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ABSTRACT

In current HMM based speech recognition systems, it is dif-
ficult to supplement acoustic spectrum features with addi-
tional information such as pitch, gender, articulator posi-
tions, etc. On the other hand, Dynamic Bayesian Networks
(DBN) allow for easy combination of different features and
make use of conditional dependencies between them. How-
ever, lack of efficient algorithms has prevented their applica-
tion in large vocabulary continuous speech recognition. The
hybrid HMM/BN acoustic model, where HMM are used
for modeling of temporal speech characteristics and state
probability model is represented by BN, provides a trade
off solution to the problem. In this paper we describe the
HMM/BN acoustic model and LVCSR system built upon
this model. In the HMM/BN model, in addition to speech
observation variable, state BN has two more discrete vari-
ables representing speaker gender and pitch frequency. Eval-
uation results on WSJ database showed lower word error
rate with respect to the same complexity conventional HMM
acoustic model when there is enough training data to esti-
mate reliable HMM/BN parameters.

1. INTRODUCTION

In current LVCSR systems, HMM state probability distri-
butions are commonly modeled by mixture of Gaussians.
Also, there are hybrid HMM/NN systems [1] where Neu-
ral Networks are used to estimate HMM state likelihoods
given input observation. Many researchers have tried to in-
clude additional features like pitch, speaking style, articula-
tory positions into their HMM systems. For example, in [2]
multi-space probability distribution is proposed for model-
ing additional pitch information. But, in almost each case,
different approach is taken depending on the properties of
the additional feature. There is no common, flexible enough
framework to deal with this problem.

On the other hand, Dynamic Bayesian Networks (DBN)
[3] provide efficient framework for modeling joint probabil-
ity distributions of many variables enabling easy integration
of multiple speech features. In some of the first reports on
DBN in speech recognition, they were used as word models
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in isolated word recognition tasks [4, 5]. In these works,
DBN are regarded as generalization of the HMM, which
in addition to speech spectral information can easily incor-
porate additional knowledge, such as sub-band correlation,
speaking style, etc. In [6], acoustic features integrated with
pitch information within the framework of DBN. Despite
these attractive properties of BN, their application in speech
recognition is still limited to small, isolated word recogni-
tion tasks. The reason is that existing algorithms for BN
parameter learning and inference are not practically suitable
for continuous speech recognition (CSR) and especially large
vocabulary CSR tasks. Although, an extension of the DBN
word model allowing recognition of continuously spoken
digits was reported in [7, 8], increasing task vocabulary even
to a few hundred words would be computationally intractable.

The hybrid HMM/BN acoustic model we proposed re-
cently [9] aims at utilizing advantages of both HMM and
BN while being free from their drawbacks described above.
In this model, HMM and BN are combined together in one
model where temporal characteristics of speech signal are
modeled by HMM state transitions and the BN is used to
model HMM state distributions. There is a two level hier-
archy in which the BN is at the lower level and the HMM
stays at the top level. The advantage of this is that existing
recognition algorithms can be used without any modifica-
tion since this model behaves as a conventional HMM and
can be used to model both word and sub-word units which
is essential for large vocabulary systems. Nevertheless, ad-
ditional features (variables) can be easily integrated in the
state BN.

2. THE HYBRID HMM/BN MODEL

2.1. Definitions
The hybrid HMM/BN model is a combination of HMM
and BN, where temporal characteristics of speech signal are
modeled by HMM state transitions and HMM state proba-
bility density is modeled by Bayesian Network. The HMM/BN
model structure is shown in Fig. (1).

This model is described by two sets of probabilities:
HMM transition probabilities P(g;|g;) and joint probabil-
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Fig. 1. HMM/BN model structure.

ity distribution of the Bayesian Network P (X, ..., Xk),
where X;,i = 1,..., K are the BN variables. The BN joint
pdf can be factorized as [10]:

K
,Xk) = [[ P(Xi| Pa(Xy)) L

i=1

P(Xy,...

Here, Pa(X;) denotes the parents of the variable X;.

Some examples of possible state BN structures are shown
in Fig. 2. BN variables can be both discrete and contin-
uous variables and some of them can be hidden. For ex-
ample, variable X; can represent HMM state, X> - speech
spectrum observation vector, and others can represent addi-
tional speech characteristics as pitch, articulators positions,
speaker gender, etc. Dependency between two variables is
denoted by an arc and is described by a conditional proba-
bility function. Since it is difficult to learn such dependency
automatically, most often BN structure is designed manu-
ally based on our knowledge about the data.

2.2. HMM/BN model training

For HMM/BN model training, the same approach as for
HMM/NN training [11] can be adopted. It is based on the
Viterbi training algorithm and proceeds in several steps:
Step 1. Initialization: Choose topologies of HMMs and
state Bayesian network and initialize model parameters (ei-
ther randomly or performing Step2 using conventional boot-
strap HMM recognizer).

Step 2. Viterbi alignment: Perform Viterbi alignment of
the training data. This gives a time-aligned state segmenta-
tion. Itis used to produce training data for the state Bayesian
network.

Step 3. BN training: Train State BN using maximum like-
lihood algorithm if all variables are observable or EM algo-
rithm if some of them are hidden.

Step 4. HMM transition probabilities training: Perform
standard forward-backward training of HMM transition prob-
abilities.

Step 5. Convergence check: Check whether convergence

a) State BN with one additional discrete variable.

Xy
X, S~
| X3
Xq _—
=

b) State BN with more complex structure.

Fig. 2. Possible state BN structures.

criterion is met (either specified number of iterations or data
likelihood increase threshold) and go to Step 2 or finish
training.

2.3. Recognition with the HMM/BN model

When doing recognition with this HMM/BN model, as in
the case of conventional HMM, the standard Viterbi decod-
ing algorithm is used. Here, we need to calculate input ob-
servation likelihood P(z;|Q) for each state () = ¢;; where i
is the HMM index and j is the state index of the 5t* HMM.
For simple state BN, P(z.|Q) can be derived analytically
using “brute force” inference method. For more complex
state BN, standard exact inference algorithms (as for exam-
ple “junction tree” algorithm [10]) can be used.

3. LVCSR SYSTEM WITH HMM/BN MODEL

For large vocabulary speech recognition systems it is es-
sential to use sub-word unit modeling approach where each
HMM represents short speech unit: phone for example. Also,
in order to achieve good recognition performance, it is prefer-
able to use context dependent models. In our system, we
adopted crossword triphone HMM/BN models with 3-state
left-to-right topology. As for the state Bayesian Network,
we used the structure shown in Fig. 3 where variables @
and X are observable and represent discrete HMM state and
continuous observation vector. The other two discrete vari-
ables - F' and G represent two additional speech features:
pitch frequency and speaker gender.
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Fig. 3. State BN structure with pitch frequency F' and
speaker gender G as additional variables.

When building a LVCSR system, we always face the
problem of limited training data. There are various meth-
ods to deal with this problem, most widely used of which is
the state tying method. Such method for HMM/BN model,
however, does not exist yet and its development would re-

If the pitch frequency is available during recognition,
then we can use this information and calculate conditional
probability of X with respect to both state @) and pitch F:

P(X,F,Q)
Y P(X,F,G=y,Q)
- P(FIQPQ)
_ 2 PX|F,G=g,QP(FIG=g,Q)
- 2>, P(FIG =g,Q)

(4)

Analyzing Eq.(3) we can see that it is same as the con-
ventional mixture of Gaussians equation, where P(F =
fIG = g,Q)/2 are the mixture weights and P(X|F =
f,G = g, Q) are the Gaussian components. In this case, the
HMMY/BN structure is equivalent to the standard HMM and

quire considerable time. Our solution was to initialize HMM/BN  therefore existing HMM decoders can work with HMM/BN

with already tied state bootstrap HMM and use its tying
scheme. Of course, such state tying would not be opti-
mal with respect to HMM/BN maodel, but still greatly re-
duces the limited data problem. Once initialized, HMM/BN
model is trained as described in section 2.2.

State output probability can be calculated in closed form
from the joint pdf for the BN of Fig. 3 which according to
Eq.(1) is:

P(X,F,G,Q) = P(X|F,G,Q)P(F|G, Q)P(G)P(Q() |
2

Since X is continuous variable, P(X|F, G, Q) is mod-
eled by Gaussian density. F' and G are discrete and there-
fore P(F|G, Q) is represented by conditional probability
table (CPT). Assuming that speaker gender and pitch fre-
quency of the training data are known, during training all
BN variables are fully observable and Gaussian parameters
are estimated using ML algorithm, while CPTs are obtained
from sample counts.

During recognition, speaker gender is usually unknown
and variable G can be left hidden. Furthermore, it is equally
probable that the test speaker will be either male or female,
so prior probabilities P(G = g),g = {male, female} are
both set to 0.5 As for the pitch variable, it can be hidden
as well as observable. The case when pitch variable is hid-
den is especially interesting because during recognition we
don’t have to estimate pitch frequency. Then, state output
probability is:

PIXIQ) = T5
Y, PGP =£G=4,Q)
- (@)
-y PEEIG =0 pixip = f.6 = 0.)
F9

®)

without any modification. However, the difference between
HMM/BN and HMM lays in the way they are trained. As
for the Eq.(4), it also can be viewed as mixture of Gaus-
sians, however, which Gaussians are to be used depends on
the pitch variable value.

4. EXPERIMENTS

We evaluated our HMM/BN based LVCSR system using
WSJ database. The experimental setup followed closely the
HUB2 (Nov93) evaluation specifications. For training we
used SI-284 training set. Language model was standard bi-
gram provided for the HUB2 evaluation. The test set con-
sists of 215 utterances with 0% OOV and 5000 word dictio-
nary.

Speech data were transformed into 39 dimensional fea-
ture vectors (pow + 12 MFCC, A, AA) from 20ms long
frames with 10ms shift. Pitch frequency was extracted from
speech signal such that for each feature vector there was a
corresponding pitch value. Zero pitch was set for silence
and non-voiced parts. From all non-zero pitch data two VQ
codebooks were trained with 3 and 7 centroids respectively.
Later, a zero centroid was added manually to each of the
codebooks, so the number centroids became 4 and 8. All
pitch data (train and test) were then quantized and codebook
labels were obtained. Thus, we had each speech feature vec-
tor labeled with pitch and speaker gender label.

Using the HTK speech toolkit we trained three tied state
crossword triphone bootstrap models HMM with 10071, 7870
and 5666 states respectively. They were used for initializa-
tion of three HMM/BN models. During HMM/BN training,
data aligned for each state were divided into 8 or 16 sets in
accordance to their labels and from each set one Gaussian
pdf parameters were calculated using ML method. If the
number of vectors in certain set was less than a threshold,
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Gaussian was not made thus, effectively reducing the num-
ber of mixtures for the state. In some cases, data from both
genders for a given pitch label were pooled in order to ex-
ceed this threshold. HMM/BN model training was stopped
after 5 iterations.

Decoding with HMM/BN model was done using the
same HTK software without any modification, so the gender
and pitch variables were left hidden and state output proba-
bility takes the form of Eq.(3). Table 1 and Table 2 show the
results using 4 and 8 level quantized pitch data respectively.
In HMM/BN case, since the mixture number varies from
state to state, the average number of Gaussians per state is
given. For comparison, results of similar complexity stan-
dard HMM model are shown.

Table 1. Results using 4 level CB quantized pitch data

| Model | states | mix/state [ WER (%) |
HMM 4 12.4
HMM/BN | 10071 3.7 11.8
HMM 4 14.7
HMM/BN | 7850 4.1 14.0
HMM 5 13.6
HMM/BN | 5666 4.5 12.4

Table 2. Results using 8 level CB quantized pitch data

| Model | states | mix/state | WER (%) ]
HMM 6 11.2
HMM/BN | 10071 5.6 12.1
HMM 6 13.3
HMM/BN | 7850 59 13.8
HMM 7 125
HMM/BN | 5666 6.6 12.8

These are first results we got and they are definitely
not conclusive. Nevertheless, they show that sparse train-
ing data is a serious problem for the HMM/BN model. As
we mentioned in section 3, we used state tying derived from
one mixture per state conventional HMM and is clearly not
suitable for the HMM/BN model and obtained results con-
firm this. For the case of 4 level quantized pitch data and
less number of model parameters, we got better results than
the baseline HMM and the relative improvement is highest
for the models with smallest state number. On the other
hand, with 8 level quantized data, HMM/BN did not im-
prove the baseline HMM performance, but for the case of
smallest state number, WERSs are almost the same. Also,
the HMM/BN model using 8 level quantized pitch data is
more sensitive to pitch extraction errors than the one which
uses 4 level quantized pitch data.

5. CONCLUSION

We have presented a LVCSR system based on the hybrid
HMM/BN model which allows easy integration of additional
speech information. In our system, state BN had two addi-
tional variables representing pitch and speaker gender. Eval-
uation on WSJ database showed that HMM/BN model per-
forms better than conventional HMM of similar complexity
given there is enough training data. Also, the state tying al-
gorithm for HMM seems to produce inefficient tying with
respect to the HMM/BN model.

Future work will include research on new HMM/BN
state tying algorithm and new HMM/BN model evaluations
with different data and various state BN structures.
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