the sys-
tem can stay in low power modes and reduce the power consump-
tion. In [13], the authors reported the power consumption of the
Mica2 platform in active, idle and sleep modes as 47.1, 29.1 and
0.31mW, respectively. These large differences in the active and
other power consumption modes also support the effectiveness of
hardware acceleration. As mentioned in Section 1, the virtual ma-
chine approach is useful when the program is (relatively) frequently
updated but it is executed infrequently. The latter restriction comes
from the execution overhead of the VM and the hardware accelera-
tion widen the field where the VM approach is feasible.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we analyzed the execution overhead of the Maté

and presented a hardware acceleration approach to reduce the over-
head. According to the literature as well as our source code anal-
ysis, two major sources of execution overhead are stack and syn-
chronization operations. Handling the operand stack and other data
structures having large data sizes by a 8-bit microcontroller takes
large numbers of clock cycles. However, most of theses opera-
tions can be implemented with combinational circuits and dedi-
cated hardware modules can perform them efficiently. We com-
pared the VM execution overhead for these operations in terms of
number of clock cycles when they were implemented in the soft-
ware and hardware.

Bytecode execution has a large overhead but it is only a part
of a WSN processor execution. To estimate the effectiveness of
the approach presented in this paper more accurately, a complete
model of the proposed architecture is necessary so that the effect of
native code execution and peripheral devices can be taken into ac-
count. While our work is based on Maté, a virtual machine imple-
mented on TinyOS, however, stack and synchronization operations

are commonly seen in other sensor network VM approaches [2, 7,
8, 9]. Therefore, the ideas presented in this paper should be appli-
cable to these VM approaches at a different degree.

Our plan is to develop a detailed model of the hardware accel-
erator using a hardware description language with the power con-
sumption behavior. This model is to be incorporated into a WSN
processor simulator (such as [14]) and to be used for the evalua-
tion of total power consumption. In the course of designing such
a detailed hardware model, we should also investigate the feasi-
bility of implementation methods (such as ASIC, FPGA) and the
robustness of the hardware supported VM against the buggy and
malicious codes.

Wireless sensor networks are used in various ways and there do
not seem to be standard benchmark programs existing in this area.
To find out appropriate and realistic applications to evaluate the
VM approach in the WSN is another important task for us.

6. REFERENCES
[1] D. Culler, D. Estrim and M. Srivastava, “Overview of sensor

networks”, IEEE Computer, vol. 37, no. 8, pp. 41–49,
August 2004.

[2] S. Hadim and N. Mohamed, “Middleware challenges and
approaches for wireless sensor networks”, IEEE Distributed
Systems Online, 2006.

[3] P. Levis and D. Culler, “Maté: a tiny virtual machine for
sensor networks”, in Proceedings of Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pp. 85–95, San Jose, CA, USA, 2002.

[4] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen and M.
Welsh, “Simulating the power consumption of large-scale
sensor network applications”, ACM Conf. Embedded Sensor
Systems, pp. 188–200, 2005.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler and
K. S. J. Pister, “System architecture directions for networked
sensors”, in Proceedings of Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pp. 93–104, Boston, MA, USA, Nov. 2000.

[6] Hitoshi Oi and C.J. Bleakley, “Towards a Low Power Virtual
Machine for Wireless Sensor Network Motes”, Proceedings
of the Japan-China Joint Workshop on Frontier of Computer
Science and Technology (FCST’06), pp18–22, 2006.

[7] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim,
B. Zhou and E. G. Sirer, “On the need for system-level
support for ad hoc and sensor networks”, Operating Systems
Review, vol. 36, pp. 1–5, Apr. 2002.

[8] J. Koshy and R. Pandey. “VM*: Synthesizing Scalable
Runtime Environments for Sensor Networks”, in
Proceedings of the 3rd International Conference on
Embedded Networked Sensor Systems, pp243–254, San
Diego, CA.

[9] Rene Muller, Gustavo Alonso and Donald Kossmann,
“SwissQM: Next Generation Data Processing in Sensor
Networks”, in Proceedings of the 3rd Biennial Conference
on Innovative Data Systems Research (CIDR 2007), pp1–9,
Asilomar, CA, USA, January 7-10, 2007.

[10] P. Levis, D. Gay and D. Culler, “Active Sensor Networks”, in
Proceedings of the 2nd USENIX/ACM Symposium on
Network Systems Design and Implementation (NSDI), May
2005.

[11] P. Levis, D. Gay and D. Culler, “Bridging the Gap:
Programming Sensor Networks with Application Specific
Virtual Machines”, UC Berkeley Tech Report
UCB//CSD-04-1343, August 2004.

[12] “Wireless, ARM Product Information”,
http://www.jp.arm.com/naviweb/pdf/
wireless_flyer%20final01.pdf .

[13] Chih-Chieh Han et. al, “A Dynamic Operating System for
Sensor Nodes”, in Proceedings of the Third International
Conference on Mobile Systems, Applications and Services
(Mobisys), pp163–173, USENIX/ACM , Seattle, WA , June
2005.

[14] Ben Titzer, Daniel Lee and Jens Palsberg, “Avrora: Scalable
Sensor Network Simulation with Precise Timing” in
Proceedings of the 4th international symposium on
Information processing in sensor networks, Article No. 67,
2005.

[15] “8-bit AVR Instruction Set”, Atmel Corporation, Nov 2005.

