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ABSTRACT

In this paper, we describe new high-performanceon-line spea-
ker diarization system which works faster than real-time and
has very low latency. It consists of several modules including
voice activity detection, novel speaker detection, speaker gen-
der and speaker identity classi cation. All modules share a set
of Gaussian mixturemodels (GMM) representing pause, male
and female speakers, and each individual speaker. Initially,
there are only three GMMs for pause and two speaker gen-
ders, trained in advance from some data. During the speaker
diarization process, for each speech segment it is decidedwhe-
ther it comes from a new speaker or from already known
speaker. In case of a new speaker, his/her gender is identi ed,
and then, from the corresponding gender GMM, a new GMM
is spawned by copying its parameters. This GMM is learned
on-line using the speech segment data and from this point it
is used to represent the new speaker. All individual speaker
models are produced in this way. In the case of an old speaker,
s/he is identi ed and the correspondingGMM is again learned
on-line. In order to prevent an unlimited grow of the speaker
model number, those models that have not been selected as
winners for a long period of time are deleted from the sys-
tem. This allows the system to be able to perform its task
inde nitely in addition to being capable of self-organization,
i.e. unsupervised adaptive learning, and preservation of the
learned knowledge, i.e. speakers. Such functionalities are at-
tributed to the so called Never-Ending Learning systems. For
evaluation, we used part of the TC-STAR database consisting
of European Parliament Plenary speeches. The results show
that this system achieves a speaker diarization error rate of
4.6% with latency of at most 3 seconds.

Index Terms— Speaker diarization, Speaker segmenta-
tion, On-line GMM learning, Never-ending learning.

1. INTRODUCTION

The task of ef cient and effective automatic indexing and
searching of the growing volumes of recorded spoken doc-
uments, such as broadcasts, voice mails, meetings and oth-
ers, requires human language technologies that can not only
transcribe spe-ech, but can also extract different kinds of non-
linguistic information. This information, often called meta-

data, includes speaker turns, channel changes, and others.
Identifying and labeling the sound sources within a spoken
document is the task of audio diarization. A main part of the
audio diarization process is the speaker diarization or speaker
segmentation and clustering. In other words, it is the task to
nd out “who spoke when”.
Speaker diarization is currently the focus of the most ef-

forts in the audio diarization research, which has been also
driven by the recent NIST Rich Transcription [1] and Speaker
Recognition [2] evaluations. Broadcast news audio, meetings
recordings or telephone conversations are one of the main do-
mains for speaker diarization research and development. In
some cases, prior information about the task can be available.
This may be an example speech from speakers of a meeting
or from the main anchors of a broadcast. However, from a
system portability point of view, it is better to use less or no
prior knowledge at all.
Most of the current speaker diarization systems perform

several key sub-tasks which are: Speech detection, Speaker
change detection, Gender classi cation and Speaker cluster-
ing [3]. To improve the performance, in some cases, cluster
recombination and re-segmentation are also used [4]. The
speech detection is aimed to nd those regions of the au-
dio which consist of speech only. The most popular tech-
nique to perform this task is the maximum-likelihood clas-
si cation with Gaussian mixture models (GMM). They are
usually trained in advance from some labeled data and, in
the simplest case, there are only two models for speech and
non-speech data [5]. Some systems use several models de-
pending on the speaker gender and the channel type [6, 7].
Another approach that has been found useful is to perform a
single or multi-pass Viterbi segmentation of the audio stream
[8, 9]. For the broadcast news data, the typical speech detec-
tion error rates are 2% - 3%. After the speech segments are
identi ed, speaker change detection is used to nd out any
possible speaker change within every segment. If such is de-
tected, the segment is further split into smaller segments each
of which belongs to a single speaker. There are two main
techniques for change detection. The rst one nds poten-
tial change point in a window by determining whether it is
better modeled by two rather than one distribution using the
Bayesian information criterion (BIC) [8]. The second one is
based on measuring the distance, Gaussian divergence [10] or
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generalized likelihood ratio [11], between two xed length
windows represented most often by a single Gaussian. A
distance peak that is above certain threshold is then consid-
ered as a change point. The problem is that single Gaussian
function is a rough model of the data distribution from one
segment with typical length of 2-5 seconds. This inevitably
introduces detection errors and increases the error rate sensi-
tivity to the decision threshold. The gender classi cation is
used to split the segments into two groups (male and female)
which reduces the load of the next clustering task as well
as to give more information about the speakers. Typically,
two GMMs, one for each gender, are trained in advance and
maximum-likelihood is used as decision criterion. Reported
gender classi cation error rates are usually 1%-2% [3]. The
last sub-task, the speaker clustering, is to assign each segment
with its correct speaker label. This is done by clustering seg-
ments into sets corresponding to speakers. The most widely
used approach is hierarchical, agglomerative clustering with
BIC stopping criterion [9, 12]. Each cluster is usually rep-
resented by a single Gaussian and the generalized likelihood
ratio (GLR) [13] has been commonly used as between clus-
ters distance measure. Variations of this method have also
been proposed [7, 14], but they are still based on the same
bottom-up clustering technique. Although, quite successful,
agglomerative clustering approach has several drawbacks that
limit the potential use of the speaker diarization systems in
the real-world, real-time applications. First, it requires all the
speech segments to be available before the clustering starts
and, therefore, makes on-line processing impossible. Sec-
ond, the computational load increases almost exponentially
with the number of segments [15]. Finally, the performance is
greatly affected by the stopping criterion which is considered
as a critical part of the algorithm [3]. A sequential algorithm
based on the leader-follower clustering [16] and suitable for
on-line operation has been proposed recently [15]. However,
as in the agglomerative clustering method, the speech seg-
ments are modeled by a single Gaussian distribution and the
GLR is used as a distance metric. This reduces the clustering
accuracy for short segments and delays the decision until the
whole segment is received. In consequence, the system la-
tency becomes dependent on the segment’s length which can
be up to 30 sec. or even longer. Another sequential technique
where speakers are represented by subspaces has also been
studied [17]. However, it requires at least 5 sec. long speech
segments and has high miss and false alarm rates.

In this paper, we propose a new speaker diarization sys-
tem, which in contrast to those mentioned above operates
on-line, in less than real time, and has low latency of up to
few seconds. It performs all the sub-tasks of a standard di-
arization system, but the within segment speaker change de-
tection. Based on the observation that most speaker change
points occur during the non-speech regions [7], we assume
that each speech segment belongs to a single speaker. In case
this assumption cannot be justi ed, our system can be eas-

ily upgraded with a speaker change detection module. What
makes it signi cantly different from the other systems is the
way the segment clustering is performed as well as the over-
all operating algorithm, which is based on the Never-Ending
Learning (NEL) principle [18]. In our system, when assigning
speaker label to a given segment, rst, it is decided whether
it belongs to one of the known speakers or to a new speaker.
Then, in the former case, speaker identi cation is performed
and the winning speaker label is assigned to the segment. In
the latter case, new speaker is registered to the system and
his/her model is created. This is similar to the classical open-
set speaker identi cation task. Each speaker is represented
by a GMM which is learned on-line every time it has been a
winner. New speaker’s GMM is created by spawning the cor-
responding gender GMM. In addition, each speaker GMM
has a time counter which is set to zero whenever it wins the
identi cation. Otherwise, the counter is incremented by the
current segment length. Models whose counter reaches some
threshold T, are deleted from the system. This way, the sys-
tem can operate inde nitely, adapting itself to the environ-
ment changes, i.e. changes in the number of speakers and
their characteristics, and acquiring new knowledge, i.e. new
speakers, in an unsupervisedmanner without catastrophic for-
getting (i.e. newly learned knowledge does not wipe out pre-
viously learned one). Such systems are called Never-Ending
Learning systems.
Next section describes our system in details. Evaluation

setup and the experimental results are presented in Section
3. Conclusions and future work are summarized in the last
section.

2. SYSTEM DESCRIPTION

2.1. Overview

The block diagram of the speaker diarization system is shown
in Fig.1. It consists of several modules and a set of GMMs.
There are one pause GMM, two gender dependent GMMs and
variable number of speaker GMMs. Block arrows show how
modules share these models. Thin arrows show the control
ow. Unsegmented audio data is fed to the voice activity
detection module. It outputs speech segments start and end
points. As soon as the start point is decided, frame by frame,
the likelihoods from all the GMMs (except the pause GMM)
are accumulated for some time in the novelty detection mod-
ule. This time, called decision time (DT), is essentially the
system latency time. Then based on the accumulated likeli-
hoods, it is decided whether the segment belongs to an old
speaker or not. If it is a new speaker, its gender is deter-
mined in the gender identi cation module using the accumu-
lated likelihoods from the two gender GMMs. Then, from
the corresponding gender GMM, a new GMM is spawned by
copying its parameters in the new model generation module.
This GMM is given new speaker name and is inserted in the
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system speaker GMM set. The new model is learned on-line
using the speech data from the start point until some time,
called learning time (LT). In case LT is bigger than the cur-
rent segment’s length, it is set to this length, but only for the
current segment. The same holds for the DT. When the nov-
elty detection module decides that segment belongs to an old
speaker, this speaker is identi ed in the speaker identi cation
module by the maximum likelihood criterion. Each speech
segment is labeled by the name of the winning speaker, either
new or old.

Fig. 1. Block diagram of the system. Block arrows show how
modules share GMMs. Thin arrows show the control ow.

The systemworks on-line and and its operation is schemat-
ically shown in Fig. 2. The speech segments and their refer-
ence speaker labels are at the top of the gure. The bottom
part shows the speaker models and how they change in time.
For each speech segment, there is a winning model indicated
by a thick border line. At the beginning, there are only three
GMMs: one for pause (not shown for clarity) and two for
each speaker gender. They are trained in advance from some
labeled data. For the rst segment, the speaker gender is iden-
ti ed (male in the gure) and a new GMM is created from the
male GMM. It is learned on-line with the segment’s data, and
from this point it becomes the GMM for Speaker 1 (SP1 in
the gure). The next segment is from the same speaker, so
the SP1 GMM will be the winner. It is again learned on-line
with the second segment’s data. The third segment comes
from a female speaker and the same procedure is repeated re-
sulting in a set of two speaker GMMs. This way, the system
generates a set of speaker models on the y. If some GMM
(SP1 in the gure) has not been a winner for a long time, it is
deleted from the system (indicated by an “X” on the gure).
Such operating mode allows the system to work inde nitely.

Fig. 2. System operation. For each speech segment, the win-
ning GMM is denoted by bold border lines. The pause GMM
is not shown for clarity.

2.2. Voice activity detection

For the voice activity detection (VAD), we use the standard
model based approach. Non-speech events (pauses in this
case, but other event can also be modeled) are represented
by a single GMM and the speech is modeled by the two gen-
der dependent GMMs. For each frame, the non-speech and
speech (the better one from the two GMMS) likelihoods are
passed through two separate median lters and the frame’s
label (speech / non-speech) is assigned by comparing the l-
ters output. Then, a simple logic decides segments start and
end points taking into account such requirements as minimum
segment length (MSL), maximum pause in segment (MPS)
and maximum speech in pause (MSP).

2.3. Gender identi cation

The gender identi cation module uses the same gender de-
pendent GMMs as the VAD module. Frame likelihoods cal-
culated already during the voice activity detection are accu-
mulated from the segment’s start point for a time set by the
DT parameter. Then, the speaker gender is determined by a
simple maximum-likelihood classi cation.

2.4. Novelty detection

The purpose of this step is to decide whether the current seg-
ment comes from one of the registered system’s speakers or
from a new speaker. This is a typical hypothesis testing prob-
lem, where the standard solution is the likelihood ratio test. It
is formulated as follows:

X ∈

{
ω0, if L(X)> θ
ω1, if L(X)< θ

(1)

where X = {xi}, i = 1, . . . , DL is a decision length speech
segment, ω0 is a class corresponding to the hypothesis H0,
i.e. old speaker. Respectively, ω1 corresponds to H1, i.e. new
speaker. The likelihood ratio is:

L(X) =
p(X |ω0)

p(X |ω1)
(2)

There are various ways to de ne p(X |ωi). Considering the
available set of GMMs, a straightforward approach is to de-
ne them as:

p(X |ω0) = Psp = max
λj∈Λ

p(X |λj) (3)

p(X |ω1) = Pgen = max(p(X |λmale), p(X |λfemale))

where Λ = {λj} is the current set of speaker GMMs. An-
other approach, often used in speaker veri cation is to de ne
p(X |ω1) as:

p(X |ω1) = Pave =
1

n − 1
(
∑
j

p(X |λj) − Psp) (4)

701



i.e. the average of all model likelihoods except for the win-
ning model. Here n = |Λ| is the size of the speaker set. Ex-
perimentally we veri ed that combining the two approaches
works better than either of them. In this case the likelihood
ratio is:

L(X) =
P 2
sp

PgenPave

(5)

The threshold θ is usually estimated using a development data
set.
Although separated in a differentmodule, the speaker iden-

ti cation is implicitly performed during the novelty detec-
tion task since the best speaker likelihood is required for the
likelihood ratio calculation. The same holds for the gender
identi cation. If the winning hypothesis is H0, then the best
speaker is identi ed from Psp. Otherwise, the winning gender
is found from Pgen.

2.5. On-line GMM learning

This step is the one that allows the whole system to operate
on-line and makes it different from all other systems. The
main algorithm for off-line GMM parameter estimation is the
Expectation-Maximization (EM) algorithm. Not long ago, in-
cremental versions of it were proposed [19, 20], which facil-
itated the development of on-line variants [21, 22]. In the
on-line EM, statistics and parameters are updated after each
observation x using the following equations:

� f(x, y) �i (t) =� f(x, y) �i (t − 1)+ (6)
η(t)[f(x(t), y(t))Pi(t)− � f(x, y) �i (t − 1)]

where� f(x, y) �i (t) is the statistic function of the com-
plete data (x, y). The posterior probability of the Gaussian
component i given the previous parameter set Θt−1 is de ned
as Pi(t)

.
= P (i|x(t), y(t), Θt−1). The learning rate η(t) sat-

is es the constraints:

1 ≥ η(t) ≥ 1/t (7)

The new parameters Θt are obtained from:

ci(t) = � 1 �i (t) (8)
μi(t) = � x �i (t)/ � 1 �i (t)

σ2

i (t) = � x2 �i (t)/ � 1 �i (t) − μ2

i (t)

The on-line EM converges faster than the standard EM,
but even few iterations could increase too much the computa-
tional load for a real-time system. On the other hand, given an
in nite number of data drawn from the same distribution, the
on-line EM can be considered as a stochastic approximation
[23]. In practice, this means that as long as there is enough
data, model parameters can be approximated in one pass. In
this case, the learning rate η(t) should satisfy the conditions:

η(t)
t→∞
−→ 0,

∞∑
t=1

η(t) = ∞,

∞∑
t=1

η2(t) < ∞ (9)

Commonly used function that satis es these conditions as well
as Eq.(7) is:

η(t) =
1

at + b
1 > a > 0 (10)

where a and b are parameters which control the learning pro-
cess. The past samples forgetting speed depends on a, while
b sets the learning speed of the new samples.
This algorithm allows fast and inexpensive on-line learn-

ing of the system GMMs. As in the batch EM case, the initial
parameter values play important role in the learning speed and
the precision of the nal estimates. Therefore, it is desirable
for the initial values to be as close as possible to the true ones.
In our system, the gender dependent GMM parameters are the
best available initial values for every speaker model and that
is why they are used for the new GMM generation.

3. EXPERIMENTS

3.1. Database and pre-processing

For the system evaluation, we used the data released for the
TC-STAR 2007 evaluation campaign [24]. The data consists
of recordings of the European Parliament plenary speeches.
From the training part of the database, we selected about 20
min of silence data for building the pause model. For the gen-
der dependent models, about 2 min. of speech from each of
20 male and 15 female speakers was used. The of cial devel-
opment set was used as development data, and the evaluation
set from the TC-STAR 2006 campaign was used for the nal
system evaluation.
All audio data were transformed into 26 dimensional fea-

ture vectors consisting of 12 MFCC coef cients, power and
their rst derivatives. The frame length and rate were 20 and
10 ms. respectively.

3.2. Preliminary experiments

Before running the on-line experiments, we investigated the
performance of the on-line learning algorithm in separate off-
line tests. First, using the data selected for the gender models,
we trained off-line one GMM for every speaker. This allows
us to compare the on-line and off-line learning algorithms’
speaker identi cation performance. For tests, we used about
30 sec. of each speaker’s data, but different from that used
for training. Then we run two types of experiments. One
is a speaker identi cation with the off-line trained GMMs.
In the other, each speaker GMM was replaced by its on-line
learned version, one at a time, and the results were averaged
over all speakers. Table 1 shows the identi cation rates for
the test data of different lengths when the on-line learning is
done using 2 or 4 sec. of data. The size of the GMMs in these
experiments was 64, and the on-line learning parameters were
set to a = 0.999 and b = 1000, which were found to give the
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Table 1. Speaker identi cation performance for on-line and
off-line trained GMM (%).

Test On-line learning time Off-line
length 2 sec. 4 sec. learning
1 sec. 95.6 96.6 98.5
2 sec. 98.8 99.6 99.7
3 sec. 99.5 100 100

best performance. The results show that the on-line learning
can produce models pretty close to those trained off-line even
with small amount of learning data.
We also checked the gender identi cation performance

using the same test data. It was 97.3%, 98.4% and 99.6%
for the test data of 1, 2 and 3 seconds respectively. Actually,
the results are little bit biased because the test speakers are
those used for the gender GMMs training. Nevertheless, we
don’t expect signi cant drop in the performance for the real
system.

3.3. On-line experiments

In these experiments, we rst evaluated the performance of
the voice activity detector. The evaluation metric was the
speaker diarization error rate (DER) given that all speech seg-
ments have correct speaker label. The DER is a time wighted
sum of miss errors, false alarms and speaker errors. Since
there will be no speaker errors in this setup, the DER will
show the VAD performance and it is shown in Table 2 for both
the development “dev” and evaluation “eval” data. The mini-
mum segment length (MSL) was set to 1 or 2 seconds. Bigger
values did not improve the results. Typically, a forgiveness
collar of 0.25 sec around the reference segment boundaries is
set when the DER is calculated. Results with no collar are
also presented in the table.

Table 2. VAD performance in terms of DER (%).
Min. segment Collar = 0.0 Collar = 0.25
length dev eval dev eval
1 sec. 4.3 4.5 1.9 2.5
2 sec. 4.5 4.6 2.3 2.5

In the next experiments, we tested the speaker segmenta-
tion performance, where the main parameter to be determined
was the novelty detection threshold. For that, we used the de-
velopment data only, and the true segment boundaries. This
way, the DER will show only the speaker errors. The results
when the maximum decision length (DL) was varied from 1
to 5 seconds, are shown in Fig.3. Here, the on-line learning
time (LT) was set to 10 seconds. Bigger LT, or even using
the whole segments for learning, did not improve the perfor-
mance, but only increased the computational load. As the

Fig. 3. Speaker segmentation performance in terms of DER
for different novelty detection threshold values.

gure shows, the novelty detection is quite insensitive with
respect to the threshold.
For the whole speaker diarization system evaluation, we

set the novelty detection threshold to 0.8 and the DER results
for both the development and evaluation data are summarized
in Table 3. As can be seen, the performance improves rapidly

Table 3. The full system performance in terms of DER (%).
System Collar = 0.0 Collar = 0.25
latency dev eval dev eval
1 sec. 14.1 21.2 11.5 19.4
2 sec. 9.4 18.8 6.7 16.8
3 sec. 7.2 13.8 4.6 11.9
4 sec. 6.6 13.1 4.0 11.3
5 sec. 6.6 12.1 3.9 10.2

when the maximum DL, i.e. the system latency, is increased
to 3 ∼ 4 sec. and then stays almost the same. The error rates
for the evaluation data are about two times higher than the de-
velopment data, which suggests that the DER is sensitive to
the irrecoverable errors inherent in the on-line, one-pass sys-
tems. Nevertheless, the overall performance is less than 10%,
which is in the range of the best off-line multi-pass speaker
diarization systems. As for the processing speed, the system
showed real time factor of less than 0.1xRT.

4. CONCLUSION AND FEATURE WORK

We described a new speaker diarization system that works on-
line, faster than real-time, and has high performance. The
system consists of several modules, each of which is based on
conventional methods, but the system design and the usage of
the on-line EM for GMM learning allowed to achieve some
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unique capabilities, such as in nite operation, self-organization
and knowledge preservation.
The system was recently built and this was its rst evalua-

tion, so there is a lot of room for further improvement in each
of the modules. Especially challenging is to develop an algo-
rithm which would prevent the propagation of the previously
made errors.
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