
Chapter 3
Speech and Music Emotion Recognition
Using Gaussian Processes

Konstantin Markov and Tomoko Matsui

Abstract Gaussian Processes (GPs) are Bayesian nonparametric models that are
becoming more and more popular for their superior capabilities to capture highly
nonlinear data relationships in various tasks ranging from classical regression and
classification to dimension reduction, novelty detection and time series analysis.
Here, we introduce Gaussian processes for the task of human emotions recognition
from emotionally colored speech as well as estimation of emotions induced by lis-
tening to a piece of music. In both cases, first, specific features are extracted from
the audio signal, and then corresponding GP-based models are learned. We consider
both static and dynamic emotion recognition tasks, where the goal is to predict emo-
tions as points in the emotional space or their time trajectory, respectively. Compared
to the current state-of-the-art modeling approaches, in most cases, GPs show better
performance.

3.1 Introduction

Emotions play an important role in human-to-human communication. Expressed both
by speech and body language, they convey a lot of nonlinguistic information making
human interaction inherently “natural.” That is why it is important to study andmodel
emotions in order to achieve as natural as possible human–computer communication.
The first and foremost task is to accurately identify the emotional state of a person.
This would benefit current speech recognition and translation systems, facilitate
development of new human centric applications, and also help diagnose and prevent
mental health disorders such as depression which exhibit specific emotional patterns.
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On the other hand, a lot of music data have become available recently either
locally or over the Internet and in order for users to benefit from them, an efficient
music information retrieval (MIR) technology is necessary. Although users are more
likely to use genres or artists names when searching or categorizing music, the main
power ofmusic is in its ability to communicate and trigger emotions in listeners. Thus,
determining computationally the emotional content ofmusic is also an important task.

There are two approaches to represent emotions in computer systems: categorical
and dimensional [3, 24]. Categorical approach involves finding emotional descrip-
tors, usually adjectives, which can be arranged into groups. Given the perceptual
nature of human emotion, it is difficult to come up with an intuitive and coherent set
of adjectives and their specific grouping. Depending on the research objectives, the
number of emotion categories and their names can vary greatly. A popular choice
is the set of so-called “primary” emotions [6] which includes joy, sadness, fear,
anger, surprise, and disgust. Other emotions can be produced by “mixing” primary
emotions like colors in a color palette. To alleviate the challenge of ensuring consis-
tent interpretation of emotion categories, some studies propose to describe emotions
using continuousmultidimensionalmetrics defined on low-dimensional spaces.Most
widely accepted is the two-dimensionalValence–Arousal (V–A) affect space [45, 48]
where emotions are represented by points in the V–A plane. Figure3.1 shows the
space where some regions are associated with distinct emotion categories. An exten-
sion to three-dimensional affect spacewhich includes additionalDominance (D) axes
has also been proposed [14]. It can be argued that emotions are not necessarily con-
stant, but can vary within utterances or during the course of a song. This variation in
time can be represented by a trajectory in the emotional space. Here, we assume that
in the case of static emotions, the task is to automatically find the point in the V–A or
V–A–D space which corresponds to the speaker affect state or emotion induced by
a given music piece. For dynamic emotions, the task would be to estimate or track
the emotion trajectory in the affect space.

An important problem in emotion recognition is how to extract features that effi-
ciently and compactly characterize different emotions. One aspect of this problem is
the analysis window used for feature extraction. A standard approach in audio signal

Fig. 3.1 Two-dimensional
(Valence-Arousal) affective
space of emotions. Different
regions correspond to
different categorical
emotions
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3 Speech and Music Emotion Recognition Using Gaussian Processes 65

processing is to divide the signal into small intervals called frames from which local
feature vectors are extracted. This is justified for quickly changing targets. Emotions,
however, vary slowly and the analysis interval may be as long as few seconds. Com-
mon approach is to obtain some statistics such as mean, variance, etc. of the local
features for each interval and stack them into one vector. This technique is well suited
for the case of dynamic emotion recognition. For the static emotions case, analysis
interval is usually extended to cover the whole utterance or song and global statistics
are calculated.

There is a strong evidence that prosodic features such as pitch and energy are
closely related to the emotional content of an utterance. Overall energy and its dis-
tribution across frequencies as well as duration of pauses are directly affected by the
arousal state of the speaker [5]. Spectral-based features commonly used in speech
recognition, i.e., MFCC and LPCC, have also shown good performance, though the
log frequency power coefficients (LFPC) have been found to perform better [40].
When data from other modalities such as video are available, features extracted from
facial expressions can be combined with the acoustic features which may lead to an
improved recognition accuracy [22].

Prior studies focused on searching for emotion-specific music features have not
found any dominant single one [64], so the most commonly used are those utilized
in the other MIR tasks as well. Conventional features can be divided into “low-level”
features including timbre (zero-crossing rate, spectral centroid, flux, roll-off, MFCC,
and others) and temporal (amplitude modulation or autoregressive coefficients) fea-
tures, as well as “mid-level” features, such as rhythm, pitch, and harmony [16]. On
the other hand, it is also possible to apply unsupervised learningmethods to find some
“high level” representations of the “low-level” features, and then use them as a new
type of features. This can be accomplished using non-negative matrix factorization
(NMF), sparse coding [34], or deep neural networks (DNN) [29].

For categorical emotions, both speech and music emotion recognition tasks can
be cast as a classification problem, so the samemodels can be used. This holds for the
dimensional emotions as well since the task is actually a regression problem. Hidden
markov models (HMM), Gaussian mixture models (GMM), support vector machine
(SVM), and neural networks have been used to classify emotions [12]. Regression
models, such as multiple linear regression (MLR), support vector regression (SVR),
or Adaboost.RT, as well as multi-level least-squares or regression trees [3] have
been successfully applied for dimensional emotion estimation. Model learning is
usually supervised and requires labeled training data. Finding consistent emotion
labels in terms of V–A or V–S–D values is even more challenging than obtaining
category labels because emotion interpretation can be very subjective and varies
among listeners. It requires data annotation by multiple experts which are expensive,
time consuming, and labor intensive [1]. Especially, problematic is the collection
of ground truth labels for time-continuous emotions, because the reaction lag of
evaluators also needs to be taken into account [33].

Gaussian processes have been known as nonparametric Bayesian models for
quite some time, but just recently have attracted attention of researchers from other
fields than statistics and applied mathematics. After the work of Rasmussen and
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Williams [44] which introduced GPs for the machine learning tasks of classification
and regression, many researchers have utilized GPs in various practical applications.
As SVMs, they are also based on kernel functions and Gram matrices, and can be
used as their plug-in replacement. The advantage of GPs with respect to SVMs is that
their predictions are truly probabilistic and that they provide a measure of the output
uncertainty. Another big plus is the availability of algorithms for their hyperparame-
ter learning. The downside is that the GP training complexity isO(n3), which makes
them difficult to use in large-scale tasks. Several sparse approximation methods have
been proposed [7, 53], but this problem has not yet been fully solved and is a topic
of an ongoing research.

Evaluation of the emotion recognition systems is usually performed in terms
classification accuracy for categorical emotions. In the case of dimensional emotions,
Pearson correlation coefficient and/or root-mean-squared error measures (RMSE)
are used and often applied for each affect dimension separately. However, recently
there have been discussions about the usefulness of the correlation coefficient from
practical point of view. The analysis given in [22] shows that in order to achieve high
correlation, coarse trajectory estimation is enough, while close frame-wise matching
of up to 90% of the trajectory can still result in much lower correlation. There are
also different opinions on how to treat cases when correlation coefficient is negative.

In the next section, various existing emotion recognition systems are reviewed and
compared. Brief introduction of the Gaussian processes and their implementation in
regression tasks is given in Sects. 3.3 and 3.4. GP regression models can be used
for static emotion estimation in a straightforward way. During training, they learn
the nonlinear mapping between the feature vectors and the corresponding affect
dimensions values. Thus, separateGPmodels are trained for each arousal and valence
(and Dominance) dimension. Dynamic emotion trajectories can be considered as a
time series data, so methods from statistical time series analysis would be applicable
to ensure that not only feature-emotion mapping, but also temporal evolution of
emotions is taken into account. One such method is Bayesian filtering by state-
space models (SSMs). It is briefly described in Sect. 3.5. A widely used SSM based
on linear functions is the Kalman filter (KF) [18] which is explained in Sect. 3.6.
Linearity assumptions of KF, however, are significant drawback. On the other hand,
particle filters (PF) allow for nonlinear functions to be used such as GPs. Section3.7
describes the PF basics and its implementation using Gaussian processes. How to
build emotion recognition systems using GPs for both static and dynamic emotions
and some evaluation results on speech and music data are presented in Sect. 3.8. The
last section contains some discussion and conclusions.

3.2 Related Studies

There are many studies on speech emotion recognition and most of them take the
categorical approach to emotion representation.Various types of classifiers have been
used such as HMM, GMM, SVM, ANN, k-mean, and others. The most popular is
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a fully connected HMM using prosodic features [39, 52]. In [40], a discrete HMM
with MFCC, LPCC, and LFPC vectors was used and up to 75.5% accuracy was
obtained over the set of “primary” emotions. For dimensional dynamic emotion
recognition, however, there are just a few studies. This task has been facilitated by
the audio-visual emotion challenge (AVEC) series of evaluations. The 2013 winner
[38] uses MFCC and other spectral low-level descriptors as features and partial
least-squares (PLS) regression. However, this approach fails to capture dynamics
information. This problem is solved in [60] using long short-term RNN to capture
the time dependencies in emotion trajectories.

In one of the earliest studies on music emotion recognition, features representing
timbre, rhythm, and pitch were used in SVM-based system to classify music into
13 mood categories [30]. With 499 hand-labeled 30s clips, an accuracy of 45%
was achieved. In 2007, music emotion classification was included in the MIR eval-
uation exchange (MIREX) benchmarks and the best performance of 61.5% was
again achieved using SVM classifier [56]. However, recent studies have suggested
that regression approaches using continuous mood representation can perform better
than categorical classifiers [63]. SVR was applied in [64] to map music clips, each
represented by a single feature vector, into two-dimensional V–A space. After prin-
cipal component analysis (PCA)-based feature dimensionality reduction, this system
achieved R2 scores of 0.58 and 0.28 for arousal and valence, respectively. Later, this
approach was extended by representing perceived emotion of a clip as a probability
distribution in the emotion plane [62]. It also is possible to combine categorical and
continuous emotion representations by quantizing the V–A space and apply emotion
cluster classification using SVM [51], or another regression model, trained for each
cluster [11].

For dynamic emotions, one approach is to divide a piece of music into segments
short enough to assume that emotion does not change within each segment, and then
use standard classification techniques [32]. Another study [49] considers arousal
and valence as latent states of a linear dynamical system and applies KF to recover
emotion dynamics over time. However, KF is a linear system and has its limitations.
There exist nonlinear SSMs such as the extended Kalman filter (EKF) and unscented
Kalman filter (UKF), but they put certain constraints on the SSM state and measure-
ment functions and often suffer from stability issues. Another approach is to consider
the fact that for some time intervals, emotion depends on the past and future system
inputs. This suggests that context-sensitive or recurrent models can be applied. One
such model is the conditional random field (CRF), but for its direct implementation
the emotion space needs to be discretized [50]. However, recently proposed CRF
extension allows to overcome this drawback [20]. Another model which has gained
popularity lately is the long short-termmemory (LSTM) recurrent neural network. It
has been successfully applied for dynamic music emotion recognition and has shown
state-of-the-art performance [59, 61].

Although Gaussian processes have become popular in machine learning commu-
nity and have been used in such tasks as object categorization in computer vision [23]
or economics and environmental studies [46], there are still few GP applications in
the field of signal processing. In one such application, GP regressionmodel is applied
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to time-domain voice activity detection and speech enhancement [41]. In [31], using
GP, researchers estimate speakers likability given recordings of their voices. Another
recent study employs GPs for head-related transfer function (HRTF) estimation in
acoustic scene analysis [26]. Finally, several extensions and new models based on
GPs have been developed. For example, Gaussian process latent variable model (GP-
LVM)was introduced for nonlinear dimensionality reduction [27], but have also been
applied to image reconstruction [54] and human motion modeling [28]. Another
promising extension is the Gaussian process dynamic model (GPDM) [58]. It is a
nonlinear dynamical system which can learn the mapping between two continuous
variables spaces. One of the first applications of GPDM in audio signal process-
ing was for speech phoneme classification [42]. Although the absolute classification
accuracy of the GPDM was not high, in certain conditions, they outperformed the
conventional hidden Markov model (HMM). In [19], GPDM is used as a model for
nonparametric speech representation and speech synthesis.

Some previous studies [35–37] have shown that GPs can be a feasible alterna-
tive to SVMs both for music genre classification and static emotion recognition.
For the varying emotion case, as mentioned earlier, a state-space models are well
suited. A number of GP-based state-space models (GP-SSM) have been proposed
recently. GP-BayesFilters [25] use GPs as nonlinear functions and derive GP par-
ticle filter, GP-EKF, and GP-UKF algorithms using Monte Carlo (MC) sampling.
In [8, 9], an analytic filtering approximation algorithm is presented, but lacks an
analytic approach to GP-SSM parameter learning. An attempt to derive such algo-
rithm is done in [55] which, however, has some stability problems. A ParticleMarkov
Chain Monte Carlo (PMCMC) training method is described in [15], but it suffers
from slowly convergingMC sampling techniques. The problem of training GP-based
state-space models parameters can be made much easier if true observations of the
latent state process are available. This way, the state dynamics parameters can be
learned separately from the parameters of the measurement function. In the KF
case, training of the corresponding matrices and noise variances can be done using
multivariate linear regression. For the GP-SSM, similar approach is applicable. The
difference is that since GP output is scalar and separate GPmodels have to be trained
for each state or observation vector dimension. Models parameters can be obtained
using GP regression model learning as explained in Sect. 3.4.

3.3 Gaussian Processes

Gaussian processes are used to describe distributions over functions. Formally, the
GP is defined as a collection of random variables any finite number of which has a
joint Gaussian distribution [44]. It is completely specified by its mean and covariance
functions. For a real process f (x), the mean function m(x), and the covariance
function k(x, x′) are defined as
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m(x) = E[ f (x)] (3.1)

k(x, x′) = E[( f (x) − m(x))( f (x′) − m(x′))].

Thus, the GP can be written as

f (x) ∼ GP(m(x), k(x, x′)). (3.2)

A GP prior over function f (x) implies that for any finite number of inputs X =
{xi } ∈ R

d , i = 1, . . . , n, the vector of function values f = [ f (x1), . . . , f (xn)]T =
[ f1, . . . , fn]T has a multivariate Gaussian distribution

f ∼ N (μ, K ) (3.3)

where the mean μ is often assumed to be zero. The covariance matrix K has the
following form:

K =

⎡

⎢
⎢
⎢
⎣

k(x1, x1) . . . k(x1, xn)

k(x2, x1) . . . k(x2, xn)
...

...

k(xn, x1) . . . k(xn, xn)

⎤

⎥
⎥
⎥
⎦

(3.4)

and characterizes the correlation between different points in the process. For k(x, x′),
any kernel function which produces symmetric and semi-definite covariance matrix
can be used.

3.4 Gaussian Process Regression

Given input data vectors X = {xi }, i = 1, . . . , n and their corresponding target val-
ues y = {yi }, in the simplest regression task, y and x are related as

y = f (x) + ε (3.5)

where the latent function f (x) is unknown and ε is often assumed to be a zero
mean Gaussian noise, i.e., ε ∼ N (0, σ 2

n ). Putting a GP prior over f (x) allows us
to marginalize it out, which means that we do not need to specify its form and
parameters. This makes our model very flexible and powerful since f (x) can be any
nonlinear function of unlimited complexity.

In practice, targets yi are assumed to be conditionally independent given fi , so
that the likelihood can be factorized as

p( y| f ) =
n∏

1

p(yi | fi ) (3.6)
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where p(yi | fi ) = N (yi | fi , σ
2
n ), according to our observationmodel Eq. (3.5). Since

f has normal distribution, i.e., f |X ∼ N (0, K ), it follows that y is also a Gaussian
random vector

p( y|X) = N ( y|0, K + σ 2
n I). (3.7)

Given some new (test) input x∗, we can now estimate the unknown target y∗ and,
more importantly, its distribution. Graphically, the relationship between all involved
variables can be represented as shown in Fig. 3.2. To find y∗, we first obtain the joint
probability of training targets y and f∗ = f (x∗), which is Gaussian

p( y, f∗|x∗, X) = N

(

0,

[
K + σ 2

n I k∗
kT

∗ k(x∗, x∗)

])

(3.8)

where kT
∗ = [k(x1, x∗), . . . , k(xn, x∗)]. Then, from this distribution, it is easy to

obtain the conditional p( f∗| y, x∗, X), which is also Gaussian

p( f∗| y, x∗, X) = N ( f∗|μ f∗ , σ
2
f∗) (3.9)

with mean and variance

μ f∗ = kT
∗ (K + σ 2

n I)−1 y, (3.10)

σ 2
f∗ = k(x∗, x∗) − kT

∗ (K + σ 2
n I)−1k∗ (3.11)

Fig. 3.2 Graphical
representation of observable
x, y, (enclosed in squares),
latent f , and unobservable
y∗ (enclosed in circles)
variable relationships in
Gaussian process-based
regression task
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It is worth noting that the mean μ f∗ is a linear combination of the observed targets
y. It can also be viewed as a linear combination of the kernel functions k(x∗, xi ).
On the other hand, the variance σ 2

f∗ depends only on inputs X .
To find out the predictive distribution of y∗, we marginalize out f∗

p(y∗| y, x∗, X) =
∫

p(y∗| f∗)p( f∗| y, x∗, X)d f∗

= N (y∗|μy∗ , σ
2
y∗) (3.12)

where it is easy to show that for homoscedastic likelihood, as in our case, the pre-
dictive mean and variance are [43]

μy∗ = μ f∗ , and (3.13)

σ 2
y∗ = σ 2

f∗ + σ 2
n . (3.14)

Making this mean our predicted target, ypred = μy∗ will minimize the risk for a
squared loss function (ytrue − ypred)2. The variance σ 2

y∗ , on the other hand, shows the
model uncertainty about ypred.

Parameter learning

Until now, we have considered fixed covariance function k(x, x′), but in general,
it is parameterized by some parameter vector θ . This introduces hyper-parameters
to GP, which are unknown and, in practice, very little information about them is
available. A Bayesian approach to their estimation would require a hyper-prior p(θ)

and evaluation of the following posterior:

p(θ | y, X) = p( y|X, θ)p(θ)

p( y|X)
= p( y|X, θ)p(θ)

∫
p( y|X, θ)p(θ)dθ

(3.15)

where the likelihood p( y|X, θ) is actually the GP marginal likelihood over function
values f

p( y|X, θ) =
∫

p( y| f )p( f |X, θ)d f . (3.16)

However, the evaluation of the integral in Eq. (3.15) can be difficult and as an approx-
imation we may directly maximize Eq. (3.16) w.r.t. the hyperparameters θ . This is
knownasmaximum likelihood II (ML-II) typehyperparameter estimation. Since both
the GP prior f |X ∼ N (0, K ) and the likelihood y| f ∼ N ( f , σ 2

n I) are Gaussians,
the logarithm of Eq. (3.16) can be obtained analytically

log p( y|X, θ) = −1

2
yT K−1

y y − 1

2
log |K y| − n

2
log 2π (3.17)
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where K y = K + σ 2
n I is the covariance matrix of the noisy targets y. Hyperparame-

ters θ = {σ 2
n , θ k} include the noise variance and parameters of the kernel function.

Those which maximize Eq. (3.17) can be found using gradient-based optimization
method. Partial derivatives for each θi are found from

∂ log p( y|X, θ)

∂θi
= − 1

2
yT K−1

y

∂ K y

∂θi
K−1

y y

− 1

2
tr(K−1

y

∂ K y

∂θi
) (3.18)

where for θi = σ 2
n we have

∂ K y

∂σ 2
n

= σ 2
n I . (3.19)

Usually, kernel function parameters are all positive, which would require constrained
optimization. In practice, this problem is easily solved by optimizing with respect
to the logarithm of the parameters, so simple unconstrained optimization algorithms
can be used.

3.5 State-Space Models

There are many ways to define a state-space model. Here, we consider an SSM given
by

xt = f (xt−1) + ut−1, xt ∈ Rd , (3.20)

yt = g(xt ) + vt yt ∈ Re, (3.21)

where f () and g() are the unknown functions governing temporal state dynamics and
state-to-measurement mapping, respectively. System and observation noises, ut ∼
N (0,�u) and vt ∼ N (0,�v), are both Gaussian with uncorrelated dimensions.
The same SSM can be written in terms of probability distributions as

p(xt |xt−1) = N (xt ; f (xt−1),�u), (3.22)

p( yt |xt ) = N ( yt ; g(xt ),�v). (3.23)

Figure3.3 shows theSSMas agraphicalmodelwith arrowsdenotingdependencies
betweenvariables. The initial state x0 is assumed tohaveknownGaussiandistribution
p(x0) = N (μx

0,�
x
0). For a sequence of T measurements, the task of filtering is to

find approximations to the posterior distribution p(x1:t | y1:t ), where for any sequence
{zn}n>0 and any i < j, zi : j = zi , . . . , z j . Often, the task is defined as to find the
marginal distribution p(xt | y1:t ) [2].
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Fig. 3.3 Graphical
representation of state-space
model. States xt are
continuous latent variables
and measurements yt are
observable vectors. Arrows
show the probabilistic
relationship between
variables

Following a Bayesian approach, the distribution of interest can be decomposed
as follows:

p(x1:t | y1:t ) = p(x1:t , y1:t )
p( y1:t )

(3.24)

= p(x1:t−1, y1:t−1)p(xt |xt−1)p( yt |xt )

p( yt , y1:t−1)
(3.25)

= p(x1:t−1| y1:t−1)
p(xt |xt−1)p( yt |xt )

p( yt | y1:t−1)
(3.26)

where

p( yt | y1:t−1) =
∫

p(xt−1| y1:t−1)p(xt |xt−1)p( yt |xt )dxt−1:t . (3.27)

This allows p(x1:t | y1:t ) to be obtained recursively starting from p(x0| y0) =
p(x0) and moving forward one step at a time. Similarly, for the marginal distri-
bution p(xt | y1:t ), we can find that

p(xt | y1:t ) = p( yt |xt )p(xt | y1:t−1)

p( yt | y1:t−1)
(3.28)

where

p(xt | y1:t−1) =
∫

p(xt |xt−1)p(xt−1| y1:t−1)dxt−1. (3.29)

Commonly, Eqs. (3.28) and (3.29) are referred to update and prediction steps.
However, most particle filtering methods do not use these steps, but numerically
approximate Eq. (3.26) [10].
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As a by-product of the sequential filtering distribution estimation, the marginal
likelihood p( y1:t ) can be easily obtained from

p( y1:t ) = p(y1)
t∏

k=2

p( yk | y1:k−1) (3.30)

When we apply an SSM for continuous emotion recognition, states xt would
represent the unknown affect vector in the V–A(–D) space, and yt would correspond
to feature vectors extracted from the audio signal. When observations of the state
variable are available during training, f () and g() can be learned independently
which makes the SSM parameter estimation simpler.

3.6 Kalman Filter

As we already mentioned, when state dynamics and measurement functions are
linear, such as f (x) = Fx and g(x) = Gx with matrix parameters F and G, an
analytic solution can be easily obtained [47]. It can be shown that all distributions of
interest are Gaussian:

p(xt | y1:t−1) = N (xt ;μ
p
t ,�

p
t ) (3.31)

p(xt | y1:t ) = N (xt ;μt ,�t ) (3.32)

p( yt | y1:t−1) = N ( yt ; Gμ
p
t , St ) (3.33)

with means and covariances which can be computed from the prediction step

μ
p
t = Fμt−1, (3.34)

�
p
t = F�t−1FT + �u, (3.35)

and the update step

μt = μ
p
t + K t ( yt − Gμ

p
t ), (3.36)

�t = �
p
t − K t St K T

t , (3.37)

St = G�
p
t GT + �v, (3.38)

K t = �
p
t GT S−1

t . (3.39)

This is an optimal filtering solution given that linearity assumption holds and that
noises are indeed Gaussian. In practice, however, most often neither is true.
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In general,when there are no ground truth observations of the latent state variables,
estimation of F and G as well as the noise variances �u and �v can be done using
likelihood maximization via expectation–maximization algorithm [18]. However,
when they are available, simple multivariate linear regression can be used to obtain
the necessary parameters.

3.7 Particle Filters

Using nonlinear functions for f () and g() would greatly increase the expressiveness
of the state-space model, but introduces two problems—what kind of nonlinearity is
suitable for the task at hand and how to estimate its parameters. Gaussian processes
allow to eliminate thefirst problemand,when state observations are available, provide
solution to the second.

However, filtering with SSM when f () and g() are described by GPs is not
straightforward. There are just a few studies on this problem and no common and
efficient algorithm exists yet. Here, we utilize a particle filter-based approximation
similar to the one proposed in [25].

Particle filters are a class of Monte Carlo algorithms which are based on sam-
pling methods for density function approximations. Thus, the filtering distribution
of interest can be approximated by

p(x1:t | y1:t ) ≈ 1

N

N∑

i=1

δ(x1:t − xi
1:t ) (3.40)

where samples, called particles, xi
1:t , i = 1, . . . , N are independently drawn from the

distribution. However, in practice, often it is impossible to generate samples directly
from p(x1:t | y1:t ). The importance sampling (IS) method solves this problem by
introducing the so-called importance distribution, q(), from which samples can be
easily obtained, i.e.,

xi
1:t ∼ q(x1:t | y1:t ) (3.41)

and then we get the approximation as

p(x1:t | y1:t ) ≈
N∑

i=1

wi
tδ(x1:t − xi

1:t ) (3.42)

where

wi
t ∝ p(xi

1:t | y1:t )
q(xi

1:t | y1:t )
. (3.43)
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For sequential distribution approximation, it would be useful to have an impor-
tance density which can be factorized as

q(x1:t | y1:t ) = q(xt |x1:t−1, y1:t )q(x1:t−1| y1:t−1). (3.44)

This way, taking into account Eq. (3.26), the weights become

wi
t ∝ p(xi

1:t−1| y1:t−1)p(xi
t |xi

t−1)p( yt |xi
t )

q(xi
t |xi

1:t−1, y1:t )q(xi
1:t−1| y1:t−1)

, (3.45)

= wi
t−1

p(xi
t |xi

t−1)p( yt |xi
t )

q(xi
t |xi

1:t−1, y1:t )
. (3.46)

Often, it is convenient to simplify the importance distribution from the denomi-
nator to q(xt |xt−1, y1:t ) which makes it possible to keep only the current samples xi

t
instead of the whole histories xi

1:t . Thus, the sequential importance sampling (SIS)
algorithm involves iteration of two main steps: sampling from the importance distri-
bution, xi

t ∼ q(xt |xi
t−1, y1:t ) and weights update according to Eq. (3.46). However,

the SIS algorithm suffers from the so-called “degeneracy” problem where after sev-
eral iterations, all but few or even single particle will have negligible weights. A
common solution is to “resample” with replacement N samples from the p(xt | y1:t )
approximated by the pool of particles so that Pr(xi∗

t = x j
t ) = w j

t and then reset the
weights to 1/N .

In many cases, it is convenient to choose the importance distribution to be the
SSM’s dynamic model

q(xt |xt−1, y1:t ) = p(xt |xt−1). (3.47)

Then, assuming that “resampling” is performed at each step, the weights become
simply

wi
t ∝ p( yt |xt ). (3.48)

This particular particle filter setting is known as bootstrap filter [17]. In the next
section, we describe the bootstrap filter algorithm when Gaussian processes are used
as SSM dynamics and measurements models.

3.7.1 Particle Filter with GP

In order to implement a bootstrap filter, it is necessary to be able to sample from
p(xt |xt−1) and to calculate p( yt |xt ). They, according to Eqs. (3.22) and (3.23) are
Gaussians so it is easy to do it. Means of these distributions are obtained from the
GPs output and variances �u and �v are learned during GP parameter estimation
(see Sect. 3.4). One feature of the GP is that its output is actually a Gaussian
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distribution, and therefore, the output variance will have to be added to the
corresponding dimension of �u or �v.

Algorithm 1 provides the steps of the GP particle filter. It is assumed that GP
parameters θ x and θ y for each target dimension are already obtained.

Algorithm 1 GP Particle filter
Input: N , T, y1:T , θ x , θ y,μ

x
0,�

x
0 , Output: x̂1:T

1. for i = 1, . . . , N
2. xi

0 ∼ N (μx
0,�

x
0) ⇒ initialize particle i

3. wi
0 = 1/N ⇒ initialize weight i

4. end
5. for t = 1, . . . , T
6. Resample particles xi

t according to weights wi
t

7. for i = 1, . . . , N
8. f i

t ,�
i
x,t = G P(xi

t−1|θ x )

9. xi
t ∼ N ( f i

t ,�
i
x,t + �u) ⇒ propagate particle i

10. gi
t ,�

i
y,t = G P(xi

t |θ y)

11. wi
t = N ( yt ; gi

t ,�
i
y,t + �v) ⇒ update weight i

12. end
13. wi

t = wi
t/

∑
i wi

t ⇒ normalize weights
14. x̂t = ∑

i wi
t xi

t ⇒ estimated mean of p(xt | y1:t )
15. end
16. return x̂1:T

The computational complexity of this algorithm is O(N T (d + e)n2), where n is
the number of training vectors, because for each particle at each time t algorithm
evaluates GP d times in step 8 and e times in step 10.

3.8 System Evaluation

Although from a practical point of view it might be better to have an emotion recog-
nition system which has a categorical output, i.e., recognizes emotions in terms of
textual descriptors, here, we assume that the task is to estimate the V–A(–D) point or
trajectory in the affect space as accurately as possible. After that, categorical emo-
tions can be easily obtained by affect space clustering. As a performance evaluation
measures, we adopt the Pearson correlation coefficient (R) and the root-mean-square
error (RMSE) which are widely used in regression tasks.

For the systems implementation, where possible, we used open-source software
packages such as the GPML toolbox [43] for Gaussian processes models and the
EKF/UKF toolbox [21] for Kalman filtering.

As explained in Sect. 3.4, GP covariance function parameters can be estimated via
optimization procedures, but the type of the covariance function as well as the mean
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function which can be other than zero are system parameters to be set heuristically.
The most common choices for covariance function include

• Linear (Lin) with parameter l

k(x, x′) = (xT x′ + 1)/ l2 (3.49)

• Squared exponential (Exp) with parameters σ and l

k(x, x′) = σ 2 exp(− 1

2l2
(x − x′)T (x − x′)) (3.50)

• Matérn (Mat) of degree 3 with parameters σ and l

k(x, x′) = σ 2(1 + r) exp(−r), (3.51)

r =
√

3

l2
(x − x′)T (x − x′)

As for the mean function, previous experimental studies [36] showed that constant
mean may be a better choice.

3.8.1 Speech Emotion Estimation Experiments

The database used in these experiments has been released as part of the Audio/Visual
Emotion Challenge andWorkshop (AVEC 2014) [57]. It consists of recordings from
84 subjects. There are 100 recordings for training and as many for testing. Duration
ranges from 6 to 248s. Each recording is annotated using three affective dimensions:
arousal, valence, and dominance. The AVEC 2014 database includes speech features
extracted using the openSMILE toolkit [13]. The feature set consists of 32 energy
and spectral related low-level descriptors (LLD) and 6 voicing related LLDs. These
features are aggregated in windows of 3 s with 1 s overlap and various statistics such
as mean, standard deviation, flatness, skewness, and kurtosis are calculated for each
window.

Since the original feature dimension is too high, two subsets of features were
used. The first one includes only the LLD means. In the second one, LLDs delta
coefficients (ΔLLDs) are included as well. Table3.1 compares the performance of
two GP-based particle filter systems with the KF. Results are given as average over
all affect dimensions (V–A–D) and all 100 test samples. We have to note that for
considerable number of test samples, the correlation coefficient showed negative
values resulting in reduced total average.1

1These results are not directly comparable with the official AVEC’2014 results because they have
been computed using the absolute R value which boosts them to the 0.5–0.6 range. We, however,
believe that this approach masks system errors which are the reason for negative R values.
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Table 3.1 Comparison between Kalman filter and GP-based particle filters using Linear (Lin) and
squared exponential (Exp) covariance functions

Feature set KF GP-PF (Lin) GP-PF (Exp)

# dims R RM SE R RM SE R RM SE

LLD 38 0.0350 0.1598 0.1219 0.1303 0.1417 0.0850

LLD+ΔLLD 76 0.0881 0.1691 0.1631 0.1430 0.1642 0.0890

As can be expected, the GP-based particle filter systems outperform the KF sig-
nificantly. They are able to better capture the complex relationship between acoustic
features and emotion representation. Increased data dimension improves the corre-
lation measure R, but also worsens to some extend the root-mean-square error.

3.8.2 Music Emotion Estimation Experiments

For the music emotion estimation experiments, the “MediaEval’2014” database [1]
was used. It consists of 1744 clips (each 45s long) taken at random locations from
1744 different songs. They belong to various genres which can be grouped into the
following eight groups: Blues, Electronic, Rock, Classical, Folk, Jazz, Country, and
Pop. For training,we selected randomly 500 clipsmaking sure that they are uniformly
distributed across genre groups. In a similar way, another 500 clips were selected for
testing. Each clip has a static arousal and valence annotation with score on a 9-point
scale. Dynamic V–A annotations at 2Hz rate are also available.

As feature vectors we adopted the features released by the “MediaEval’2014”
organizers which include loudness, roughness, hcdf, spectral flux, and zero-crossing
rate calculated at the same 2Hz rate.

Static emotion

In order to obtain a single vector representation of each clip, two level statistics of
the original feature vectors were computed. First, mean and standard deviation were
taken from sliding windows of 6 vectors, which corresponds to 3 s of signal. Then,
same statistics were calculated from the widow level data over the whole clip. Thus,
the total dimension of the feature vectors is 20.

For the static emotion estimation case, the “MediaEval’2014” evaluation proce-
durewas followed. It includes the R2 aswell as the RMSEmeasures. R2 is commonly
used to describe the goodness of fit of a statistical model and is defined as

R2 = 1 −
∑

i (yi − ŷi )
2

∑
i (yi − y)2

(3.52)
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Table 3.2 Performance comparison between GP and SVM regression-based emotion estimation
systems in terms of R2 and RMSE measures

System Arousal Valence Average

R2 RM SE R2 RM SE R2 RM SE

SVR (Lin) 0.6801 0.1014 0.3612 0.1002 0.5207 0.1008

SVR (Rbf) 0.6869 0.0997 0.3713 0.0996 0.5291 0.0997

GP (Lin) 0.6747 0.1013 0.3604 0.1013 0.5176 0.1013

GP (Exp) 0.6986 0.0972 0.3594 0.1002 0.5290 0.0987

GP (Mat) 0.6973 0.0969 0.3536 0.1007 0.5255 0.0988

Table 3.3 Dynamic motion emotion recognition results using Kalman filter (KF) and GP-based
particle filter (GP-PF) with several different covariance functions

System Arousal Valence Average

R RM SE R RM SE R RM SE

KF 0.1309 0.2862 0.0864 0.3048 0.1087 0.2955

GP-PF (Lin) 0.2504 0.2184 0.1328 0.2863 0.1916 0.2524

GP-PF (Exp) 0.2753 0.2166 0.1361 0.2718 0.2057 0.2442

GP-PF (Mat) 0.2821 0.2215 0.1295 0.2809 0.2058 0.2512

where yi are the reference values, y is their mean, and ŷi are the corresponding
estimates. R2 takes values in the range [0, 1]2 with R2 = 1 meaning a perfect data
fit.

For comparison, an SVM regression-based system with linear (Lin) and RGB
(Rbf) kernel functions was built using the LIBSVM toolkit [4]. The cost parameter
was optimized manually using a grid search. The other parameters were set to their
defaults. Table3.2 shows theGPR and SVR results for arousal and valence separately
as well as the average score.

There is negligible difference in the GPR and SVR results, especially when expo-
nential covariance and kernel functions are used which is the best case for both
models. This to some extend confirms some previous results on the same task [36],
but with different features, that GPR shows same or better performance than SVR.
On the other hand, selected features may be too simple reveal the full potential of
the models.

Dynamic emotion

For dynamic music emotion recognition, the original feature vectors were used to
learn the GP parameters for the GP-PF systemwith various covariance functions. For
comparison, KF system was also trained. Table3.3 summarizes the emotion estima-
tion results using these two systems.As in the speech emotion case, theGP-PF clearly
outperforms the KF in both correlation and root-mean-squared error measures.

2In practice, it can take values outside this range, which would indicate estimation failure.
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Fig. 3.4 Example of
successful estimation of the
arousal trajectory. The solid
curve shows the reference
arousal change and the other
two are the GP particle filter
and KF estimates with
correlation coefficient of
0.988 and 0.698,
respectively. All curves are
scaled to fit in the [–0.5, 0.5]
range
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Fig. 3.5 Example of failed
arousal trajectory estimation.
The GP particle filter result
(R = −0.869) exhibits
opposite behavior, i.e., in
contrast to the reference, at
the beginning it is low and
then goes up, while Kalman
filter (R = −0.460) fails to
capture the change and
increases gradually
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Examples of successful and failed estimation of the arousal trajectory are pre-
sented in Figs. 3.4 and 3.5, respectively. In each figure, there are three curves cor-
responding to the reference trajectory and the estimated trajectories from the GP
particle and Kalman filters. As can be seen, even in the failed case, GP-PF was able
to capture the change in the trajectory, although in the opposite direction.

3.9 Discussion and Conclusions

In this chapter, we introduced the Gaussian processes for the task of speech and
music emotion recognition. For static emotion, i.e., when single point in the affect
space has to be estimated for one utterance or music clip, GP regression can be used.
Compared to the current state-of-the-art SVM regression, GPs perform on par or
better than SVM as other studies have also shown.

The GP and SVM have many common characteristics. They are both nonpara-
metric, kernel-based models, and their implementation and usage as regressors is
very similar. However, GPs are probabilistic Bayesian predictors which in contrast
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to SVM produce Gaussian distributions as their output. Another GP advantage is the
possibility of parameter learning from the training data. On the other hand, SVM
provides a sparse solution, i.e., only “support” vectors are used for the inference,
which can be a plus when working with large amount of data.

Although the same regression approach can be applied to the case of dynamic
emotion recognition, capturing the characteristics of the emotion evolution in time
greatly benefits the estimation performance. Thus, state-space models are well suited
for such cases. The Kalman filter is a widely used linear state-space model which
has been thoroughly studied and is fast and efficient model when data relationships
are close to linear. When these relationships are highly nonlinear, however, the KF
performance drops significantly. Nonlinear extensions, such as EKF or UKF, lessen
the linearity restrictions; however, they require some prior knowledge about the form
of the nonlinear functions and often suffer from stability issues.

The main advantage of Gaussian processes is that they do not require any knowl-
edge or assumptions about the data relationships. As shown in Sect. 3.4, the mapping
function f () is marginalized out during the inference and can be any function with
unlimited degree of nonlinearity. This leads to an improved system performance and
as the above evaluations show, can be as much as two times better than the one
of a linear system. Compared to other powerful nonlinear models such as Continu-
ous Conditional Random Fields [20] or LSTM neural networks [61], the GP-based
system has the advantage of being nonparametric. Thus, there is no need to choose
explicit nonlinear (feature) functions as in the case of CRF or to train huge number of
parameters (weights) for the NNs. Another advantage is the fully probabilistic nature
of theGPs, which allowsmeaningful interpretation of their outputs. However, as with
all nonparametric models, GPs scale poorly and for large tasks are computationally
expensive.

Gaussian processes quickly penetrate many research fields and application areas
which are currently dominated by the support vector machines or neural networks
and show impressive performance on par or often better than the state-of-the-art
approaches. Of course, there are some issues with GPs which need further improve-
ment such as high computational complexity and storage requirements, but the cur-
rent active research on GP theory will hopefully solve these problems in the near
future.
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