Using psychoacoustic roughness to measure creakiness in Burmese

Jeremy Perkins, University of Aizu
Seunghun J. Lee, International Christian University & University of Venda
Julián Villegas, University of Aizu
Kosei Otsuka, Osaka University

Introduction & Background

- Decreased spectral tilt is commonly used to identify creaky phonation in phonetic studies (i.e. Blankenship, 2002; Kreiman et al., 2007; DiCanio, 2009; DiCanio, 2012; Kuang, 2013; Keating et al., 2015).
- The tilt in amplitude between harmonics of F0 and/or between F1, F2 and F3 correlates with OQ.
- Psychoacoustic roughness is more suitable in identifying phonologically contrastive creakiness.
- Roughness relates to properties of perception.
- Gruber (2011) measured OQ via EGG, spectral tilt and oral airflow, targeting tone contrasts in Burmese.
- In isolation and phrase-finally, creaky & checked tones were distinguished from low and high tone.
- Sentence-medially, no distinction was found.
- Recent findings in Zhuang (Perkins et al. 2017) and White Hmong (Villegas et al. 2018) have shown roughness can successfully identify creaky phonation.
- Roughness is compared with spectral tilt in the ability to identify creaky tones in Burmese.

Methods

A. Participants & Stimuli

- Recordings from 12 native Burmese speakers (6 males, 6 females) in Yangon.
- 78 monosyllabic words as stimuli in isolation and frame sentences (L_1) as in Gruber (2011).
- 5 repetitions x 78 words x 2 contexts = 780 tokens
- Stimuli were balanced for:
 - Tone (low, high, creaky, checked (glottal coa))
 - Coda type (open vs. nasal)
 - Vowel quality ([i], [u], [a]).
 - Onsets varied (mostly alveolar; never labial).
- Words were shown to participants in Burmese script via a slide-show on a laptop.

B. Analysis

- Normalized spectral tilt (H1*–H2*, H1*–A1*, H1*–A2*, H1–A3*)
- Using VoiceSaucer (Shue et al. 2011)
- Roughness (binary classification)
- % of creakiness measured using COVAREP algorithm.
- Uses a combination of acoustic features.

Results

- The roughness algorithm confirmed two major findings in Gruber (2011):
 - Burmese creaky and checked tones have late creakiness in words in isolation.
- COVAREP algorithm did not reliably distinguish creaky from modal tones in most speakers.

1) Binary Roughness Classification (in isolation)

- For words in sentence-medial context, there was no evidence of creakiness.
- Spectral tilt (H1* – A2*) did not reliably distinguish creaky from modal tones in all speakers.

2) Binary Roughness Classification (in frame sentences)

- More reliable for males than females:

3) COVAREP Prob. of Creakiness (in isolation)

- Roughness and not spectral tilt reliably distinguished creaky from non-creaky tones in Burmese.
- Results here match Gruber’s (2011) findings:
 - Creakiness is found late in syllables in checked & creaky tones.
 - Creakiness is only found in words read in isolation, and not in frame sentences.

Conclusion

- Roughness and not spectral tilt reliably distinguished creaky from non-creaky tones in Burmese.
- Results here match Gruber’s (2011) findings:
 - Creakiness is only found in words read in isolation, and not in frame sentences.

References

Acknowledgement

This work was supported by JSPS Kakenhi Grant Number 15K16749.

Jeremy Perkins – jeremy@uisr.ac.jp
Seunghun J. Lee – seunghunjlee@gmail.com
Julián Villegas – julian@yio-aizu.ac.jp
Kosei Otsuka – kosei@u.aizu.ac.jp