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Abstract: Despite the progress of deep neural networks over the last decade, the state-of-the-art
speech recognizers in noisy environment conditions are still far from reaching satisfactory
performance. Methods to improve noise robustness usually include adding components to the
recognition system that often need optimization. For this reason, data augmentation of the
input features derived from the Short-Time Fourier Transform (STFT) has become a popular
approach. However, for many speech processing tasks, there is an evidence that the combination of
STFT-based and Hilbert–Huang transform (HHT)-based features improves the overall performance.
The Hilbert spectrum can be obtained using adaptive mode decomposition (AMD) techniques,
which are noise-robust and suitable for non-linear and non-stationary signal analysis. In this study,
we developed a DeepSpeech2-based recognition system by adding a combination of STFT and
HHT spectrum-based features. We propose several ways to combine those features at different
levels of the neural network. All evaluations were performed using the WSJ and CHiME-4
databases. Experimental results show that combining STFT and HHT spectra leads to a 5–7%
relative improvement in noisy speech recognition.

Keywords: feature extraction; noisy speech; Hilbert–Huang transform; feature combination;
end-to-end models

1. Introduction

Recent advances in deep neural networks (DNNs) have significantly boosted the performance
of automatic speech recognition (ASR) systems, which enables them to be applied in complex user
applications such as voice-based web-search, intelligent personal assistants on mobile devices, etc. [1–3].
However, state-of-the-art speech recognizers are still far from reaching satisfactory robustness when
facing challenging acoustical environments characterized by a high level of non-stationary noise.

Methods to improve noise robustness can be applied at various levels of an ASR system. Often,
such methods are implemented prior to the feature extraction as an enhancement of the speech
signal [4–6]. Methods working at the feature level may or may not be a part of the ASR system,
as in the case of a deep denoising autoencoder [7–9]. Another approach is the joint training of
the feature extractor and the acoustic model. This leads to performance improvements of both
Gaussian mixture- [10] and neural network-based [11–13] acoustic models. Most of these strategies
add components and additional hyper-parameters to the ASR system that require careful optimization.

Nowadays, the dominant approach to building ASR systems is based on hybrid DNN-HMM
systems consisting of a context-dependent acoustic model, pronunciation model, and n-gram
language model. Training such systems is based on conditional independence assumptions and
approximations [14]. In contrast to such hybrid systems, an end-to-end training approach facilitates
the development of models without frame-level alignment and pronunciation modeling. As shown
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in Figure 1, this allows acoustic input features to be directly mapped to a character or phoneme
sequences [15–19]. The most widely used and referred end-to-end techniques are connectionist
temporal classification (CTC) [15], attention-based models [17], and recurrent neural network (RNN)
transducer [16]. The main difference of the CTC is that it does not learn any context information during
training, thus allowing only acoustic features to be evaluated [18].

Figure 1. General architecture for an end-to-end speech recognition system.

Lately, noisy speech recognition research has been mostly concentrated on front-end speech
enhancement or back-end DNN architecture and training objective functions, while less attention has
been paid to the choice of input features. Short-Time Fourier Transform (STFT) spectrum features such
as mel-frequency cepstral coefficients (MFCCs) [15] or log mel-filterbank spectrograms [16,18,20]
are widely used. There have also been several attempts to train ASR systems with raw wave
signals [19,21,22]. However, state-of-the-art end-to-end architectures still use STFT spectrum features.
The STFT considers any signal to be piece-wise stationary and linear and treats it as a sum of predefined
functions. A window function of a short speech frame is used to produce spectral characteristics of
the signal. There is always a trade-off between the time and frequency resolution: i.e., increasing
the frequency resolution decreases the temporal resolution. In contrast to STFT, the Hilbert–Huang
Transform (HHT) method is suitable for non-stationary, non-linear signals and provides high time
resolution in various frequency scales. The HHT method takes into consideration the signal frequency
content as well as its variation.

In this work, we focus on neural network architectures that combine STFT- and HHT-based
features in various ways. Our primary goal is to improve the ASR noise robustness without external
pre-processing, such as speech enhancement, to the system. We propose several types of feature
combinations at the input and intermediate levels of the ASR system. To the best of our knowledge,
Hilbert spectrum features have not yet been used in an end-to-end DNN system.

To obtain the Hilbert spectrum, we use two methods: (1) Empirical Mode Decomposition (EMD)
and (2) Variational Mode Decomposition (VMD). These methods are often applied in non-stationary
signal processing and in some speech enhancement techniques. We built our ASR systems using
the DeepSpeech2 architecture [23], which also serves as our baseline system. This DNN architecture
consists of a convolutional layer stack and a recurrent layer stack. We apply our feature combination
methods before the recurrent layer stack because, otherwise, separate recurrent layers for each feature
channel would be required, and this will almost double the number of parameters, making the overall
system difficult to train [24].

We propose several combination techniques that use the pattern representation capability of
the convolutional neural network (CNN). Feature maps of the first few CNN layers tend to learn a
variety of frequency and orientation patterns of the input [25]. We also look at more informative data
representations by finding a correlation between the STFT and HHT feature channels and introduce an
attention-based combination with different levels of detail.

All the ASR systems in this study were evaluated using WSJ and CHiME-4 databases. To obtain
noise robustness estimates in a controlled scenario, we added natural noises to the recordings of the
WSJ dataset. Partially overlapped sets of noises and signal-to-noise ratios (SNRs) were created for
training, development, and testing. Speech recognition experiments demonstrated that combined
feature models relied more on the STFT-based features when the speech signal was relatively clean,
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while HHT-based features acquired a higher combination weight when the SNR was below 10 dB.
This achieved a 5–7% word error rate (WER) relative improvement over the STFT-based single-feature
baseline. Finally, we evaluated our systems on the CHiME-4 one channel (1ch) track word recognition
task, which contains real and simulated noisy data. The results obtained in this case showed a similar
trend to that observed with the corrupted WSJ dataset. The relative WER improvement was 7% using
the real noise test set. In all proposed models, the increase in the network parameter number is
negligible with respect to the single-feature model. This demonstrates that HHT-based features can
improve the end-to-end system noise robustness at a small additional cost.

2. Related Work

Combining various features to improve system performance and robustness is also a popular
approach in some other speech processing tasks, such as speaker verification [26], emotion recognition [27],
and speaker identification [28].

In some studies, the Hilbert spectrum has been used during conventional mel-frequency cepstral
coefficient (MFCC) computations. In [29], HHT was used to obtain mel Hilbert frequency cepstral
coefficients (MHFCCs) in a standard HMM-GMM ASR system. Here, the STFT step of MFCC
computation was substituted with the calculation of the Hilbert spectrum by the EMD method.
This improved the system accuracy by 4.4% relative to the STFT baseline. In [30,31], the Hilbert
spectrum was used instead of the DCT step of the MFCC algorithm. In both cases, STFT and HHT
features were evaluated for the digit recognition task and showed improved system performance in
both clean and noisy conditions.

Adaptive mode decomposition techniques, such as EMD and VMD, are most often applied
in speech enhancement tasks [4,32–34]. In [32], variational mode decomposition was used for
spectral smoothing after the STFT step of the MFCC algorithm. The spectrum was smoothed
over the frequency dimension. Higher-order modes obtained by VMD per frame were discarded,
and then the smoothed spectrum was reconstructed using the first two modes only. In the clean
training/testing conditions, VMD-MFCC yielded performance comparable to that of conventional
MFCC. In mismatched conditions, in which clean data were used for training and the test set was
corrupted by additive noise with SNRs of 10 and 15 dB, usage of the VMD-MFCC features allowed the
overall performance to be improved by 13.3% relative to the baseline.

3. Feature Extraction

The Hilbert–Huang Transform (HHT) is a method of representing the signal in the time-frequency
domain in terms of Intrinsic Mode Functions (IMFs) obtained by a mode decomposition method such
as Empirical Mode Decomposition (EMD) or Variational Mode Decomposition (VMD).

3.1. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a method that decomposes the signal x(n) into
oscillatory components called intrinsic mode functions in a completely data-driven manner without
the requirement of any a priori basis. Each IMF must satisfy two properties: (i) the number of extrema
and the number of zero-crossings must either be equal to each other or differ by one; (ii) the mean
value of the envelope defined by the local maxima and the envelope defined by the local minima is
zero. The process of “sifting” employed to extract all the IMFs includes the following steps [35]:

1. Calculate the upper- and lower-envelope of the signal x(n) as well as their mean value µi.
2. Subtract the mean value from the data hi(n) = x(n)− µi, and use hi(n) going forward instead

of x(n).
3. Repeat the first two steps until hi(n) satisfies the IMF properties. Then, it can be taken as an IMF

component ci(n) = hi(n).
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Next, the IMF is subtracted from the signal to obtain the residue ri(n) = ri−1(n) − ci(n),
where r0 = x(n). This process should be repeated I times (total number of IMFs) until the last
residue becomes a monotonic function. Then, the signal x(n) can be expressed as

x(n) = rI(n) +
I

∑
i=1

ci(n) (1)

Although EMD is well known and widely used, it also has its share of limitations. A major
drawback is mode-mixing. This is a phenomenon defined by the presence of disparate frequency
scales within a single IMF and/or the presence of the same frequency scale in multiple IMFs.

To overcome this flaw, the authors of a previous study proposed performing EMD over
an ensemble of signal and white noise [36]. The method is called Ensemble Empirical Mode
Decomposition (EEMD). The addition of finite-amplitude white noise increases the number of
extrema present in the inner residue signal hi(n). This leads to better estimates of the upper- and
lower-envelopes of the signal when used as interpolation points in the sifting iteration. The EEMD
process includes the following steps:

1. Obtain L noisy copies of the signal x(n) by adding L independent realizations of finite-amplitude
normally distributed white noise: xl(n) = x(n) + βwl(n), where β is the signal-to-noise level of
the added noise.

2. Decompose each noise copy using EMD into a set of IMFs.
3. Obtain the final IMF components as an ensemble average of the decompositions computed in the

previous step.

It is expected that with an increasing number of white noise realizations L, the effect of noise will
cancel out. However, there is no guarantee that the reconstructed signal will not include some residual
white noise.

The EEMD method was further improved to Complementary Ensemble Empirical Mode
Decomposition (CEEMD) [37]. It was observed that using white noise in pairs of opposite polarities
substantially reduced the added noise effect.

The number of IMFs, maximum number of sifts, added noise level, and number of ensembles
are the hyper-parameters in the EMD method. There are some recommendations for default values,
such as 10 sifts and around 100 EMDs in an ensemble, but, in general, it is recommended to fine-tune
these parameters on some small data subset.

To measure the quality of the obtained IMFs, the use of the orthogonality index (OI) between all
IMFs has been proposed [35]. The decomposed modes should all be locally orthogonal to each other.
The OI is defined as follows:

OI =
N

∑
n=0

( n+1

∑
j=1

n+1

∑
k=1

cj(n)ck(n)/x2(n)
)

(2)

Ideally, a set of perfect orthogonal IMF components will give a value of zero for the OI. In practice,
an OI smaller than 0.1 is assumed to be acceptable for speech signal decomposition [38].

3.2. Variational Mode Decomposition

The Variational Mode Decomposition (VMD) is an entirely non-recursive adaptive mode
decomposition method [39]. It leads to a decomposition of the signal x(n) into a predefined number
of principal modes ci(n). It determines the relevant frequency bands adaptively and estimates
the corresponding modes concurrently, thus properly balancing errors between them. The main
advantages of this method are the theoretical rationale and robustness to noise and sampling.

Each mode ci(n) is mostly compact around the central frequency ωi. To assess the bandwidth of a
mode, an analytic signal associated with each mode is computed by means of the Hilbert transform
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to obtain a unilateral frequency spectrum. Then, the frequency spectrum of each mode is shifted to
baseband by multiplying it with an exponential tuned to the respective estimated central frequency.
Finally, the bandwidth is estimated through the squared l2 norm of the gradient. The resulting
constrained variational optimization problem is defined as

min
{ci(n)},{ωi}

{
∑

i

∥∥∥∥ ∂

∂n

[(
δ(n) +

j
πn

)
∗ ci(n)

]
e−jωin

∥∥∥∥2

2

}
, (3)

s.t. ∑
i

ci(n) = x(n)

where {ci(n)} and {ωi} are notations for the set of all modes and their center frequencies, respectively;
δ(·) is the Dirac delta function, and ∗ is the convolutional operator.

A possible way to render problem (3) as unconstrained is by using a quadratic penalty term
and Lagrangian multipliers λ. The benefits of this combination are quick convergence and strict
enforcement of the constraint. Therefore, the objective function becomes an augmented Lagrangian L
as follows:

L({ci(n)}, {ωi}, λ) :=

α ∑
i

∥∥∥∥ ∂

∂n

[(
δ(n) +

j
πn

)
∗ ci(n)

]
e−jωin

∥∥∥∥2

2
+

∥∥∥∥x(n)−∑
i

ci(n)
∥∥∥∥2

2
+

〈
λ(n), x(n)−∑

i
ci(n)

〉
, (4)

where α is the quadratic penalty weight, and 〈·, ·〉 corresponds to the inner product.
The solution to the original minimization problem (3) can now be found as the saddle point of the

objective function (4) in a sequence of iterative sub-optimization called the alternate direction method
of multipliers [40].

After optimization, the resultant modes {ĉi} in the frequency domain can be calculated as

ĉi(ω) =
x̂(ω)−∑k 6=i ĉk(ω) + 1

2 λ̂(ω)

1 + 2α(ω−ωi)2 (5)

where ĉi(ω), x̂(ω), λ̂(ω) are the frequency domain representations of ci(n), x(n), λ(n), respectively.
Similarly, center frequencies ωi can be updated as

ωi =

∫ ∞
0 ω|ĉi(ω)|2dω∫ ∞

0 |ĉi(ω)|2dω
(6)

The complete optimization of VMD can now be summarized as follows:

1. Initialize the set of modes {ĉ1
i (n)}, set of central frequencies {ω1

i }, set of Lagrangian multipliers
{λ̂1(n)}, and iteration counter m = 0.

2. Increment the iteration counter m = m + 1.
3. Update each mode in the set {ci(n)} and its associated center frequency {ωi} for all ω > 0

as follows:
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ĉm+1
i (ω) =

x̂(ω)−∑k<i ĉm+1
k (ω)

1 + 2α(ω−ωm
i )

2 −

∑k>i ĉm
k (ω) + 1

2 λ̂m(ω)

1 + 2α(ω−ωm
i )

2 (7)

ωm+1
i =

∫ ∞
0 ω|ĉm+1

i (ω)|2dω∫ ∞
0 |ĉ

m+1
i (ω)|2dω

(8)

4. Update Lagrangian multipliers λ(n) for all ω > 0 as follows:

λ̂m+1(ω) = λ̂m(ω) + τ

[
x̂(ω)−∑

i
ĉm+1

i (ω)

]
(9)

where τ is an update parameter for the Lagrangian multipliers.
5. Check for convergence:

∑
i

‖ĉm+1
i (n)− ĉm

i ‖2
2

‖ĉm
i ‖2

2
< ε (10)

If this condition is met, terminate decomposition and set {ci(n)} = {ĉm+1
i (n)}, {ωi} = {ωm+1

i }.
Otherwise, return to step 2.

The number of modes i, weight of the quadratic penalty term α, update parameter for the
Lagrangian multipliers τ, and convergence condition ε are the hyper-parameters of the VMD algorithm.
They should be fine-tuned on some small dataset.

To evaluate the quality of the obtained IMFs, we used the OI, Equation (2), the same as for the
EMD. Since there is no guarantee that the signal will be decomposed fully in the chosen number of
modes, we also calculate the residual error as follows:

RE = ∑
n

x(n)−∑i ci(n)
x(n)

(11)

The optimal choice of parameters can be found by minimizing both the orthogonality index and
residual error together.

3.3. Hilbert Spectrum

The IMFs derived from the signal are represented in terms of their instantaneous amplitude
envelopes and frequencies by the Hilbert transform [26]:

ci(n)
Hilbert transform−−−−−−−−−→ ai(n)ejθi(n), fi(n) =

1
2π

d
dt

θi(n), (12)

where ai(n), θi(n), and fi(n) represent the instantaneous envelope, phase, and frequency of ci(n).
The Hilbert spectrum H(k, n) (HS) is the distribution of the signal energy as a function of time

and frequency. The number of desired frequency bins k is a hyper-parameter of the HS:

H(k, n) =
I

∑
i−1

ai(n)w
(k)
i (n), (13)

where w(k)
i is a weight factor that is 1 if fi(n) falls within the kth band and is 0 otherwise.

4. System Description

In this section, we describe a neural network architecture which represents the recognizer part
of the end-to-end speech recognition system shown in Figure 1. As a baseline DNN we adopted the
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DeepSpeech2 model [23] which consists of CNN and RNN stacks illustrated in Figure 2. It was used
for single-feature models as well as a basis for the proposed feature combination methods. Within this
model, there are several possible locations to combine features:

• At the input level: before the CNN stack;
• At the intermediate level: between the CNN and RNN stacks;
• At the top level: between the RNN stack and the final dense layer.

We start from straightforward ‘naive’ combinations at the input and intermediate levels. Then,
we describe attention-based combinations at the intermediate level. Combinations at the top level will
introduce a large number of additional training parameters due to the doubling of the RNN stack.
Since it is difficult to compare systems with big differences in the parameter number [24], in this paper,
we do not consider combinations at the top layer.

Figure 2. System architecture for a single feature input.

4.1. Single Feature System

The DeepSpeech2 model architecture [23] we used for our single-feature models is shown
in Figure 2. It takes a spectrogram as input followed by two CNN layers and a number of recurrent
layers topped with one dense layer. Batch normalization is applied after each CNN layer and before
every recurrent and dense layer starting from the second recurrent layer.

We assume that both STFT and HHT spectra are already extracted from the speech signal and
presented as 3D feature matrices suitable for 2D CNNs. These dimensions are the number of channels
(one channel in the case of a single feature), the number of frequency bins, and the number of time
bins, while in a conventional image-based 2D CNN, these dimensions are the number of channels
(one for a gray-scale image or three for RGB colors), image height, and image width.

4.2. Naive Feature Combination

Here, we consider three types of feature combinations while keeping the general architecture of
the single-feature system. First, we combine them on the input level. Both spectra are concatenated
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along the channel dimension so that the first channel is the STFT spectrogram and the second channel
is the HHT spectrogram, as shown in Figure 3a. We refer to this system as “2ch CNN”. Second, we train
different CNN stacks for each feature type and then concatenate flattened feature maps before feeding
them to the recurrent stack, as shown in Figure 3b. We call this system “ConcatCNN”. Although it is
possible to add or multiply these feature maps instead of concatenating them, preliminary experiments
showed that the concatenation resulted in better model performance.

(a) 2ch CNN (b) Concatenated/Correlated CNNs

Figure 3. A schematic representation of ‘naive’ combinations of two inputs.

Another more intelligent way to combine the CNN feature maps is to use the correlation between
them. In [41], a correlation layer was introduced to predict optical flow from two input images.
The concatenation operation can be replaced with correlation, as shown in Figure 3b. It performs
multiplicative patch comparisons between two multi-channel feature maps, f1 and f2. The ‘correlation
step’ of two patches centered at x1 in the first map and x2 in the second map is defined as

c(x1, x2) = ∑
o∈[−k,k]×[−k,k]

〈f1(x1 + o), f2(x2 + o)〉 (14)

for a square patch of size K: = 2k + 1. This step is identical to one step of convolution in neural networks,
but instead of convolving the input with a filter, it convolves one input with the other input. Thus,
the correlation layer does not add trainable parameters to the network.

For computational reasons, patch combinations can be limited by the maximum correlation
displacement. Given a maximum displacement d for each location x1, correlations c(x1, x2) are
computed only in a neighborhood of size D: = 2d+1 by limiting the range of x2. Since these relative
displacements are organized in channels, the output size is (w× h× (D2 + 2d + 1)), where w and h
are the width and height of the feature maps.

To return to the same number of channels as that used in other network combinations, we added
one more convolution layer with a [1 × 1] kernel to make the number of output channels the same as
that in the second convolution layer. This type of system is denoted as “CorrCNN”.

4.3. Attention-Based Feature Combinations

4.3.1. Attentive Vector/Scalar Combination

In [42], the authors proposed fusing several modalities with an attention-based layer.
This improved the video description system’s ability to dynamically determine the relevance of
each modality to different parts of the description. To calculate the attentive weights of each modality,
they used the CNN output of the encoder and the temporal attention states of the decoder. Finally,
single scalar weights were applied to each modality. Our attentive combination differs from this
multimodal fusion in the attention weight calculation. As depicted in Figure 4a, we first reshape CNN
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outputs by flattening the height and channel dimensions while keeping the time dimension as it is.
Then, we calculate the attentive combination of the reshaped CNN outputs as

FComb = βSTFTFSTFT + βHHTFHHT (15)

where βSTFT and βHHT are attention weights obtained as follows:

βl =
exp(vl)

∑k exp(vk)
, (16)

where k is the number of features (i.e., in our case, k = 2), l ∈ {STFT, HHT}, and v is a feature
projection. We consider two variants of this projection:

(1) vl is calculated as an element-wise attention weight vector:

vl = tanh(WB,lFl + bB,l), (17)

where WB,l is a projection matrix and bB,l is a bias vector.
(2) vl is calculated as a scalar attention weight, similar to [42]:

vl = wT
B tanh(WB,lFl + bB,l), (18)

where wB is a vector, and the resulting vl is a scalar.

(a) Attentive combination (b) Squeezed attentive combination

Figure 4. Attention-based feature combinations.

The difference is that the importance of attention weights is more detailed in case (1) and less
detailed in case (2). We refer to the system using the attention vector as “AV-CNN” and the system
with scalar attention as “AS-CNN”.

4.3.2. Squeezed Attentive Combination

Both the attention vector and scalar combinations use reshaped CNN output, possibly losing some
pattern representation learned by the CNN channels in the stack. In [43], the squeeze-and-excitation
block was proposed to improve the representation quality produced by the CNN network by explicitly
modeling interdependencies between the channels of its convolutional features. This block allows the
network to utilize global information to selectively emphasize informative convolutional feature maps.
We adapted this global channel information to combine CNN outputs with squeezed attention. As can
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be seen in Figure 3b, we use squeezed channel-wise CNN outputs to obtain the attention weights of
both CNN outputs.

First, we obtain channel-wise statistics zc,l ∈ RC using global average pooling applied to the CNN
output Ul ∈ RHxWxC:

zc,l =
1

H + W

H

∑
i=1

W

∑
j=1

uc,l(i, j), (19)

where l ∈ {STFT, HHT}.
The obtained vector Zl = {zc,l} is used to calculate scales Sl = {sc,l} for each channel.

This operation aims to fully capture channel-wise dependencies and dynamical change in the
interaction between channels. We employ a simple gating mechanism, which consists of two
feed-forward layers:

Sl = σ(W2,l ∗ δ(W1,l ∗ Zl)) (20)

where δ is a ReLU activation function and σ is a sigmoid activation function. The size of the inner layer
can be optimized per input. Plugging these scales from both outputs into Equation (16), we can obtain
weights for each channel:

βc,l =
exp(sc,l)

∑k exp(sc,k)
, (21)

where k is the number of features (i.e., in our case, k = 2). In the final combination, each channel of
each CNN output is scaled with the obtained weights.

Fcomb = FSTFT +FHHT , (22)

fc,l = uc,l ∗ βc,l , (23)

where Fl = { fc,l}.
By squeezing global spatial information into a channel descriptor z, we can explicitly model

channel interdependencies. Calculating the weights of each spectrum allows us to increase the network
sensitivity to the most important features. This squeezed attention combination system is called
“SA-CNN”.

5. Experimental Setup

5.1. Data Description

The first set of experiments was conducted on the WSJ dataset. As training data, we used the
SI-284 part, which consisted of about 37K utterances (81.2 h). Evaluation was carried out on the
“eval92” test set of 333 utterances (0.7 h), and the hyper-parameter selection and early stopping were
performed on the “dev93” development set, which had 503 utterances (1.1 h). There were a total of
28 character labels: 26 letters, space, and a ‘blank’ symbol. To obtain noise robustness estimates in
a controlled scenario, we performed data augmentation and used multi-condition training to build
all of the models. All splits of the dataset were corrupted with noises from the Aurora 2 corpus [44]
at various SNR levels. To simulate unseen acoustic conditions, we used different but overlapping
sets of noise types and SNR levels. These conditions are summarized for each split in Table 1. Each
utterance in the development set was either corrupted with one of the noise conditions or kept clean
with equal probability. We refer to this set as Mixed Dev. We grouped the known noise data types, such
as ‘babble’, ‘restaurant’, and ‘street’, into Noisy Test A, and the unseen noise data type ‘train’ was put
in Noisy Test B. Since noise signals have much larger lengths than speech recordings, a noise segment
of the desired length was cut out of the whole noise recording with a randomly selected starting point.
To add noise at a certain SNR, the speech signal level was calculated for the active speech segments
only, ignoring silent segments in the beginning and the end of the recording as well as the long pauses
between the words.
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Table 1. Augmented datasets obtained from the WSJ corpus. Conditions, which are different between
training and test sets, are highlighted with italic font.

Training Set Mixed Dev Noisy Test A Noisy Test B

Noise type airport, babble, babble, restaurant, babble, restaurant, train
restaurant, street street street

SNR 5 dB, 10 dB, 20 dB 5 dB, 10 dB, 20 dB 0 dB, 5 dB, 0 dB, 5 dB,
10 dB, 20 dB 10 dB, 20 dB

For the language model integration, we used an extended 3-gram language model (LM) as
produced by Kaldi s5 recipe [45]. Its vocabulary size was 146K words, while the standard WSJ
vocabulary size was 5K words.

In the final set of experiments, we used the CHiME-4 1ch word recognition task [46]. The CHiME-4
challenge was designed to be close to a real-world scenario. Training data (33 h) consisted of three
parts: 7138 clean utterances, 1600 real noise utterances, and 7138 simulated noise utterances. The clean
part was the SI-84 part of the WSJ dataset. The ‘real’ speech part was recorded using a tablet device
with an array of six microphones in everyday environments: cafe, street junction, public transport,
and pedestrian area. The same transcripts as those in the clean part were used for these recordings.
To create the simulated part, the original WSJ SI-84 clean data were corrupted with noise collected
in the same environments as the ‘real’ part. The development set consisted of real and simulated
parts, each containing 1640 utterances (∼5.6 h). We used this set to optimize the hyper-parameters
and perform early stopping. The test set also consisted of real and simulated parts, each consisting of
1320 utterances (∼4.4 h). We used 1ch (one channel) track lists of the development and test sets.

We augmented the real and simulated parts of the CHiME-4 training set with speech utterances
from channels 3, 4, 5, and 6. Recordings from channel 2 were excluded since the second microphone
is located on the back of the tablet. The actual SNRs of the data are not provided for any part of
the dataset.

For the language model integration, we used a 5-gram language model with a 5K vocabulary size.
This model is standard for this dataset.

5.2. Model Hyper-Parameters

In the convolution layer stack, we used two layers with stride 2 along the time dimension in
the first layer. We performed an extensive search of optimal kernel sizes for both layers using STFT-
and HHT-based models for the same input dimensionality. We started with [41 × 11], [21 × 11],
which were used in previous works [23,47], gradually reducing kernel sizes along both dimensions.
We found that reducing kernels to [5 × 3] constantly resulted in better performance for all models.
The usage of pooling layers or stride over the frequency dimension was optimized per model on the
development set.

For models trained on the WSJ and CHiME-4 datasets, the recurrent layer stack consisted of
six layers with 768 BiGRU units. The approximate number of trainable parameters per model is
summarized in Table 2.

All our models were trained using the CTC objective function and stochastic gradient descent
(SGD) optimizer. For the models trained on WSJ data, we initialized the learning rate to 0.003 and
multiplied it by 0.97 after every epoch. Every model was trained until the WER, obtained on the
development set, stopped decreasing over 10 consecutive epochs or for a maximum of 80 epochs.
For the models trained on CHiME-4 data, we used the same learning rate and decay schedule, but the
maximum number of epochs was 55. For experiments with both datasets, the maximum number of
epochs was chosen empirically using the baseline model.
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Table 2. Approximate number of trainable parameters per model.

Model Number of Parameters

Single feature model 44.4 M
Two channels combination (2ch CNN) 44.4 M

Concatenated CNNs (ConcatCNN) 50.2 M
Correlated CNNs (CorrCNN) 44.6 M

Attentive vector combination (AV-CNN) 47.6 M
Attentive scalar combination (AS-CNN) 47.6 M

Squeezed attention combination (SA-CNN) 44.6 M

At the test time, character sequences were obtained with simple best path decoding to calculate
the character error rate (CER). To obtain the word error rate (WER) with language model rescoring,
we used beam search and optimized the language model score separately for each experiment.

5.3. Training Schedule and Strategy

For the WSJ dataset, we used multi-condition training, a widely used technique to improve the
noise robustness of a speech recognition model. In our experiments, we adopted the curriculum
learning method described in [48] called accordion annealing (ACCAN). Since we used more than one
noise type and a larger amount of training data, we introduced a few changes into ACCAN. We started
training with clean data only for 10 epochs. Then, we started to add noisy data with the lowest SNR
level with a probability of 0.05. We increased this probability by 0.05 every K epochs and added the
next SNR condition in increasing order after S1 and S2 epochs. The optimal number of epochs K and
Si were identified using single-feature models trained with STFT- or HHT-based features. We tried
about 10 training schedules for each model, and the most accurate ones were obtained when K = 2,
S1 = 20, and S2 = 40. We trained our combined-feature models and the single-feature models using the
same schedule.

Since recordings of the CHiME-4 dataset had noisy utterances with undefined SNRs, we used two
stages for training. First, we trained using clean data only for 10 epochs. Then, we added all augmented
data from the real and simulated parts and trained until convergence or when the maximum number
of epochs was reached.

5.4. Feature Extraction

All STFT spectrograms were obtained using a 20 ms window length and 10 ms shift. Considering
the standard WSJ and CHiME-4 sampling rate of 16 kHz, we could get a maximum of 161 frequency
bins per one time window. Thus, the size of the 3D input features was 1 for the channel, 161 for the
number of frequency bins, and a variable number of time bins for each batch.

To obtain the EMD-HHT spectrum, we used the complementary ensemble empirical mode
decomposition (CEEMD) [37] implemented in Matlab [49]. For each utterance, we obtained
100 ensembles of 16 IMFs with a maximum number of 10 sifts and noise level 2. As suggested
in [35], we checked the quality of the obtained IMFs with the orthogonality index (OI) measure,
which is recommended to be less than 0.1. If the OI was more than 0.1, we reduced the noise level
and/or the maximum number of sifts and ran the process again.

To obtain the VMD-HHT spectrum, we used the Matlab library provided by the author of the
method [39]. We found that the most sensitive parameter of the VMD method was the quadratic
penalty weight α. When α was changed from 500 to 22,000, the overage OI decreased linearly, while the
average RE increased exponentially. Thus, we selected VMD hyper-parameters based on the average
RE value. For a fair comparison, we kept the number of IMFs the same as that for the EMD method.
The lowest RE value was obtained when α = 2500, τ = 0, and ε = 10−7.

For all STFT, EMD-HHT, and VMD-HHT spectra, we kept the same time resolution, which meant
that one time bin in the HHT spectrum represented a 10 ms window. To extract features for the training,
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clean test, and noisy test sets, we used the EMD and VMD hyper-parameters that were found to be the
most suitable on the development set.

Both the WSJ and CHiME-4 datasets share the same acoustic units since the same set of
transcriptions is used.

6. Experimental Results

In the following subsections, we describe the results of the experiments conducted to assess the
noise robustness of the proposed feature combination methods.

6.1. WSJ Dataset

First, we trained separate STFT and HHT single-feature models using the data augmentation and
curriculum learning techniques described in Section 5.3. Character and word error rates (CER, WER)
obtained with single-feature models are presented in Table 3. Overall, neither of the HHT-based
single-feature models outperformed the STFT-based one, which is consistent with the previous results
on different speech tasks [26,27]. On the other hand, the VMD model was more accurate than the
EMD model.

Table 3. Character error rate (CER) and word error rate (WER) results (%) of clean and noisy tests for
single-feature models trained on the WSJ dataset (The best results for each set are highlighted with
bold font).

Feature Clean Test Noisy Test A Noisy Test B Average

CER WER CER WER CER WER CER WER

STFT 4.5 8.8 9.8 17.3 9.6 17.2 8.0 14.4
EMD-HHT 5.4 10.5 13.7 23.1 13.0 22.2 10.7 18.6
VMD-HHT 4.8 9.2 10.6 18.3 10.7 18.4 8.7 15.3

Next, we evaluated our combined feature models described in Sections 4.2 and 4.3. We fine-tuned
the hidden layer size of the SA-CNN model using the mixed development dataset. It was 32 nodes for
the EMD-based feature combination and 128 nodes for the VMD-based one. Thus, the increase in the
trainable parameters per model was negligible, as is shown in Table 2. The displacement parameter d
of the correlation layer was also optimized over the development set. We found that smaller values of
d ≈ 20–30% of the feature map height led to better performance. Here, we used d = 8.

The CER and WER results of the WSJ experiments are summarized in Table 4. The majority
of models trained with EMD- and VMD-based features outperformed the STFT baseline. The only
exception here was the CorrCNN model. We suppose that STFT and HHT spectra were too different to
gain any advantage from their correlation. Analyzing the attention combination performance, we see
that squeezed attention (SA-CNN) outperformed both AV-CNN and AS-CNN, which we expected
to some extent. The lowest WERs from the clean test and Noisy Test A sets were achieved using the
SA-CNN combination of STFT- and VMD-based features. The lowest WER from the unseen Noisy Test
B was achieved using the 2ch CNN EMD-based feature combination. All models generalized well to
mismatched training-testing conditions, as no big drop in performance of either baseline or combined
feature models was observed.

The best CER and WER results were obtained by the models in which feature combination was
performed along the channel dimension at different levels of the model. As the performances of
the 2ch CNN model using EMD-based features and SA-CNN model using VMD-features were very
close for both noisy test sets, we examined performance for each noise type averaged over different
SNRs and for each SNR averaged over the noise type. It was found out that the SA-CNN model
outperformed 2ch CNN on the test set corrupted with the ‘street’ noise, which is a part of Noisy Test A.
This noise was also the most difficult noise type for the recognition. The WER values of the baseline,
2ch CNN, and SA-CNN were 19.5%, 19.0%, and 18.0%, respectively. Otherwise, 2ch CNN showed
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better performance when SNR was 0 dB. The WER values of the baseline, 2ch CNN, and SA-CNN
were 30.7%, 29.0%, and 29.5%, respectively. This suggests that SA-CNN was more advantageous when
dealing with a challenging noise type, while 2ch CNN was more advantageous when dealing with
low-SNR noisy conditions.

Table 4. CER and WER results (%) of clean and noisy tests for all the models trained on the WSJ dataset.
Noisy Test A has the same noise types as the training set. Noisy Test B has a noise type that is not used
during training (The best results for each set are highlighted with bold font).

Feature Model Clean Test Noisy Test A Noisy Test B Average

CER WER CER WER CER WER CER WER

STFT Baseline 4.5 8.8 9.8 17.3 9.6 17.2 8.0 14.4

EMD-HHT

2ch CNN 4.5 8.7 9.3 16.5 8.9 15.9 7.6 13.7
ConcatCNN 4.6 8.6 9.8 17.2 9.4 16.9 7.9 14.2

CorrCNN 5.0 9.5 10.5 18.8 10.5 18.7 8.7 15.6
AV-CNN 4.6 8.5 9.8 16.9 9.6 16.7 8.0 14.1
AS-CNN 4.7 8.6 10.1 17.2 9.9 17.0 8.2 14.2
SA-CNN 4.6 8.5 9.7 16.6 9.4 16.5 7.9 13.9

VMD-HHT

2ch CNN 4.4 8.4 9.7 16.8 9.4 16.4 7.8 13.9
ConcatCNN 4.3 8.4 9.7 17.0 9.4 16.8 7.8 14.1

CorrCNN 4.8 9.1 10.8 19.0 10.6 18.3 8.8 15.5
AV-CNN 4.6 8.5 10.0 17.4 9.8 17.2 8.1 14.4
AS-CNN 4.8 8.8 10.1 17.4 10.1 17.6 8.3 14.6
SA-CNN 4.3 8.0 9.3 16.3 9.2 16.2 7.6 13.5

Finally, we performed statistical significance tests on the results obtained with the SA-CNN model
trained with VMD-based features, 2ch CNN trained with EMD-based feature combinations, and the
baseline model trained with STFT-based features. According to the Matched Pairs Sentence Segment
Word Error Test (MPSSW) [50] between the SA-CNN and baseline models, all WER results on each test
set were statistically significant with p-value < 0.05. MPSSW between 2ch CNN and baseline models
showed that WER improvement was statistically significant with p-value < 0.05 when calculated for
the noisy test sets results.

6.2. CHiME-4 Dataset

Up to this point, the experiments were performed in simulated noisy conditions only. Next,
we investigated whether using additional HHT-based features could help in real noisy environments.

The CER and WER results obtained separately for simulated and real noisy test and development
(dev) sets are summarized in Table 5. Similar to the previous experiment, the majority of models trained
with EMD- and VMD-based features outperformed the STFT baseline. However, the performance
of the 2ch CNN combination was weaker than that of attentive feature combinations AV-CNN and
SA-CNN. A possible reason is a difference in noisy conditions between WSJ and CHiME-4 datasets.
As noisy conditions in CHiME-4 are real-life scenarios, SNR levels vary within a single utterance,
while the type of noise is the same within the utterance [46]. In the previous experiment, SA-CNN
showed the lowest WER on the test set corrupted with the most challenging noise type. We suppose
that the attention mechanism allowed the SA-CNN model to adapt better to variable conditions.

The difference in performance between models trained with EMD- and VMD-based features was
statistically insignificant. We presume that the performance of VMD-based models can be further
improved by increasing the number of IMFs before HHT spectrum calculation. In this experiment,
we kept the same number of IMFs for both the EMD- and VMD-based spectra in order to obtain a fair
comparison between the two methods.
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Table 5. CER and WER results (%) of clean and noisy tests for all the models trained on the
CHiME-4 dataset (The best results for each set are highlighted with bold font).

Feature Model Simulated Dev Real Dev Simulated Test Real Test

CER WER CER WER CER WER CER WER

STFT Baseline 17.1 25.4 16.2 23.5 24.8 36.3 25.3 38.3

EMD-HHT

2ch CNN 16.4 23.6 15.4 22.0 24.5 35.5 24.6 36.5
ConcatCNN 16.0 23.3 14.9 21.8 24.0 35.5 24.0 36.3
CorrCNNs 17.3 25.6 16.2 23.9 25.0 37.3 25.6 39.4
AV-CNN 16.2 23.5 14.6 21.1 23.8 34.6 23.7 35.6
AS-CNN 16.1 23.6 14.8 21.8 23.8 35.3 24.4 36.8
SA-CNN 16.1 23.3 14.3 20.8 23.8 34.5 23.8 35.6

VMD-HHT

2ch CNN 16.6 24.0 15.4 22.2 24.5 35.4 25.0 37.5
ConcatCNN 16.3 23.8 15.0 21.7 24.1 35.3 24.3 36.6

CorrCNN 17.4 26.3 16.0 24.0 24.9 37.0 25.3 38.9
AV-CNN 16.2 23.9 14.6 20.9 23.7 34.5 23.7 36.1
AS-CNN 16.5 24.3 15.0 21.8 23.7 35.1 24.1 36.4
SA-CNN 16.2 23.7 14.7 21.2 23.8 34.5 23.9 35.9

Finally, using the SA-CNN model trained with EMD- and VMD-based feature combinations,
we performed the same statistical significance test as that performed for the WSJ dataset results.
According to the MPSSW test between the STFT-based baseline and SA-CNN trained with the
EMD-based feature combination, the WER results on simulated and real test sets were statistically
significant with p-value < 0.05. A similar p-value was observed for the MPSSW test between the
STFT-based baseline and SA-CNN trained with EMD-based feature combination.

All competitors in the CHiME-4 challenge used DNN-HMM hybrid systems that perform
consistently better than the end-to-end models, and their results are better than those presented
here. However, in [51], a CTC-based system that was built with CNN and RNN stacks and was similar
to our baseline was also evaluated on the CHiME-4 data. In that work, the CER of the real test set was
48.8%, which was much higher than our result of 23.7%.

7. Conclusions

In this work, we investigated the effect of combining STFT and HHT spectrogram features with
respect to an end-to-end DNN model-based ASR system. We also compared two mode decomposition
methods of the HHT spectrum calculation, such as EMD and VMD. As a baseline system, we adopted
the CNN+RNN architecture presented in [23] with a standard CTC objective function. We proposed
several attention-based combination layers located between the convolutional and recurrent stacks of
the model. Our results show that by using a feature combination, it is possible to improve the ASR
system noise robustness without adding too many model parameters. In the proposed attention-based
combined feature models, the increase in the number of parameters ranges from 0.45% for the SA-CNN
to 13.1% for the AV-CNN model.

We evaluated the proposed feature combinations using WSJ and CHiME-4 word recognition tasks.
The SA-CNN and AV-CNN systems, which use attention-based combination, achieve the highest WER
reduction of 5÷7%. However, SA-CNN requires fewer trainable parameters, which may lead to shorter
training and inference time.

Further efforts will be focused on extending the proposed approach to other speech-based
tasks, such as speaker verification, speaker diarization, etc. Since speech recognition is not the only
speech-based task in which performance degrades due to challenging environmental conditions.
Another direction of our future investigations is applying other adaptive mode decomposition
techniques, which are suitable for noisy audio signals but were not evaluated on speech-based tasks [52].
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