
A Comparative Study of Bidirectional Ring and

Crossbar Interconnection Networks∗

Hitoshi Oi and N. Ranganathan†

Department of Computer Science and Engineering,
University of South Florida, Tampa, FL 33620

Abstract

For distributed shared memory multiprocessors, the
choice and the design of interconnection networks
have a significant impact on their performance.
Bidirectional ring networks are considered to be
physically fast due to their simple structure, but
topologically slow since their communication la-
tency grows at O(N). In this paper, we will present
a quantitative measure to the question of how phys-
ically fast a bidirectional ring has to be to over-
come its topologically slow communication latency
by comparing it to the crossbar, an interconnection
network that has opposite characteristics to the ring
network. A hybrid method, in which workload pa-
rameters extracted from memory traces are given to
an analytical model is used for performance eval-
uation. Our study shows that for a configuration
of 32 nodes, the bidirectional ring outperforms the
crossbar by 37% on the average of four parallel ap-
plications.

Keywords: Interconnection networks, distributed

shared memory multiprocessor, performance eval-

uation, slotted ring, crossbar.

1 Introduction

A distributed shared memory (DSM) multipro-
cessor provides a view of a globally shared ad-
dress space by sending coherence protocol mes-
sages between processing elements. Therefore,
the interconnection network affects the perfor-
mance of a DSM multiprocessor significantly.

Ring networks have the advantages of
(1) fixed node degree (modular expandability),
(2) simple network interface structure (fast op-

∗This research is supported in part by a National

Science Foundation Grant No. CDA-9522265.
†Email: {oi, ranganat}@csee.usf.edu

eration speed) and (3) low wiring complexity
(fast transmission speed). On the other hand,
the main disadvantage of the ring network is its
communication latency growth rate of O(N),
where N is the number of nodes. However,
when non-local misses are likely to be destined
to neighboring PE’s, this disadvantage can be
alleviated by using a bidirectional ring [1, 2].
Crossbar switches have opposite characteris-
tics: they can connect any pair of nodes by one
hop, but the transmission speed is expected to
be much slower due to wiring and circuit com-
plexity [3]. In this paper, we will present a
quantitative measure to the question of how
physically fast a bidirectional ring has to be to
overcome its topologically slow communication
latency, by comparing its performance to that
of the crossbar switch.

This paper is organized as follows. The rest
of this section introduces the past studies on
the comparisons of the interconnection net-
works for multiprocessors. The architectures
of multiprocessors that will be assumed in our
study are presented in Section 2. Our method-
ology for evaluating the performance and the
profile of the applications used in the perfor-
mance evaluation are described in Section 3.
The comparison of the bidirectional ring and
the crossbar by estimated execution times is
presented in Section 4. Some conclusions are
provided in Section 5.

1.1 Related Work

Ravindran and Stumm compared the perfor-
mance of multiprocessors using hierarchical
ring and mesh networks [4]. The miss la-
tency was used for performance comparison.

Their study mainly showed maximum number
of nodes at which the hierarchical ring outper-
formed the mesh network. Since they assumed
a unidirectional ring, nearest-neighbor commu-
nication pattern was not taken into account.

Barroso and Dubois evaluated the perfor-
mance of the slotted ring multiprocessor [5].
They investigated the effect of the design
choices such as coherence protocols (snoopy,
linked list and full-map directory) and proces-
sor speed, and compared their unidirectional
ring architecture with the split-transaction
bus.

Lang et al studied the effective bandwidth of
the crossbar switches, and compared it to that
of the multiple-bus interconnection network us-
ing parametric simulations [3]. They assumed
the dance-hall UMA architecture (processors
and memories are different side of interconnec-
tion network).

2 Architecture Model

In this section, we describe the architecture
of the DSM multiprocessors using the bidirec-
tional ring and the crossbar that will be as-
sumed in this paper. Each processing element
(PE) consists of a processor, a memory unit
with directory entries, a cache, and a network
interface (Figure 1). PE’s are connected by ei-
ther a bidirectional ring or a crossbar switch
network.

It is assumed that both architectures are
based on the CC-NUMA model with directory
based cache coherency protocol. The memory
unit within a PE is a part of the globally shared
memory and is associated with directory en-
tries corresponding to the part of global ad-
dress space assigned to the PE. A cache miss
is responded either by the home node (the PE
that is assigned the portion of global address of
the accessed data) or by the owner node (the
PE that owns a modified copy of the requested
data in the cache).

For a write access, invalidation scheme is
used. On the bidirectional ring, a single in-
validation message is broadcast by passing it
all the way through the ring. On the other
hand, the crossbar network is assumed to have
the multicast functionality to send invalidate

messages simultaneously to all the PE’s that
have copies of the block.

Interconnection Network
(Bidirectional Ring or Crossbar Switch)

C

P

M

NI PE PE PE PE

P: Processor
C: Cache
M: Private/Global Memory
D: Directory
NI: Network Interface

D

Figure 1: DSM Multiprocessor Architecture

The parameters that define the configura-
tion of the system are listed in Table 1. All the
timing parameters are represented in terms of
processor clock cycles. In this paper, we con-
sider small to medium scale multiprocessors,
and hence we chose N = 16, 32 and 64. Both
bidirectional ring and crossbar are assumed to
be flat (one level). On the bidirectional ring,
a header message is divided into two packets,
and it takes tr to transfer a packet between ad-
jacent PE’s. This assumption of tr is to com-
pensate that a node on the bidirectional ring
has two links for each direction. On the bidi-
rectional ring, each link connects a pair of adja-
cent PE’s with a minimum wire length. There-
fore, it is not difficult to keep tr constant for
larger N . Thus, we use the same tr = 1, . . . , 5
for all N .

ts is the time to transfer a header message
between any pair of PE’s on the crossbar net-
work. We have chosen ts as follows: First,
we take two instances of shared memory multi-
processors using crossbar switches, and look at
their relative speed between the processor and
the crossbar, the dimensional size and the data
path width of the crossbar, and the word length
of the processor. Exemplar S-Class of Hewlett
Packard uses 180MHz 64-bits processors and
8 × 8 crossbars operating at 120MHz with 64-
bits datapath [6]. CP-PACS developed at Uni-
versity of Tsukuba uses 180MHz 64-bits pro-
cessors and 17×17 crossbar switches with data

Symbol & Description Value

N Number of PE 16, 32, 64
ts Packet Transfer Time 4, 8, 16,

(Crossbar Switch) 32, 64
tr Packet Transfer Time 1 - 5

(Bidirectional Ring)
tm Memory Access Time 50
tc Protocol Handling Time 10
dp Data Mesg. Packet Length 4

Table 1: System Parameters (Timing parame-
ters are in processor clock cycles)

bandwidth of 300MB/sec per node [7]. Using
the above definition, Exemplar and CP-PACS
have ts = 1.5 and ts = 8 respectively. Taking
these values into consideration, we have chosen
ts = 4 and 8 for N = 16. Next, we consider ts

for larger N (32 and 64). The delay of cross-
bar switch grows at O(N 2) due to the length
of wire and number of nodes [3]. Thus, we use
ts = 16 and ts = 64 for N = 32 and 64, re-
spectively. Unlike UMA (including Exemplar)
in which the delay of crossbar is dominant for
the network latency, both the wire connection
between PE’s and crossbar, which is considered
to be O(N), and the delay of crossbar affect the
latency of the network in NUMA architecture.
Hence, we also use lower values of ts = 8 and
ts = 16 and 32 for N = 32 and 64, respectively.

A data message is assumed to be four times
longer than a header message (dp = 4). This
value is chosen from the cache block size
(16Bytes for 32bit processors) assumed when
the trace files were collected. On the crossbar,
a data message is transmitted in a contiguous
4ts time period, while on the bidirectional ring
a data message is divided into multiple packets
and they are sent in (possibly) uncontiguous
slots. We assume the slotted ring configura-
tion for the bidirectional ring.

3 Performance Model

The methods that have been used for per-
formance evaluation of computer systems in-
clude analytical models ([8]), parametric simu-

lations ([4]), trace-driven simulations ([9]) and
execution-driven simulations ([10]). In this pa-
per, we use the hybrid approach by Barroso
and Dubois [5] by extending it to the bidirec-
tional ring and the crossbar. Below we briefly
describe the derivation of execution time using
the hybrid approach.

The execution time (ET) in clock cycles is
given by

ET = Inst + DataAccess (1)

where Inst is instruction fetches. With as-
sumption of sequential consistency and both
an instruction fetch and a data access that is
a cache hit take one clock cycle, (1) becomes

ET = Refs + Miss ∗ MissLatency (2)

where Refs, Miss and MissLatency are
the total number of references (both instruc-
tions and data), the total number of misses
and the average miss latency, respectively.
MissLatency is defined to consist of T , the
time to transmit a message (either request or
data) to the network, P , the propagation de-
lay of a message to reach the destination on
the network, M , the time to access the mem-
ory, and C, the time of coherence protocol han-
dling. These components of miss latency ap-
pear different number of times per miss de-
pending on the access mode and the state of
the memory block.

P is constant ts on the crossbar while it is
the average message traversal length extracted
from the traces on the bidirectional ring. C is
assumed to be constant tc. The values of pa-
rameters T and M are the functions of the uti-
lizations of the resources (network and mem-
ory). The utilization of the bidirectional ring
Ru is

Ru =
tr ∗ (

∑
HdTrv + dp ∗

∑
DtTrv)

ET

where
∑

HdTrv and
∑

DtTrv are the sums
of header and data message traversals, respec-
tively. On the other hand, the utilization of
the crossbar switch is

SWu =
ts ∗ (

∑
HdTx + dp ∗

∑
HdTx)

ET

where
∑

HdTx and
∑

DtTx are the the num-
bers of header and data message transmissions.
This is because on the crossbar switch network,
a message only takes one hop to reach any des-
tination PE. These utilization parameters are
combined with the M/G/1 queue model to es-
timate the execution time of applications on
both architectures (see [11] for the details of T

on ring networks).
Thus, ET itself is a function of ET .

ET = Refs + Miss ∗ MissLatency(ET)

The derivation of ET is iterated until it con-
verges to a tolerant level (< 0.1%). We use two
metrics to evaluate the performance of two ar-
chitectures. One is the ratio of execution times,
namely, the execution time on the crossbar di-
vided by the execution time on the bidirec-
tional ring. Another metric is the scalability
(speed up), which is obtained by dividing the
execution time of the uniprocessor by that of
the multiprocessor.

3.1 Trace Files

The profile of the memory traces we use in
our experiments are listed in Table 2. These
trace files are from the MIT trace set [12], and
are obtained from the ftp server of the Trace-
Base project at the New Mexico State Univer-
sity [13]. FFT, Simple and Weather were writ-
ten in fortran and traces of these applications
were derived using the postmortem method, a
technique that generates a parallel trace from
a uniprocessor execution. Speech was written
in the programming language Mul-T, and its
trace file was collected by inserting instrumen-
tation codes into the program by the compiler.

The workload parameters of each applica-
tion were extracted from the trace file as fol-
lows. Each trace file is fed to a cache/directory
simulator developed at the Laboratory for
Computer Science of MIT1 (the cache size of
256KB and the block size of 16B were used),
and statistical information of the applications
such as hit/miss, read/write, clean/dirty was
collected. These trace files were collected on a

1This simulator was also provided by the TraceBase

ftp server.

Appli- Refs Miss Write Local
cation (Instr) N Rate Prob Miss

16 0.030 0.354 0.525
FFT 7.44M 32 0.048 0.226 0.509

(3.11M) 64 0.065 0.166 0.501
16 0.043 0.114 0.240

Simple 27.03M 32 0.050 0.104 0.206
(11.59M) 64 0.072 0.089 0.114

16 0.018 0.207 0.425
Weather 31.76M 32 0.020 0.196 0.397

(13.64M) 64 0.035 0.160 0.239
16 0.048 0.374 0.672

Speech 22.55M 32 0.051 0.362 0.661
(11.77M) 64 0.053 0.348 0.656

Table 2: Profile of Trace Files

64 processor system. To extract data for the
case of 16 (32) processors, access traces from
4i to 4i+3 (from 2i to 2i+1) were given to i-th
cache, where i = 0, . . . , 15 (i = 0, . . . , 31). It
is assumed that all the instruction fetches are
cache hits.

In addition to the original functionality, the
simulator was modified to collect performance
measures regarding the communication of co-
herence protocol. One such measure is the ra-
tio of whether the home node of a miss to a
shared block is local or non-local (shown in
Table 2). This ratio can be an index to the
amount of communication since if the home
node is local, no read request message will be
transmitted on the network (when the block is
clean). We assume that the first PE that ac-
cesses a block is the home node of the block.
On FFT and Speech, more than half of accesses
to shared data are to local addresses, while on
Simple and Weather the locality of shared ac-
cess is quite low.

Another performance measure collected by
the modified simulator was the communication
distance, the number of links a message has to
traverse on the bidirectional ring. This com-
munication distance affects the performance
of the bidirectional ring significantly in two
ways: First the longer the distance the longer
the propagation delay (higher P). Second the
longer the distance the higher utilization of the
ring (higher T). Figures 2 show the distribu-

tion of request - home node distance on the
bidirectional ring for N = 64, where the differ-
ence of communication pattern among applica-
tions is observed most clearly. FFT and Speech
exhibit all-to-all communication pattern while
Weather and Simple have a certain level of
nearest neighbor communication patterns. Es-
pecially for N = 64 on Weather, 30% of non-
local misses are accesses to adjacent nodes. For
N = 16 and 32, the degree of nearest neighbor
communication pattern of weather and simple
are weaker than the case of N = 64. Although
the number of applications is not large, these
applications exhibit variations in their work-
load parameters.

0

5

10

15

20

25

30

35

1 8 16 32

R
em

ot
e

M
is

se
s

(%
)

Request - Home Node Distance

FFT
Simple

Weather
Speech

Figure 2: Home Node Distribution (N = 64)

4 Bidirectional Ring versus

Crossbar Evaluation

In this section, we present comparisons of the
bidirectional ring and the crossbar using the
model and the traces presented in the previous
section (Figures in this section are placed after
the references).

FFT (Figure 3) has all-to-all communication
pattern (Figures 2), which is an advantage to
the crossbar over the bidirectional ring. The
speed up for larger N is relatively small among
four applications (Figure 4). The reasons for
this small speed up are, that the execution of
FFT on the uniprocessor is very fast (processor

busy rate is 92%) and that shared miss rates
increase and write hit rate decreases for larger
N . Even with very fast link, we cannot expect
much performance improvement on the bidi-
rectional ring beyond N = 16. On the cross-
bar, situation is much worse: the performance
degrades for N > 16 even with very fast switch
devices.

Simple (Figure 5) has relatively high miss
rate, especially in its read accesses, and the
local miss rate is quite low. However, it still
exhibits relatively high speed up among the ap-
plications used in this study (Figure 6). The
first reason is that its execution on the unipro-
cessor has high miss rate, and the processor
busy rate is for only 27%. Simple has a certain
level of nearest communication pattern, which
is beneficial to the bidirectional ring, and it
becomes stronger for larger N . As a result,
we can still expect a speed up of 33.6% for
N = 32 → 64 if the ring speed is fast enough.
On the other hand, the nearest communica-
tion pattern of Simple does not benefit to the
crossbar. Even with an optimistic assumption
of communication latency growth rate (O(N)),
its performance degrades for N = 32 → 64.

Weather (Figure 7) has relatively low miss
rate, and large fraction of misses are destined
to local memory. Thus, the effect of intercon-
nection network is small and both the crossbar
and the bidirectional ring achieve nearly lin-
ear speed up for N = 16 → 32 (Figure 8).
However, for N = 64, local miss rate decreases
(from 39.7% to 23.9%) and miss rate increases
by 75%. The performance of the crossbar de-
creases for N = 32 → 64 even with a very
fast switches (ts = 16). On the bidirectional
ring, we can still expect a speed up of 2.7%
(tr = 5) to 35.5% (tr = 1). In addition to
the fast link speed of the bidirectional ring,
the nearest communication pattern of Weather
(Figure 2) that becomes stronger for larger N

is considered to be the source of this speed up.

The miss rate and local miss rate of Speech
are constant over increasing N . Therefore, the
growth of communication latency of both in-
terconnection networks have strong effect on
their performance. In addition, since Speech
has the all-to-all communication pattern, rela-
tive performance of Speech is merely affected

by the speed of both networks (Figure 9). For
N = 32 → 64, the bidirectional ring still pro-
vides some level of speed up (19% to 64%),
while the performance of the crossbar can be
either increased by 21.8% or decreased by 44%
depending on the speed of the switch (Fig-
ure 10). The average (geometric mean) of rel-
ative performance and speed up of both net-
works are shown in Figures 11 and 12. For
N = 16, the bidirectional ring is 8% faster
than the crossbar with tr = 1 and ts = 4.
For N = 32 and 64, the bidirectional ring
achieves 32% and 77% better performance than
the crossbar even if the communication growth
rate of the crossbar is O(N).

Appli- N 16 32 64
cation ts 4 8 8 16 16 32 64

FFT 1 2 1 3 2 4 > 5
Simple 1 2 2 3 2 > 5 > 5
Weather 1 3 3 > 5 > 5 > 5 > 5
Speech 1 3 2 4 2 4 > 5
Average 1 2 2 4 2 > 5 > 5

Table 3: Ring Speed to Outperform Crossbar

The slowest ring speed for the bidirectional
ring to outperform the crossbar are shown in
Table 3. For N = 16, we need a very fast ring
that can operate at the same speed as the pro-
cessor clock (tr = 1) to outperform a very fast
implementation of a crossbar switch network
(ts = 4). If the speed of a crossbar switch
is moderate, a ring that operates at half the
speed of the processor clock is sufficient. For
N = 32, a bidirectional ring with half and one
forth the speed of the processor clock suffice to
outperform the crossbar switch network with
very fast and moderate (ts = 8 and 16) speed
respectively. For N = 64, it is much easier
for a bidirectional ring to outperform a cross-
bar switch network due to the latter’ physically
slow operating speed. However, although it
outperforms the crossbar, without sufficiently
fast ring speed, we cannot expect speed up on
the bidirectional ring. For example, on the av-
erage of four applications, we have speed up of
37% on the bidirectional ring with tr = 1 when
N is increased from 32 to 64. On the other

hand, if tr = 5, which is sufficient to outper-
form a moderately fast crossbar, the speed up
is only 2.5% for N = 32 → 64.

5 Conclusions

In this paper, we have evaluated the perfor-
mance of the bidirectional ring by comparing
it to the performance of the crossbar network.
We used a hybrid evaluation method which
is a combination of an analytical model and
workload parameters extracted from the mem-
ory traces of four parallel applications. Our
study indicates that for a 16 nodes configura-
tion, which is a typical size of crossbar switches
used in current multiprocessors, both architec-
ture achieve similar performance for the link
speed we have assumed. For a 32 nodes config-
uration, the bidirectional ring outperforms the
crossbar by 32% on the average of four applica-
tion programs, with an optimistic assumption
that the growth rate of the communication la-
tency of the crossbar is suppressed to O(N).
For a 64 nodes configuration, we can still ex-
pect speed up on the bidirectional ring (37%
on the average) while the performance of the
crossbar decreases from that of a 32 nodes con-
figuration.

Further investigations could include analy-
sis of dynamic behavior of both networks (such
as hot spot contention) using execution-driven
simulations and the hierarchical network mod-
els.

References

[1] Hitoshi Oi and N. Ranganathan, “Perfor-
mance Analysis of the Bidirectional Ring-
Based Multiprocessor”, in Proceedings of
the ISCA 10th International Conference
on Parallel and Distributed Computing
Systems, 397–400, October 1997.

[2] Hitoshi Oi and N. Ranganathan, “Effect
of Message Length and Processor Speed
on the Performance of the Bidirectional
Ring-Based Multiprocessor”, in Proceed-
ings on the International Conference on
Computer Design, 267–272, October 1997.

[3] T. Lang, M. Valero and I. Alegre, “Band-
width of Crossbar and Multiple-Bus Con-
nection for Multiprocessors”, Transac-
tions on Computers, IEEE, Vol. c31,
No. 12, 1227–1234, December 1982.

[4] G. Ravindran and M. Stumm, “A Perfor-
mance Comparison of Hierarchical Ring-
and Mesh-connected Multiprocessor Net-
works”, in Proceedings of International
Symposium on High Performance Com-
puter Architecture, 58–69, February 1997.

[5] L. A. Barroso and M. Dubois, Perfor-
mance Evaluation of the Slotted Ring Mul-
tiprocessor, Transactions on Computers,
IEEE, Vol. 44, No. 7, 878–890, July 1995.

[6] “Exemplar System Architecture”,
http://www.hp.com/wsg/products/

servers/exemplar/sx-class/

exemplar2.html , Hewlett Packard.

[7] T. Boku, et al, “Architecture of mas-
sively parallel processor CP-PACS”, in
Proceedings of the 1997 2nd Aizu In-
ternational Symposium on Parallel Al-
gorithms/Architecture Synthesis, 31–40,
Fukushima, Japan, 1997.

[8] X. Zhang and Y. Yan, “Comparative
Modeling and Evaluation of CC-NUMA
and COMA on Hierarchical Ring Archi-
tecture”, Transactions on Parallel and
Distributed Systems, IEEE, Vol. 6, No. 12,
1316–1331, December 1995.

[9] K. Farkas, Z. Vranesi and M. Stumn,
“Scalable Cache Consistency for Hier-
archically Structured Multiprocessors”,
Journal of Supercomputing, Vol. 8, 345–
369, 1995.

[10] H. Davis, S. R. Goldschmidt and J. Hen-
nessy, “Multiprocessor Simulation and
Tracing Using Tango”, in Proceedings
of the 1991 International Conference on
Parallel Processing, Vol. II, 99–107, 1991.

[11] L. Bhuyan, D. Ghosal and Q. Yang, “Ap-
proximate Analysis of Single and Multiple
Ring Networks”, Transactions on Com-
puters, IEEE, Vol. 38, No. 7, 1027–1040,
July 1989.

[12] D. Chaiken et al., “Directory-Based Cache
Coherence in Large-Scale Multiproces-
sors”, IEEE COMPUTER, Vol. 23, No. 6,
49–58, September 1990.

[13] ftp://tracebase.nmsu.edu/pub/, Parallel
Architecture Research Laboratory, New
Mexico State University.

0

1

2

3

4

5

6

7

1 2 3 4 5

R
el

at
iv

e
P

er
fo

rm
an

ce

Ring Speed (Clock Cycle)

16 Node, ts = 4
ts = 8

32 Node, ts = 8
ts = 16

64 Node, ts = 16
ts = 32
ts = 64

Figure 3: Relative Performance / FFT

1

2

3

4

5

6

7

8

9

10

1 16 32 64

S
pe

ed
 U

p

Number of Processors

Crossbar, ts = O(N)
ts = O(N^2)

B-Ring, tr = 1
tr = 5

Figure 4: Speed Up / FFT

0

1

2

3

4

5

6

7

1 2 3 4 5

R
el

at
iv

e
P

er
fo

rm
an

ce

Ring Speed (Clock Cycle)

16 Node, ts = 4
ts = 8

32 Node, ts = 8
ts = 16

64 Node, ts = 16
ts = 32
ts = 64

Figure 5: Relative Performance / Simple

0

5

10

15

20

25

30

1 16 32 64

S
pe

ed
 U

p

Number of Processors

Crossbar, ts = O(N)
ts = O(N^2)

B-Ring, tr = 1
tr = 5

Figure 6: Speed Up / Simple

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5

R
el

at
iv

e
P

er
fo

rm
an

ce

Ring Speed (Clock Cycle)

16 Node, ts = 4
ts = 8

32 Node, ts = 8
ts = 16

64 Node, ts = 16
ts = 32
ts = 64

Figure 7: Relative Performance / Weather

0

5

10

15

20

25

30

35

1 16 32 64

S
pe

ed
 U

p

Number of Processors

Crossbar, ts = O(N)
ts = O(N^2)

B-Ring, tr = 1
tr = 5

Figure 8: Speed Up / Weather

0

1

2

3

4

5

6

1 2 3 4 5

R
el

at
iv

e
P

er
fo

rm
an

ce

Ring Speed (Clock Cycle)

16 Node, ts = 4
ts = 8

32 Node, ts = 8
ts = 16

64 Node, ts = 16
ts = 32
ts = 64

Figure 9: Relative Performance / Speech

0

2

4

6

8

10

12

14

16

18

1 16 32 64

S
pe

ed
 U

p

Number of Processors

Crossbar, ts = O(N)
ts = O(N^2)

B-Ring, tr = 1
tr = 5

Figure 10: Speed Up / Speech

0

1

2

3

4

5

6

1 2 3 4 5

R
el

at
iv

e
P

er
fo

rm
an

ce

Ring Speed (Clock Cycle)

16 Node, ts = 4
ts = 8

32 Node, ts = 8
ts = 16

64 Node, ts = 16
ts = 32
ts = 64

Figure 11: Relative Performance / Average

0

2

4

6

8

10

12

14

16

18

20

1 16 32 64

S
pe

ed
 U

p

Number of Processors

Crossbar, ts = O(N)
ts = O(N^2)

B-Ring, tr = 1
tr = 5

Figure 12: Speed Up / Average

