The roles of phonation and f0 in Wuming Zhuang tone

Jeremy Perkins (University of Aizu, Japan)

jperkins@u-aizu.ac.jp

Seunghun J. Lee (International Christian University, Tokyo, Japan)

Julián Villegas (University of Aizu, Japan)
Acoustic correlates of tone

- Fundamental Frequency (F0) (cf. Yip 2002)
 - peak delay
 - downstep and declination

- Phonation and tone (cf. Silverman 1997)
 - laryngeally complex languages
 - Otomanguean (e.g. Jalapa Mazatec, Garellek & Keating 2011; Triqui DiCanio 2008)
 - Nilotic (e.g. Dinka, Andersen 1993)

- Other acoustic correlates
 - duration
Creakiness Detection Algorithm

• a composite method used to measure creakiness
 • creakiness is estimated every 10 ms using the method in Kane et al. (2013) and Drugman et al. (2014).
 • the algorithm effectively determines the odds of a frame being creaky based on a combination of acoustic features
 • the difference between the first two harmonics (H2-H1)
 • F0 contour
 • residual peak prominence
 • a group of features used by Ishi et al (2008)
 • power peak parameters, inter-pulse similarity, intra-frame periodicity
 • To minimize false positives, three measures are included
 • normalized signal energy, number of zero-crossings, variance in the very short-term power contour

• Information theoretic methodology was applied to assess how well a set of acoustic features correlated with actual creakiness judgments of recordings from various databases.
SSANOVA

- a smoothing cubic spline ANOVA model (Gu 2014)
 - F0 and creakiness are explained by the factors Tone and normT, and their interaction
 - smoothing parameters are selected by a generalized cross-validation method using the default parameter values (e.g. $\alpha = 1.4$)

- this method was used in analyses of the lingual and labial articulation of whistled fricatives (Lee-Kim et al. 2014)
- F0 contours and larynx height for Mandarin tones (Moisik et al. 2013)
Outline

• Wuming Zhuang
 • a puzzle in tone categorization
 • the timing of F0 fall
 • the role of creakiness

• Discussion on methodology
 • SSANOVA
 • Creakiness detection algorithm
WUMING ZHUANG
Wuming Zhuang

- Zhuang has the largest number of speakers of the 55 official minority languages in China
 - Zhuang is in the Tai-Kadai family (Thai, Laos, Vietnam, Myanmar & China)
 - The variety spoken in Wuming is considered the standard variety (Wei & Qin, 1980).
 - There is a vast degree of dialectal difference within Zhuang.
 - Many Zhuang dialects are not mutually intelligible.
Wuming Zhuang Tone System (Wei & Qin 1980)

<table>
<thead>
<tr>
<th>Tone</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7 short</th>
<th>7 long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao (1930)</td>
<td>24</td>
<td>55</td>
<td>35</td>
<td>55</td>
<td>35</td>
</tr>
<tr>
<td>Example</td>
<td>[na]</td>
<td>[na]</td>
<td>[na]</td>
<td>[nap]</td>
<td>[na:p]</td>
</tr>
<tr>
<td>Gloss</td>
<td>‘thick’</td>
<td>‘face’</td>
<td>‘arrow’</td>
<td>‘to put into’</td>
<td>‘to be stuck’</td>
</tr>
<tr>
<td>Description</td>
<td>rising</td>
<td>level</td>
<td>rising</td>
<td>level</td>
<td>rising</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tone</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8 short</th>
<th>8 long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao</td>
<td>31</td>
<td>42</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Example</td>
<td>[na]</td>
<td>[na]</td>
<td>[na]</td>
<td>[nap]</td>
<td>[na:p]</td>
</tr>
<tr>
<td>Gloss</td>
<td>‘field’</td>
<td>‘aunt’</td>
<td>‘meat’</td>
<td>‘to bind’</td>
<td>‘to turn in tax’</td>
</tr>
<tr>
<td>Description</td>
<td>falling</td>
<td>falling</td>
<td>level</td>
<td>level</td>
<td>level</td>
</tr>
</tbody>
</table>

Unchecked syllables | **Checked syllables**

- Tones and syllable structures
 - Tones 1 to 6 only occur in open syllables or with sonorant codas (*unstopped/unchecked syllables*)
 - Tones 7 & 8 only occur with obstruent codas (*stopped/checked syllables*)

- Assumed tonal register split (following the Chinese tradition)
 - Tones 1, 3, 5, and 7 are upper register
 - Tones 2, 4, 6, and 8 are lower register
Data Collection

• Consultants
 • Three female and one male native speakers of Wuming Zhuang in their 20’s were recorded in a sound attenuated booth at Guangxi University in 2015. The university is located in Nanning, Guangxi.
 • At the time of the elicitation, the consultants communicated with their relatives and friends from Wuming in Zhuang. In Nanning, however, the consultants mostly used a Guangxi variety of Putonghua (standard Chinese).

• Procedure
 • Wuming Zhuang words were elicited using a frame sentence, presented in Chinese characters (but read in Zhuang).
 • 我正在读__这个词 “I am reading this word ____ now”
 • Words in isolation were then elicited from a list of Chinese characters to exclude possible tone sandhi effects.
 • The tones for these words in Wuming Zhuang are reported, facilitating the analysis.
Data Collection
Tone Tokens and Exclusion criteria

• Monosyllabic words
 • Only monophthongal vowels were included
 • Onset consonants were limited to alveolar, palatal and velar obstruents
 • Nasal codas were elicited but excluded from analysis due to induced creakiness
 • among checked syllables, only alveolar and velar stop codas were included.

• In sum
 • 197 words with 5 repetitions
 • 985 tokens in total (for each speaker)
Acoustic Analysis

- Syllable rhymes were segmented using Praat (Boersma & Weenink 2015)
 - rhyme boundaries are determined using
 - increased intensity
 - appearance and disappearance of the vowel formants
 - A script was run that adjusted all the rhyme boundaries to the nearest zero-crossing.
 - Octave errors were corrected in R by identifying and adjusting points that differed by more than 800 cents from a given speaker’s mean.
 - A small number of tokens (66 out of 2627) were excluded because of discontinuities between consecutive F0 measurements.
 - If two consecutive F0 points differed by more than 250 cents, then that token was excluded.
Results – F0

Wei & Qin

<table>
<thead>
<tr>
<th>Tone</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7 short</th>
<th>7 long</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>55</td>
<td>35</td>
<td></td>
<td>55</td>
<td>35</td>
</tr>
</tbody>
</table>

Description

- rising
- level
- rising
- level
- rising

Tone

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>42</td>
<td>33</td>
</tr>
</tbody>
</table>

Chao

<table>
<thead>
<tr>
<th>Tone</th>
<th>8 short</th>
<th>8 long</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Description

- falling
- falling
- level
- level
- level

Unchecked syllables

Checked syllables
Results – F0

• F0 contour is a good predictor for tone ($r^2 = 0.715$)

• The F0 contours generally agree with Wei & Qin’s (1980) account of Wuming Zhuang
 • tones 2 and 4 are classified as falling [31] and [42], consistent with the findings in Figure 1
 • tones 1 and 5 are classified as rising [24] and [35]; our results confirm that F0 rises to a higher point in tone 5 than in tone 1
 • tones 3 and 6, [55] and [33] respectively, have the greatest variation across speakers.
 • checked tones are generally consistent with Wei & Qin’s descriptions

• Outlier
 • WZ03 (green) produces tone 6 with a lower F0 and a sharply falling-rising contour.
Results - Creakiness

HLS 22: F0 & Phonation in Wuming Zhuang (Perkins, Lee & Villegas)
Results - Creakiness

- There is larger variation between speakers in creakiness (than in F0)

- the SS-ANOVA model for creakiness does not fit well ($r^2 = 0.332$)
 - WZ13 appears to differ from the other speakers in that he is generally creakier than the three female speakers, and has an earlier peak.
 - WZ03 and WZ14 have nearly identical, negligible amount of creakiness for all tones.
 - Only WZ01’s tone 3 and WZ13’s tone 5 show evidence of significantly increased creakiness.
Creakiness

Wei & Qin

<table>
<thead>
<tr>
<th>Tone</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao</td>
<td>24</td>
<td>55</td>
<td>35</td>
</tr>
<tr>
<td>Description</td>
<td>rising</td>
<td>level</td>
<td>rising</td>
</tr>
<tr>
<td>Tone</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Chao</td>
<td>31</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td>Description</td>
<td>falling</td>
<td>falling</td>
<td>level</td>
</tr>
</tbody>
</table>
DIALECTAL DIFFERENCES:
WUMING VS. DU’AN ZHUANG
F0 and Creakiness

- Overlaid temporal contours of F0 (dashed line) and Creakiness (solid line)
 - tone 2 (top panel)
 - no change in creakiness and F0 drops toward the end of the syllable
 - tone 4 (middle panel)
 - as creakiness increases, F0 falls (purple arrow)
 - tone 6 (bottom panel)
 - as creakiness increases, F0 falls (green arrow, though at a later point compared to tone 4)
Tone 2 – Tone 4 Contrast in Du’an Zhuang

• The difference between tone 2 (31 modal) and tone 4 (31 creaky) lies in the phonation and the timing of the falling of F0.
 - Tone 2 has modal phonation and has a late phonetic fall; it corresponds to [31] in Wuming Zhuang.
 - Tone 4 has creaky phonation and has an early phonetic fall; it corresponds to [42] in Wuming Zhuang.

• Hypothesis: In Du’an Zhuang, a phonation contrast is in the process of replacing the register contrast based on F0.
 - We are currently in the process of preparing a perception study that assesses the extent of the phonation contrast in Du’an Zhuang and Wuming Zhuang.
Creakiness & F0 in Du’an Zhuang

• The creakiness detection algorithm, coupled with the F0 contour, shows that
 • the timing of when the creakiness increases affects the F0 profile
 • as creakiness increases, F0 drops
 • F0 is dependent on the creakiness profile

• Using measurements such as spectral tilt over the vowel may not provide an accurate picture of the interplay between F0 and creakiness
Conclusion

• Acoustic methods are used to further understand the interplay between phonation and F0, two known acoustic properties that are related to tone.
 • Creakiness detection algorithm
 • SSANOVA

• In Wuming Zhuang, an instrumental investigation of F0 profiles shows that the speakers conform with earlier descriptions in Wei & Qin (1980)
 • Unlike the Du’an Zhuang, however, there is no observable evidence that Wuming Zhuang employs phonation in distinguishing tonal categories.
References

• Andersen, Torben (1993) Vowel quality alternation in Dinka verb inflection. Phonology 10, 1–42.
• Boersma, Paul (2001) Praat, a system for doing phonetics by computer. Glot International 5:9/10, 341-345
• Chao, Yuen-Ren (1930) A system of tone letters. Le Maître Phonétique 45, 24-27.
• Degottex, Gilles, Kane, John, Drugman, Thomas, Raitio, Tuomo and Scherer, Stefan (2014) COVAREP – A collaborative voice analysis repository for speech technologies. In IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, 960-964.
References

• Zhang et al. (1999). Studies on Zhuang dialects. Sichuan Minzu Chubanshe. [In Chinese]
Acknowledgements

• We would like to thank Wuming Zhuang speakers. We also thank Prof. Wentao Gu for connecting us with the members of the linguistics community at Guangxi University: Prof. Tang, Heng Lin and Lina Jo.

• This research was partially funded by Kakenhi grant #15K16745 awarded to Jeremy Perkins.