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ABSTRACT
In this paper, we describe new language identi cation system
based on the recently developed Dynamic Hidden Markov
network (DHMnet). The DHMnet is a never-ending learn-
ing system and provides high resolution model of the speech
space. Speech patterns are represented by paths through the
network, and these paths when properly labeled with lan-
guage IDs provide ef cient means to discriminate between
languages. First experiments indicated that our system can
work on-line and is able to deliver relatively high perfor-
mance with low latency. Evaluated on three language (En-
glish, Japanese and Chinese) identi cation task, the system
achieved identi cation rates of 87.3% and 89.3% for 3 and 5
seconds long speech segments respectively.
Index Terms— Language identi cation, never-ending

learning, dynamic hidden markov network, on-line learning,
bio-inspired algorithms.

1. INTRODUCTION
Increased globalization and expanding practical adoption of
the human language technologies require automatic speech
processing systems, such as dialog or speech-to-speech trans-
lation systems, to operate in a multilingual environment. This,
for its part, requires the availability of high performance, on-
line language identi cation (LID) systems with minimum la-
tency.
Research on LID has been focused mainly on two ap-

proaches. In the rst one, the idea is to use the phonotactic
content of the speech signal for language discrimination. Typ-
ically, language dependent phone n-gram models are trained
from labeled data produced by single or multiple phone
recognizers[1, 2]. The most popular technique is called Par-
allel Phone Recognition and Language Modeling (PPRLM)
[3]. Input utterance is transformed into phone sequence by
a set of recognizers and the probability of occurrence of this
sequence in each language is obtained from the language
n-grams. It has been shown that this approach is effective and
gives good performance. An essential drawback, however, is
the need for ne phone labels during training, but such labels
may be too expensive or even impossible to obtain for some
languages. The other approach to LID exploits the acousti-
cal differences between languages. In a manner similar to

the text-independent speaker identi cation, each language is
represented by a Gaussian mixture model (GMM), trained on
some language speci c data. Initially, this method did not
show good results, but recent improvements have increased
its performance to match that of the phone-based systems
[4, 5].
The goal of this study is to develop a LID front-end for

our multilingual speech-to-speech translation system which
will allow it to operate in a fully automatic mode. This re-
quires the LID system to work on-line, in real time and to
introduce minimum delay, i.e. to have as small as possible
latency. Unfortunately, non of the widely used methods sat-
is es these conditions. That is why, we decided to experi-
ment with the newly developed Dynamic Hidden Markov net-
work (DHMnet)[6]. It is a never-ending learning model which
when presented with suf cient data is capable of represent-
ing the speech manifold embedded in the feature space. The
number of states and the network structure are automatically
determined and can change in time depending on the data dis-
tribution. Speech patterns form paths through the network
whose output is the best state sequence. For language identi-
cation, initially, the DHMnet is learned with data sequences,
where every feature vector is labeled with silence or the cor-
responding language label. Each DHMnet state and transition
are assigned discrete label probability distribution. Probabil-
ities are estimated incrementally as the data come in. During
the test, for speech segments only, the language labels proba-
bilities are accumulated along the best state sequence and the
language is identi ed as the label with the highest probability
score. This approach is somewhat similar to the one from re-
cently presented study and based on the self-organizing map
(SOM)[7]. The difference is that, in contrast to the DHMnet,
SOM topology and the number of nodes needs to be selected
manually, which cannot be optimal and always introduces dis-
tortions of the speech space. Also, instead of probability dis-
tributions, SOM nodes are assigned single language label and
the identi cation decision is made by simple label counting.

2. THE DHMNET

The DHMnet consists of hidden Markov states with self-
loops and transitions between them. Additionally, neigh-
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boring states are connected with lateral connections. Each
state represents a part of the input feature space modeled by
a multivariate Gaussian function. State sequences or paths
through the network correspond to learned speech patterns
or classes of patterns. New states and transitions are added
to the network whenever new pattern is encountered. The
practical problem is to de ne what should be considered as
a ”new” pattern and how to detect it. Inevitably, spurious
events and noises would allocate states that may never be vis-
ited again. Such states (and paths) are considered ”dead” and
will be gradually removed from the network. The schematic
structure of the DHMnet is shown in Fig.1, where transitions
of a learned path are represented by directed solid lines, new
paths with directed short dashed lines, and ”dead” paths with
directed long dashed lines. Undirected dashed lines represent
lateral connections between states. Generally, any pattern

Fig. 1. Schematic structure of a Dynamic Hidden Markov
network.
that is suf ciently different from those that have been already
learned can be considered a new pattern. In the DHMnet, we
use single multivariate Gaussian function with xed diagonal
covariance matrix for all the state PDFs and apply a threshold
to the likelihood value, or distance from the mean, for “nov-
elty” detection. Since the DHMnet is a rst-order Markov
chain where input vectors are presumed conditionally inde-
pendent, the pattern-level novelty detection can be substituted
by multiple frame-level novelty detections. Thus, any given
input vector xwill be considered ”new” if |x−μb| > θ = kσ,
where μb is the mean of the best matching state and the θ is
the so-called vigilance threshold. Thus, the only two param-
eters that need to be set for the DHMnet are the Gaussian
variance σ2 and θ.
For the DHMnet state PDF learning, we consider the se-

quential version of the Maximum Likelihood estimation algo-
rithm. In this case, the Gaussian mean updateΔμn after input
vector xn will be:

Δμn = μn − μn−1 =
1

n

n∑
i=1

xi −
n

n
μn−1 (1)

=
(n− 1)μn−1 + xn − nμn−1

n
=

1

n
(xn − μn−1)

Since the DHMnet states represent different regions of
the input feature space, it is important that neighboring states

correspond to neighboring regions. That is, the state net-
work should be a topology representing network. It has been
shown that if lateral connections between neural network
nodes (states in the DHMnet case) are built using the com-
petitive Hebbian rule [8], the resulting network is a perfect
topology representing network. The competitive Hebbian
rule can be described as: for each input vector, connect the
two closest nodes by an edge. Such networks have two very
useful properties: 1) vectors that are neighbors in the input
space will be represented by neighboring nodes; 2) if there is
a path in the input space between two vectors, there will be a
path connecting the two nodes that represent those vectors.
When a network dynamically changes its structure, the

state neighborhood relations also change. To account for
these changes, each lateral connection is given an age that
is set to zero when a connection is made or refreshed. Oth-
erwise, the connection age is increased every time one of
the connection’s states is visited. This way, connections that
reach a certain age, i.e. ones that have not been refreshed
for some time, are removed. The DHMnet states can have
many lateral connections and if for some state all connections
are removed, this state is pronounced ”dead” and is removed
along with all transitions to and from it.
For any input speech pattern represented by a sequence

of feature vectors we are interested in nding the best state
sequence or path through the network. Formally, this can be
stated as follows:

S = max
S

P (S|X), X = {xi}
T
i , S = {si}

T
1 (2)

The neighborhood and path preserving properties of the net-
work ensure that each current state st is the best state given
the current vector xt. The best state sequence can be found
by using a recursive procedure. Suppose that St

1 is the best
path until time t. Then

P (St+1
1 |Xt+1

1 ) = (3)

=

[
max

sj⊂Succ(st)
P (sj |st)P (xt+1|sj)

]
P (St

1|X
t
1)

where Succ(st) is the set of succeeding states for state st.
We summarize the complete DHMnet algorithm as fol-

lows:

(1) Start with an empty network.
(2) For the next input vector xt, given the current state

scurr, nd the best matching succeeding state sc. If
it passes the vigilance test, set it as the next state, i.e.
snext = sc, and go to (5).

(3) Find the best state, sa, from all other states. If it passes
the vigilance test, snext = sa, and go to (5).

(4) Add a new state, st, i.e. snext = st, and set its mean to
xt.

(5) Make (update) the transition from the current state
scurr to snext.
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(6) Update the means of snext and all its neighbors (Eq.1).

(7) Make (refresh) the connection between snext and the
second best state. Increase the ages of all snext con-
nections.

(8) If any connection age has reached the age threshold,
remove this connection. Remove states with no con-
nections.

(9) Add snext to the best state sequence. Set the current
state scurr = snext, and go to (2).

3. LANGUAGE INFORMATION LEARNING

The DHMnet is capable of learning the input data character-
istics in an unsupervised manner, but it cannot acquire the
higher level abstract knowledge about words or languages be-
cause such information is not presented in the acoustic sig-
nal. However, in a way similar to how humans learn, such
knowledge can be learned by associating speech signals, or
more precisely, the paths through the network, with the corre-
sponding abstract notions. And this can only be achieved by
a supervised training.
The simplest and most straightforward association is the

labeling. Assuming that our data are segmented into speech
and non-speech segments, we rst assign labels to each fea-
ture vector. These labels, lk, are either sil for silence or
langn for the nth language to be identi ed. On the other
hand, discrete label probability distributions (PD), Pi(lk) and
Pi→j(lk), are assigned to each DHMnet state si and to each
transition from state si to state sj whenever the state is created
or the transition is established. During the DHMnet learning,
the PDs of the states along the best path are incrementally
updated with the corresponding labels according to the fol-
lowing rule:

Pn
i (lk) = Pn−1

i (lk) +
1

n
(C − Pn−1

i (lk)) (4)

where
C =

{
1, if ln = lk
0, if ln �= lk

(5)

and n is the number of times the state has been visited and
the ln is the current label. The transition PDs, Pi→j(lk), are
updated in the same manner.
To identify the language of an unknown utterance X of

length T 1, we accumulate the probabilities of each label lk
along the DHMnet’s best state sequence. The decision is
made by maximum probability principle, i.e.:

L(X) = arg max
lk

T∑
t=1

log Pt(lk) (6)

We can use only state distributions, Pt(lk) = Pst
(lk), or tran-

sition distributions, Pt(lk) = Pst−1→st
(lk), or both, Pt(lk) =

1Here we assume thatX consists of speech frames only.

Pst
(lk)Pst−1→st

(lk). In the rst case, only static, acoustical
language dissimilarities are exploited, which corresponds to
the idea of the GMM based LID approach. The second one,
is somehow similar to the phone-based approach since it cap-
tures the differences in the acoustic dynamics. Naturally, we
can expect that the last case will be the best option, because it
combines both the static and dynamic information.
It may happen that some of the states in the best states se-

quence are newly added states to the DHMnet, and for them
PDs do not exist yet. In such cases, we take the PD of the
nearest old state. Common sense suggests that these probabil-
ities should be weighted depending on the distance between
the new and the old states, but in this study we did not use
such weighting.

4. EXPERIMENTS

For experimental evaluation of the LID system, we used part
of the ATR multilingual travel domain speech database [9].
It consists of read style studio recordings in three languages
- English, Japanese and Chinese, from many speakers. For
the initial DHMnet learning and supervised label training, we
randomly selected 1000 utterances per language with the con-
dition that the minimum speech duration of each utterance is
2 sec. This makes the total amount of speech about 75 min.
per language. Half of the data are from male speakers and
the other half is from female speakers. We denote this data
set as “Train” set. For testing, two different data sets were
selected, both consisting of 200 utterances (100 male and 100
female utt.) per language. The difference is that for the rst
set, called “Test1”, there was no lower limit on the speech du-
ration, but for the other one, “Test2”, the limit was set at 5 sec.
Note, that in the “Test1” data set, there were some utterances
with one or two words only. The average speech length for
this set is about 2.6 sec.
The speech pre-processing is the same as in our previous

study [6], i.e. we use 24 Filter Bank log energies from 20ms
long windows taken at 10ms. rate. All data are segmented
into speech and silence regions using forced alignment by our
conventional speech recognition system.
As explained in Section 2, the only two DHMnet parame-

ters that need to be set are the Gaussians variance σ2 and the
novelty threshold θ. In this experiments we kept σ = 1, but
θ was set to 1.4σ, 1.5σ and 1.6σ. The bigger is the thresh-
old, the fewer states are created during the learning and, con-
sequently, the lower is the resulting speech space resolution.
The number of DHMnet parameters after the initial learning
with the data set “Train” for each value of θ are summarized
in Table 1. In these experiments, removing of “dead” DHM-
net states was disabled. Label probability distributions were
incrementally estimated during learning with the “Train” data
set. There were four labels: sil, en, jp, ch for the silence and
the three languages. Due to the label data sparseness, espe-
cially for the transition PDs, there were many distributions
with unseen label values. In order to avoid numerical prob-
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Table 1. DHMnet parameters after initial learning with the
data set “Train”.

Threshold # states # transitions
1.6 5703 282772
1.5 8825 358445
1.4 14177 449000

lems during scoring, probability value for the missing labels
was set to a small xed oor.
First, we tested the LID system with the data set “Test1”

and the results are presented in Table 2 where the columns
“State PDs”, “Trans.PDs” and “Both PDs” show the LID rates
corresponding to the three different cases of PDs usage for
scoring described in Section 3. As we expected, DHMnets
with more states performed better. But, in contrast to the com-
mon HMM sense, the information captured by DHMnet tran-
sitions shows same or even better discriminative abilities than
that of the states. This maybe due to the fact that transitions
implicitly hold some static information because they are state
dependent and there is no PD sharing between them. In order

Table 2. LID rates (%) for different DHMnet novelty thresh-
olds and data set “Test1”.

Threshold State PDs Trans. PDs Both PDs
1.6 82.2 84.6 85.3
1.5 84.5 84.5 84.6
1.4 85.3 87.5 86.3

to work on-line together with a multilingual speech recogni-
tion system, the LID system should be able to make decisions
about the language not at the end of an utterance, but as soon
as possible after the beginning of the speech segment. To
check our system performance in this mode, we used the data
set “Test2” and forced LID decision after a xed number of
speech frames have been processed. This number was set to
correspond to 1, 2, 3, 4 and 5 seconds. The results of this
experiment are shown in Table 3. Naturally, the performance
for longer speech segments is better, but even for 3 seconds,
which can be considered acceptable for on-line operation, the
LID rate is more than 85% for all types of DHMnet.

5. CONCLUSIONS

We presented new LID system based on the Dynamic Hidden
Markov network. The experiments showed that this system
is able to achieve good performance even with short speech
segments and could be used on-line as a front-end for a mul-
tilingual speech recognition system.
This is the rst study of such kind of LID system and, ac-

tually, the rst application of the DHMnet as a speech model
in a real task, so there are much more investigations to be done

Table 3. LID rates (%) for different DHMnet novelty thresh-
olds and different speech segment lengths from data set
“Test2”.

Length State PDs Trans. PDs Both PDs
Threshold 1.6

1 sec. 77.5 78.8 80.5
2 sec. 81.0 83.5 83.3
3 sec. 82.3 85.2 85.7
4 sec. 82.8 85.5 87.0
5 sec. 83.5 86.5 86.0

Threshold 1.5
1 sec. 81.0 81.6 82.0
2 sec. 84.5 84.2 84.8
3 sec. 85.3 85.5 85.6
4 sec. 87.2 87.5 87.3
5 sec. 86.6 88.0 88.2

Threshold 1.4
1 sec. 82.0 79.0 81.8
2 sec. 85.2 84.2 86.0
3 sec. 85.8 86.3 87.3
4 sec. 86.8 86.8 88.3
5 sec. 88.3 88.8 89.3

including the effect of the amount of training data, possibility
of automatic abstract knowledge acquisition, error recovery,
etc.
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