
Real-World Simulation: Software Development

John Blake

Email jblake@u-aizu.ac.jp

University of Aizu, Aizuwakamatsu, Japan

Abstract
The abstract is published online only. If you did not include a short abstract for the online version when you submitted the
manuscript, the first paragraph or the first 10 lines of the chapter will be displayed here. If possible, please provide us with
an informative abstract.

Students who triumph at school may flunk in the workplace. Undergraduates who excel at university do not necessarily
excel at work, and vice versa. In a opinion survey of 400 employers in the US, the majority felt that recent college graduates
were ill-prepared for the workplace. Researchers have also pointed out that university graduates have difficulty applying the
skills learnt in higher education settings in real-world situations.

Introduction
Situation
Students who triumph at school may flunk in the workplace. Undergraduates who excel at university do not necessarily excel
at work, and vice versa. In a opinion survey of 400 employers in the US, the majority felt that recent college graduates were
ill-prepared for the workplace (Hart Research Associates, 2015, p. 11). Researchers have also pointed out that university
graduates have difficulty applying the skills learnt in higher education settings in real-world situations (Brodie, Zhou, &
Gibbons, 2015, p. 2). A recent study that found mismatches in students’ and employer’s perceptions concluded that higher
education institutions need to work with students and guide them to take “individual responsibility to acquire and develop”
transferable skills (Succi and Canovi, 2019, p. 1). However, the cause of this disjuncture is under-researched (National
Research Council, 2013).

Transferable skills, also known as soft, generic, enterprise or portable skills, refer to skills that are developed in one context
(e.g. university) and able to be used in another (e.g. work) (Fallows & Steven, 2000). Examples of transferable skills include
teamwork, problem solving, time management and public speaking. Based on a big data term extraction project of 4.2 million
job advertisements, the FYA (2016) compiled a list of eight transferable skills that are required in a broad range of jobs. These
are problem solving, communications, financial literacy, critical thinking, creativity, teamwork, digital literacy and
presentation skills. In contrast to transferable skills, there are technical (specific or hard) skills that are discipline specific. The
concept of core transferable skills, however, is not without critics. Hyland and Johnson (1998) argue rather unconvincingly
that context-independent skills are a chimera.

Skills developed in educational settings provide a basis for those students to build on when entering employment. The rapid
development of new technologies and constant innovations in many professions, including software development and
engineering, means that even after graduation, learning needs to continue (Uden & Dix, 2004). Learning is not limited by
location but my mindset. Students need to develop life-long learning skills so that they can learn new skills independently,
effectively and efficiently.

Problem
In contrast to vocational colleges, educators in higher education tend to focus on imparting knowledge, developing behaviours
and skills that enable undergraduates to succeed academically. Many university assessment specifications focus on evaluating
the knowledge, behaviours and skills in academic contexts. There appears to be little concern for producing workers who can
function effectively in their target vocation immediately on graduation.

Given that some students are able to function well in the context of education but not in employment, causal factors appear to
be at play. One of the probable causal factors is the lack of awareness of the expectations of the community of practice (Lave
& Wenger, 1991). Students may be unaware of the symbols, stories, rituals, rules, artefacts, attitudes and beliefs that permeate
the communities of practice in their target vocation. This lack of knowledge of the organizational culture and its associated

1✉

1

values makes it difficult for newcomers to fit in. For example, delivering clean working code in a timely manner is a primary
goal of software developers. In the university setting missing one or two homework deadlines to hand in code is unlikely to
result in any serious consequence. However, in the software development world missing a contractual deadline may result in a
severe financial penalty or forfeit of contract.

Hollywood has long portrayed software developers and programmers as loners with a preference for interacting with
computers rather than people. This rather negative image of loners, however, does not match the reality in leading technology
companies, such as Google, Facebook and Amazon. In large corporations software engineers work on tiny snippets of huge
blocks of code. This is at odds to academic contexts in which computer science students develop whole projects while those
in, for example, business and management tend to work in teams. Hogan and Thomas (2005) claim the focus on individuals
working alone on projects contributes to this loner stereotype. In short, software engineers need to be able to function in teams
to secure posts at top-tier companies.

Undergraduate computer science students also tend to ignore Hofstadter’s Law, which states that “it always takes longer than
you expect, even when you take into account Hofstadter’s Law”. (Hofstadter, 1980, p. 52). The corollary of poor time
management is that students may end up submitting software that fails to meet the specifications in terms of both quantity and
quality. While this may still result in a passing grade at university, in the real-world failure to deliver fully-functional software
would most likely lead to loss of a client. Students in academia are sheltered from the harsh reality of cause-effect. This is
particularly so for many Japanese students who are not chasing a high grade point average to maintain their scholarship status
or pursue a further degree.

Case Study
Vocational education provides educators with the opportunity to orientate students to the world of work. By raising the
awareness of students or the realities of the workplace, expectations of students may more closely align with their future
employers. Internships and work placement provide real-world experience. In this paper, a simulated workplace experience is
created within a university course in which students adopt the role of software developers and the teacher as the project
manager. The primary aim of this project is to reduce the disjuncture between study and work environments.

Context
This simulation was run at the University of Aizu, which is the only university dedicated to computer science in Japan. The
university is located in northern Japan. Almost all students are Japanese (95%) with approximately 90% of the students being
male. Forty percent of the university faculty are non-Japanese who deliver courses in English.

This simulation is run during an elective course delivered by the Centre for Language Research named “language and
patterns” which is a euphemism for computational linguistics. Elective courses are open to third and fourth-year
undergraduates in the school of computer science and engineering. This course is popular and is usually oversubscribed. The
course is limited to fifty participants due to room capacity, and so the first 50 students with the highest grade point average are
selected. This means that selected participants may be slightly more hard-working and/or academic than the student population
as a whole.

The course focuses on using computer science to develop online tools that address language problems. This is achieved
through a real-word simulation of software development, replicating a work-like environment within the classroom. The
tuition, including written materials, is delivered primarily in English although most students communicate together in Japanese
when working in teams.

Course Content
In the real-world the target users of a particular software project are central to the development process. Projects that are
vision-led and have easily understandable tangible outcomes are more likely to motivate students. Projects are also selected
that are on the cusp of the students’ technical proficiency, which forces all students to strive. Software developers who
produce fully-functional and user-friendly code will receive positive reviews, gain higher usage and in a commercial situation
generate revenue. As this is a university project, the aim is not to generate revenue, but to satisfy the target users. For this
reason, the target users are defined and the software developed is deployed online for the users to access. It is important that
the project is not just a vehicle for assessment purposes, but has a real purpose satisfying the needs of real users.

The software developed in this project targets Japanese speakers who deliver scripted presentations in English, but are unable
to read the scripts aloud in an appropriate manner. The specific target users are the undergraduates in the school of computer

science at the University of Aizu who have to deliver a fifteen-minute presentation in English on their final-year project as a
graduation requirement.

Course Organization
The course is allocated fifteen 90-min sessions. Sessions are held twice a week and are conducted over eight weeks, one
academic quarter. The fifteen sessions are split into three overlapping phases each consisting of between four and six sessions
depending on the students. The elective course is designed so that learners work in teams from the outset. Teams progress at
different speeds, and so this provides teams with some flexibility in terms of scheduling their job queue. The course begins
with teacher-controlled whole-class activities undertaken in teams and transitions to student-directed group-based activities
conducted in project teams both independently and in collaboration with other teams. During this simulation, the students
formed their own self-managed teams comprising four people and elected a team leader.

The three phases of the course are knowledge acquisition, skill practice and final project. Table 1 shows a skills matrix which
details the specific skills that are focused on in each phase of the course.

Table 1

Skills matrix

Skill Phase

Category Details 1: Knowledge acquisition 2: Skills practice 3: Final project

Technical

Discriminate between random and pattern

Identify language patterns

Understand syntax of regular expressions

Use regular expressions to match patterns

Use version control system appropriately

Transferable

Problem solving

Communication: messages

Communication: formal report

Communication: presentation

Critical thinking

Creativity

Teamwork

Digital literacy

Phase 1: Knowledge Acquisition

In the first phase, students learn the technical knowledge necessary to complete the subsequent phases. In the first few
sessions, a series of learning activities were provided for student teams to complete to gain the technical and linguistic
knowledge necessary for the final project. The key computer science-related knowledge is the use of regular expressions,
which have been described as “wildcard searches on steroids”. In this particular project, students needed to learn the syntax
and semantics of regular expressions to create rule-based pattern-matching code. They also needed to learn how to create a
function using JavaScript that is executed on matching expressions. As this project relates to pronunciation, students needed to
learn the basic phonological systems of English including sounds, word stress, sentence stress, intonation and linking.

Phase 2: Skill Practice

To ensure students develop the knowledge, skills and behaviours expected, a series of tasks are set. Task-based learning (TBL)
has been used to allow students to apply knowledge in specific contexts and critically reflect on their application (O’Halloran,
2001). TBL enables students to experience learning in the context of completing real-world tasks and helps align their

expectations with the reality in the workplace (Harden et al., 1996). Some of the tasks are presented as problems that teams
need to solve to complete the task. Problem-based learning activities (PBL) (Savery, 2006) have been popular in medical
education for decades, but have been less widely adopted in other disciplines. PBL enables learners to critically analyze and
complex real-world problems by sourcing, evaluating and using appropriate resources. This enables learners to combine and
consolidate their subject-specific knowledge with their other knowledge sets (Duch, Groh, & Allen, 2001). PBL activities were
adopted akin to Brodie, Zhou, & Gibbons (2015).

AQ1

Each team was tasked with the remit to complete four tasks to practice their skills before undertaking the final project. The
project manager created approximately fifty tasks, graded into five difficulty levels. Task specifications were housed on an
online workflow system, Trello. Student teams bid to complete the first-level tasks, and on completion became eligible to bid
for subsequent tasks. The first two tasks are straightforward with obvious answers, the next two tasks are more complex,
preparing students for the final project. The earlier tasks were designed to enable students to learn how to create regular
expressions required for the final task. Students were required to develop their software for each task on Github or CodePen.
Slack was used for communications between and among groups.

Phase 3: Final Project

The final task was the development of a high-fidelity working prototype of a discrete language visualization function. The
course approach could be described as project-based learning as the class project is to create a fully-functional prototype. This
final project is the main part of the course and receives the lion’s share of the assessment weighting. However, creating a high-
fidelity prototype is a stretch goal for many students at the start of the course as they lack both the knowledge and skills. For
this reason, the initial intensive knowledge-acquisition and task-based learning phases are included to provide students with a
stronger foundation to build on. Student teams with excellent analytical skills and superior programming ability could
probably complete a high-fidelity prototype for their discrete function in one working day. However, in the vast majority of
cases, student teams take the whole duration of the course to complete their prototype. Screenshots of two prototypes are given
in Figs. 1 and 2.

Fig. 1

Screenshot of function discriminating the pronunciation of “s”

Fig. 2

Screenshot of function identifying the type of intonation at the end of a sentence

This project provides the course with a clear direction and provides the class with a shared vision. After the course, these
discrete functions were combined into a single program and a suitable graphical user interface constructed. Figure 3 shows the
output of the first deployed Pronunciation Scaffolder (Blake, 2018).

Fig. 3

Screenshot of the output of the pronunciation scaffolder version 2.0
(Available at: https://john6938.github.io/PronunciationScaffolder/)

The course assessment was criterion based with full marks awarded for successful on-time completion for the first four tasks
and zero marks awarded for partial or none completion, which reflects typical workplace environments. The final task was
evaluated based on both successful completion and also on the ability to present the results through written reports and oral
presentations.

Course Approach

Roles

Rather than the conventional roles of teacher and student, the teacher adopted the role of project manager and students acted as
freelance developers. Students formed teams who bid for and develop working prototypes of language visualization software.
Group-based project work has been shown to be more effective at developing transferable skills than traditional university-
style lectures (Duffy & Bowe, 2010). Working in teams provides team members with numerous opportunities to develop their
communication and time management skills. Team members work together to create their discrete function. When requested
by another team, teams are required to provide assistance. The most common requests are to act as users to evaluate the
usability of the software, but some of the less proficient teams request assistance with programming.

Throughout the course learning is designed to occur during team discussions. The activities, tasks, problems and projects all
act as vehicles through which students gain knowledge, practice skills and develop appropriate behaviours. The teacher adopts
the role of project manager and facilitates discussion rather than the role of knowledge-giver and problem-solver. When a
particular group is unable to progress, a team member of a different group is seconded to their group to provide assistance.
This again replicates the workplace when consultants are employed to solve problems.

Rewards

A key concept was to create an environment in which students were rewarded in the same way as freelance software
developers. Rewards are tied to measurable events, such as the completion of a project. To provide students with the
motivation to take responsibility for their work and deliver in a timely manner, a bidding system was used for tasks.
Developers who produce clean code on time secure the best work and gain first choice on future bidding contracts for tasks.
This creates a virtuous circle for those who are able to produce the deliverables. As with freelancers, small-scale contracts
(tasks) were first awarded and on completion of four tasks, the final task was awarded.

Technologies

To familiarize students with the types of technologies that they are likely to use in the workplace, students were required to
use Github or CodePen to develop prototypes. GitHub is a cloud-based version control system that is extremely powerful, but
has a steep learning curve, which many of the students had not yet climbed. Feliciano, Storey, & Zagalsky (2016) describe
how GitHub can be used in courses for software engineers. Marquardson and Schuetzler (2019) reflect positively on their use
of incorporating the use of GitHub in a collaborative programming task. In the assessment criteria, appropriate use of GitHub
is emphasized. Students were not limited to a particular programming language, but had to ensure that the input and output of
their function was compatible. Extensive use was made of Slack and Trello, which are commonly used cloud-based workflow
and communication platforms for software developers.

Deliverables

Software developers in the real-world produce two key deliverables: software and technical reports. In addition, they have to
present their work to both technical and non-technical audiences. To replicate this, each team was required to submit their
software (usually housed on GitHub or CodePen), and a technical report explaining the software development process and
critiquing their software. This report tended to focus on the false negative and false positive results. In addition, they produced
a five-minute video for target users describing and explaining how their software works. A notable advantage of video
presentations is that giving a presentation to a web camera or a fellow team member is less stressful than giving a live
presentation in front of the teacher. Clear criteria was provided so that learners were able to estimate their expected grade, and
then judge whether to submit work that would meet expectations and receive a passing grade, or aim for a higher grade.
Students had to submit a video presentation as a course requirement, but were given the option of giving a live presentation as
well. They could then elect to use either the grade from the live presentation or the video presentation. However, they had to
make the selection between the live or recorded presentation grade before either of the grades were released. Only two teams
opted for live presentations and no teams opted to use the live presentation grade. In the subsequent courses, live presentations
were not given as an option.

Digital Artefacts

Digital artefacts are digital documents produced in an educational context (Barton and Collins, 1997). The submitted software,
reports and videos are, therefore, digital artefacts. With permission from the creators, these digital artefacts can easily be
reused and adapted to help future cohorts. For example, students may produce software and create a video explaining the
shortcomings in their software. A future cohort of students could be set the challenge to fix the bugs by using information in
the video explanation. The inspiration for this stems from Chewar and Matthew’s (2016) implementation of using video with
software engineers. As improvements can always be made, this cycle is never ending. Digital artefacts can also be assessed
more easily. For example, a video presentation can be replayed whereas in a live presentation, the assessor needs to make on-
the-spot decisions. Humans are inherently subjective, swayed by multiple cognitive biases and may at different times on
different days evaluate exactly the same presentation differently. Digital artefacts do not change this subjectivity, but do
provide a way to ameliorate the subjectivity using multiple raters, moderators and using the videos for rater standardization.

Course Feedback
The official end-of-course summative feedback questionnaire was very positive. However, in this Japanese university context,
formal feedback tends to be positive regardless of the course or instructor. At the end of this course, many students contacted
me directly to talk about their projects. This is the first time that students in this university had wanted to continue to discuss
course content after a course has finished. Their enthusiasm to deliver the best working prototype for the users was not
constrained by the submission of the final assessment nor the official end of the course. This is a clear indication of taking
responsibility for a project, which is a behaviour that employers value.

Confidence

One student came to my office with some suggestions to improve the code his team had created after the course. During this
meeting he said that, “because of [this] course, I can talk to my supervisor”. His final-year project supervisor was a Russian
professor who does not speak Japanese and so their lingua franca is English. The student was painfully shy at the beginning of
the course, but he managed to express his ideas directly to me (and hopefully his supervisor) by the end of the course.

Cultural Space: Technologies—Git, Slack and Trello

On a different day a four-person team of students came to discuss their code. During his meeting they explained that although
they knew the importance of version control systems, such as GitHub, they had never had to use it for a real project. They had
previously been forced to use some features in a course, but never used it after that. They were surprised at how easy GitHub

was to use once they had remembered the key commands. During the course, many students enjoyed using Slack. Perhaps, this
was because they usually used similar sites to communicate with their friends. Slack, however, is much more powerful, and so
once they discovered that, they set up their own Slack groups with their friendship groups. In the same vein, students found
Trello was practical and easy to use. Students realized that Trello could be used to manage their university assessments and
help them sequence the tasks for their final-year project.

Technical Skill: Regular Expressions

A number of students continued to improve their prototypes after the end of the course. The vast majority of improvements
involved regular expressions. Many of the less proficient programmers knew the term regular expression but were unfamiliar
with their syntax and their power. Regular expressions are used within many programming languages. However, each language
has some systematic changes to the semantics and syntax. The skill practice phase gave students the chance to practice using
them in a non-threatening environment. Regular expressions look incredibly difficult and so many students simply never tried
to learn them until this course. Many students stated that they were pleased to get reintroduced to regular expressions and
expected it to have a positive effect on their general programming.

Vision

Strategic management introduced mission statements and visions as a way to focus the workforce on achieving a particular
aim. This shared vision is designed to create a context of shared goals, and increase employee buy-in and willing participation.
The vision itself is probably key. Some visions may help focus employees (or in this case students) while others may not. In
this instance, the vision of helping graduating students read out their presentation scripts aloud more easily would not only
help others but could also potentially help themselves as well.

Through this process, student feedback shows that they better understood the need to take responsibility, produce deliverables
on time and with sufficient quality and understood some of the practicalities that freelance software development teams
experience. A key learning experience being that those who deliver get rewarded, while those that fail to deliver, do not.
Overall, the students adopted some of the valued behaviours, used the skills and applied the knowledge in the same manner as
needed in the workplace. It appears that their understanding of the cultural space in which software developers operate has
increased although this “gain” has not been measured either directly or using proxy variables.

Lessons Learned
This novel approach helped students develop both transferable and life-long learning skills. The specific skill set necessary for
software developers and engineers includes use of version control systems (VCSs) such as Github and Gitlab, workflow
systems, (e.g. Trello) and professional communication via Slack, a cloud-based collaboration tool. Student feedback shows
that they better understood the need to take responsibility, produce deliverables on time and with sufficient quality and
understood the cultural space in which software developers operate. One of the technical skills developed is the use of regular
expressions for rule-based pattern matching. This project used regular expressions in just one programming language, but
regular expressions are a feature in many programming languages.

During this course, participants had the opportunity to use the knowledge and skills they had developed during their university
studies. Given the tight timeframe of just two months, those with excellent time management skills and strong teamwork skills
rose to the challenge. The final deliverables of a video and report provided students with the opportunity to showcase their
clear communication skills.

Life-long learning skills were developed by enabling students to function as self-directed, autonomous learners. This project
was successful in terms of both developing the learners technical and transferable skills and delivering a practical language
learning tool for the target users. Despite this success, a number of lessons were learnt that inform future iterations of this
course. These lessons are listed below.

Teams of One
Although developing teamwork skills is of importance to employers, some students who fit the geek loner stereotype
complained bitterly about being forced to work in teams. It became clear that some people are simply not suited for teamwork.
Not everyone is a team player, and forcing unwilling students to work in teams not only does not create team players, but also
results in asymmetric workloads and negative course evaluation (Carroll, Markauskaite, & Calvo, 2007). In future courses, a
strong incentive in terms of expected workload is given to encourage students to form teams of four. However, students are
given the option to opt out of teamwork by creating a team of one.

Git
Future versions of this course focus more on using GitHub as an online repository. This is because GitHub enables easy
tracking of contributions to projects. The default setting is public so it is easy to check which students contributed to what
extent. Students can also easily deploy their prototype online directly from this repository and version control is provided as a
default. Codepen is much easier to use, but provides no version control.

Video Quality
In the software development stage, usability studies were conducted in which feedback was sought on the software. However,
in the video submission stage student teams created the video and submitted. The quality of some videos fell short of
expectations for a number of different reasons, including poor sound quality, poor editing skills, forgetting to use PowerPoint
in display mode and excessive background noise. In future courses, student teams are required to submit their video to another
team for an initial quality check. A simple checklist adapted from the rubrics developed by Brine et al. (2015) is now provided
in the online materials to ensure the videos are of a good enough quality to be reused if permission is received.

Deployed Software
Students can also add the prototype of deployed discrete function to their resume using a GitHub address which gives a
professional appearance. The resultant tool incorporating all the discrete functions created as a class was deployed, enabling
students to add “co-developed language visualization software” to their resume. Students are shown how to create a frame and
provide access to the jointly created deployed tool via their preferred web address. This advice was given ad hoc during this
course, but is now added to the syllabus.

Societal Benefit
This open-source source language visualization tool not only served as the vehicle to help computer science majors acquire
technical and transferable skills, but also helps thousands of users on a daily basis throughout the world. Following this
course, the functionality of the tool has been extended and version 3.0 is now deployed. Students in future courses could be
advised to add a visitor counter to log the number of visitors to their prototype. The realization that users are visiting their site,
this might increase their incentive to create an even better tool.

Future Work
Assessments focused on the products of the work, viz. the digital artefacts, for example, software code, video presentations
and development reports. These could act as proxies for skills. However, it is possible to assess the skills more directly using a
specially developed set of rubrics (e.g. Hu and Shepherd, 2014; Hu et al., 2019). This could be trialled in a future iteration of
the course.

References

Barton, J., & Collins, A. (1997). Portfolio assessment: A handbook for educators. Assessment bookshelf series. New York:
Dale Seymour Publications.

Blake, J. (2018). Pronunciation scaffolder [online tool]. Available https://john6938.github.io/PronunciationScaffolder/ .

Brine, J., Kaneko, E., Heo, Y., Vazhenin, A., & Bateson, G. (2015). Language learning beyond Japanese university classrooms:
Video interviewing for study abroad. In Critical Call–Proceedings of the 2015 EUROCALL Conference (pp. 91–96).

Brodie, L., Zhou, H., & Gibbons, A. (2015). Steps in developing an advanced software engineering course using problem
based learning. Engineering Education. 3(1), 2–12. https://doi.org/10.11120/ened.2008.03010002 .

Carroll, N. L., Markauskaite, L., & Calvo, R. A. (2007). E-portfolios for developing transferable skills in a freshman
engineering course. IEEE Transactions on Education, 50(4), 360–366. https://doi.org/10.1109/TE.2007.907554 .

Chewar, C., & Matthews, S. J. (2016). Lights, camera action! Video deliverables for programming projects. Journal of
Computing Sciences in Colleges, 31(3), 8–17.

Duch, B. J., Groh, S. E., & Allen, D. E. (2001). Why problem-based learning? A case study of institutional change in

undergraduate education. In B. Duch, S. Groh, & D. Allen (Eds.), The power of problem-based learning (pp. 3–11). Sterling,
VA: Stylus.

Duffy, G., & Bowe, B. (2010). A framework to develop lifelong learning and transferable skills in an engineering programme.
In 3rd International Symposium for Engineering Education. Ireland: University College Cork.

Foundation for Young Australians (FYA). (2016). The new basics: Big data reveals the skills young people need for the new
work order. FYA. https://www.fya.org.au/wp-content/uploads/2016/04/The-New-Basics_Update_Web.pdf .

Fallows, S., & Steven, C. (2000). Integrating key skills in higher education. London: Kogan Page Publishers.

Feliciano, J., Storey, M. A., & Zagalsky, A. (2016). Student experiences using GitHub in software engineering courses: a case
study. In Proceedings of the 38th International Conference on Software Engineering Companion (pp. 422–431). New York:
ACM. https://dl.acm.org/citation.cfm?id=2889195 .

Harden, R. M., Uudlaw, J. M., Ker, J. S., & Mitchell, H. E. (1996). AMEE medical education guide no. 7: Task-based learning:
an educational strategy for undergraduate postgraduate and continuing medical education, part 1. Medical Teacher, 18(1), 7–
13.

Hart Research Associates. (2015). Falling short? College learning and career success. Association of American Colleges and
Universities. https://www.aacu.org/leap/public-opinion-research/2015-survey-results .

Hofstadter, D. R. (1980). Gödel, Escher, Bach: An eternal golden braid: [A metaphorical fugue on minds and machines in the
spirit of Lewis Carroll]. New York: Penguin Books.

Hogan, J. M., & Thomas, R. (2005). Developing the software engineering team. In Proceedings of the 7th Australasian
conference on Computing education-vol. 42 (pp. 203–210). Australian Computer Society, Inc. https://dl.acm.org/citation.cfm?i
d=1082424.1082450 .

Hu, H. H., Mayfield, C., & Kussmaul, C. (2019). Special session: Process skills in computer science. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (pp. 171–172). New York: ACM. https://doi.org/10.1145/328
7324.3287520 .

Hu, H. H., & Shepherd, T. D. (2014). Teaching CS 1 with POGIL activities and roles. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education (pp. 127–132). New York: ACM. https://doi.org/10.1145/2538862.2538
954fa .

Hyland, T., & Johnson, S. (1998). Of Cabbages and Key skills: Exploding the mythology of core transferable skills in post-
school education. Journal of Further & Higher Education, 22(2), 163–172. https://doi.org/10.1080/0309877980220205 .

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press.

Marquardson, J., & Schuetzler, R. M. (2019). Learning by teaching through collaborative tutorial creation: Experience using
GitHub and AsciiDoc. Journal of Information Systems Education, 30(1), 10–18. http://jise.org/Volume30/n1/JISEv30n1p10.pd
f .

National Research Council. (2013). Education for life and work: Developing transferable knowledge and skills in the 21st
century. National Academies Press.

O’Halloran, D. (2001). Task-based learning: a way of promoting transferable skills in the curriculum. Journal of Vocational
Education & Training, 53(1), 101–120. https://doi.org/10.1080/13636820100200150 .

Savery, J. R. (2006). Overview of problem-based learning: Definitions and distinctions. Interdisciplinary Journal of Problem-
Based Learning, 1(1). https://doi.org/10.7771/1541-5015.1002 .

Succi, C., & Canovi, M. (2019). Soft skills to enhance graduate employability: comparing students and employers’
perceptions. Studies in Higher Education, 1–14. https://doi.org/10.1080/03075079.2019.1585420.

Uden, L., & Dix, A. (2004). Lifelong learning for software engineers. International Journal of Continuing Engineering
Education and Life-long Learning, 14(1), 101–110. https://doi.org/10.1504/IJCEELL.2004.004578 .

